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Dissipation Enables Robust Extensive Scaling of Multipartite Correlations
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We investigate the multipartite mutual information between N discrete-state stochastic units interacting
in a network that is invariant under unit permutations. We show that, when the system relaxes to fixed point
attractors, multipartite correlations in the stationary state either do not scale extensively with N or the
extensive scaling is not robust to arbitrarily small perturbations of the system dynamics. In particular,
robust extensive scaling cannot occur in thermodynamic equilibrium. In contrast, mutual information scales
extensively when the system relaxes to time-dependent attractors (e.g., limit cycles), which can occur only
far from equilibrium. This demonstrates the essential role of dissipation in the generation and maintenance
of multipartite correlations. We illustrate our theory with the nonequilibrium Potts model.
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Introduction—Information theory provides a universal
framework to characterize bipartite and multipartite corre-
lations in complex physical systems. In the last few years,
such correlations have received significant attention in the
context of quantum many-body systems [1-3]. In particu-
lar, many studies were concerned with their universal
scaling properties in pure [4], thermal [5], and nonequili-
brium steady states [6—11]. In the context of classical
stochastic systems, research on information-theoretic cor-
relations has mainly focused on their relation to non-
equilibrium thermodynamics (e.g., operation of Maxwell
demons) [12-19]. However, most studies focused on
relatively small systems. Only recently, information theory
began to be used to formalize nonequilibrium stochastic
thermodynamics at macroscopic scales [20-23]. Among
others, this framework was used to characterize the
nonequilibrium phase transition associated with the for-
mation of Turing patterns [24]. Recent works have further
investigated the system-size scaling of information flow
between two subsystems in an autonomous Maxwell
demon spanning from microscopic to macroscopic scales.
In the electronic realization of this device, made of two
coupled CMOS inverters, it was shown that information
flow can scale extensively with system size (i.e., the
number of electrons) only when dissipation scales supra-
extensively [25,26]. Furthermore, it was shown that
this is not possible in a similar setup realized with
chemical reaction networks, where the information flow
is always subextensive with system size (i.e., the number of
molecules) [27].
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In this Letter, we investigate the scaling properties of
multipartite correlations in the stationary state of systems
composed of a large number of interacting discrete-state
stochastic units. Such systems received a great deal of
attention, e.g., in the context of synchronization [28-47] or
collective enhancement of the performance of heat engines
[48-53]. In general, the characterization of information-
theoretic quantities in such systems is cumbersome since
it requires knowledge of the full probability distribution of
the system states whose dimension grows exponentially with
the system size. However, the problem greatly simplifies for
permutation-invariant systems where all stochastic units are
identical and all of their pairs are coupled to each other in
the same manner [28-30,33-40,43-45,48-53]. Then, in the
large size limit, the system entropy becomes a linear function
of the probability distribution of the coarse-grained meso-
states of the system [23,54]. As we show later, this enables
one to characterize the macroscopic scaling of the multi-
partite mutual information using the deterministic mean-field
equations, which can be easily solved numerically.

Our theory demonstrates that the scaling of multipartite
mutual information is always subextensive when the
system relaxes to a unique fixed point. Scaling may become
extensive when the stationary state of the system corre-
sponds to a probabilistic mixture of several fixed points.
However, extensive scaling of correlations is not robust in
that case—it can be suppressed by arbitrarily small per-
turbations of the system dynamics. A robust extensive
scaling of correlations is therefore impossible in thermo-
dynamic equilibrium where only fixed point attractors are
allowed [23]. In contrast, a robust extensive scaling of
correlations is present when the system relaxes to time-
dependent attractors (e.g., limit cycles), which can occur
only far from equilibrium [55]. This shows the essential
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role of dissipation in maintaining robust multipartite
correlations in macroscopic stochastic systems.

Setup—We consider systems composed of N units whose
dynamics corresponds to classical Markov jumps between
d discrete states of each unit. The state of the system is
characterized by the microscopic configuration vector
a = {a;}}_,, where a; € {j}4Z) denotes the occupied state
of each unit. We further focus on permutation-invariant
systems, where units are identical and the stochastic
dynamics of each unit is invariant to arbitrary permutations
of other units; here we follow a comprehensive treatment of
such systems in Ref. [54]. We also confine our analysis to
the stationary state of the system, that is, the asymptotic
state obtained in the limit # — co. Due to permutation
invariance of the dynamics, this state is also permutation
invariant. As a consequence, it is fully characterized by the
probability distribution {py}y, where py is the sum of
probabilities of microscopic configurations a correspond-
ing to the given occupation vector N ={N;}97; and
N; =% 6, ; is the number of units in the state j.
This distribution is given by the stationary solution
V N:d;py = 0 of the mesoscopic master equation

d;pn = Z[W/I(N —A)pn-a, = W,(N)py]. (1)
7

where A; is the vector denoting the change of the
occupation vector during the Markov jump of type 1 and
W,(N) is the transition rate for jump A with the initial
occupation vector N. The different jump types A corre-
spond, e.g., to different transitions between states of a
single unit. (This kind of description can also be applied
to transient dynamics with special initial conditions; see
Ref. [54] for details.)

Multipartite correlations—The central quantity analyzed
in our Letter is the multipartite mutual information [56]:

Iy=Y Si=Su20, (2)

where Sio = — >, Pe 1Nl pg is the Shannon entropy of the
total system and §; = — Za,- P, In py. is the entropy of the
ith unit. For permutation-invariant states, the total entropy
is calculated as [23,54]

Stot = ZPN InQy — ZPN In py, (3)
N N

where Qy = N!/(I /=y N;!) is the number of microscopic
configurations « corresponding to a given occupation
vector N. We now note that the second term on the rhs
of Eq. (3) corresponds to the Shannon entropy of the
probability distribution {py}y. Therefore, it is always
nonnegative and scales at most logarithmically with system

size: 0 <-) npnInpy S (d—1)InN, with the upper
bound reached for a uniform probability distribution of
mesostates, py ~ (d — 1)!/N4=! (for large N) [54]. Thus,
only the first term can be extensive with system size. For
large N, we can reexpress this term by replacing the
discrete probability distribution { py } y with the continuous
probability density p(n) = N¢py, where n = N/N is the
normalized occupation vector. We then obtain [23,54]

lim S = (s(0) = [ plm)siman, (@)
where
1 d—1
S(n)EAl/iirc}oﬁanN:—;njlnnj (5)

is the intensive entropy function that has the form of a
Shannon entropy and (-) denotes the ensemble average. To
calculate S; we note that, due to permutation invariance, the
marginal probability distribution of states «; is the same
for each unit and equal to {p,, }, = (n) = >y pyN/N.In
the macroscopic limit, we further have (n) = [ p(n)ndn.
Therefore, using Eq. (5), we have

Si ==Y Panpa, = s((n)). (6)

Consequently, the intensive (divided by N) multipartite
mutual information scales asymptotically as

Macroscopic limit—We now derive the main result of
our Letter, the explicit expressions for the asymptotic
scaling of I,;/N [Egs. (10) and (11)].

To that end, let us first discuss what happens when the
thermodynamic limit N — oo is taken before the long time
limit. If the probability density p(n) is initially narrowly
focused around some point ny), it will stay narrowly focused
around the time-evolved state n, whose evolution is given
by the deterministic mean-field equation [23,57]:

dn, = ZAAWA(nt)v (8)
A
where
wi(n) = lim W;(N)/N 9)

is the intensive transition rate. The long-time solutions of
Eq. (8), called attractors, correspond to macroscopic phases
of the system. The attractors may be either time indepen-
dent, called fixed points, or time dependent, e.g., periodic
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(called limit cycles) or chaotic. When Eq. (8) displays
multiple attractors, labeled by y, the initial condition n, will
determine which one is eventually reached depending on to
which basin of attraction it belongs.

We now turn to the case which interests us in this Letter,
where the long time limit is taken before the large N limit.
We first consider the situation where the mean-field
dynamics has a unique attractor. Then, even when this
attractor is time dependent, the system relaxes to the unique
stationary state of the master equation [Eq. (1)] [58]. As
shown for both regular [59-61] and chaotic [62-66]
attractors, the probability density p(r) of the stationary
state converges with N to the invariant probability density
of the deterministic dynamics, lim,_, 7~ fo n —n,)dt,
provided that the latter is unique (although in the chaotic
case, finite-size effects may be important even for relatively
large N [67-71]). Consequently, as discussed in Ref. [66],
the ensemble average of any intensive observable (in
particular, any function of r) converges to the infinite-time
average for the deterministic dynamics. Applying this to
Eq. (7), I;/N is calculated as

. _
lim WM = s(n;)

—s(n,), (10)

where (-) = lim,_ 7! J&(-)dt denotes the infinite-time
average for the deterministic dynamics.

We now generalize this result to the multistable case,
where the mean-field equation [Eq. (8)] displays multiple
attractors. Then, on short timescales, the system initialized
in the basin of attraction of the attractor y will relax to a
conditional probability density that will be close to the
invariant probability density lim, 7' [ 5(n — n])ds,
where n’ is the deterministically time-evolved state con-
fined to that basin. On long timescales, due to rare
stochastic jumps between the attractors, each attractor will
be occupied with the probability &7, determined by sta-
tionary probability of the master equation [23,57,61,72].
Consequently, Eq. (10) must be generalized by averaging n
and s(n) over attractors as well as time:

§m7 = S<Z@ n,> - zy:gzys(n?). (11)

We note that &7, can be determined by solving the
stationary distribution of a coarse-grained master equation
describing transitions between attractors using the escape
rates from each attractor [see Eq. (217) in Ref. [23] ]; for
methods to determine these rates, see Refs. [73-75].
Conditions of robust extensive scaling of I,—Let
us now discuss the implications of Egs. (10) and (11)
for the scaling of mutual information 7,,. We observe that
I, does not scale extensively with system size (i.e.,

limy_,oIy;/N = 0) when the system relaxes to a single

fixed point because in that case s(7;) = s(n,). Otherwise,
the mutual information scales extensively and is strictly
positive (limy_ o, /y/N > 0). Positivity is ensured by
Jensen’s inequality s((n)) > (s(n)) that holds since s(n)
is a concave function. Consequently, the extensive scaling
of I, is possible in two scenarios: (I) the system relaxes to a
time-dependent attractor or (II) several fixed points coexist,
i.e., several probabilities &7, are of order 1.

However, scenario (II) (coexistence of fixed points) can
occur only for some well-tuned models because (for
N — o) usually only a single attractor (the “most likely”
one) is occupied with probability &7, = 1 and determines
the macroscopic state of the system, while the probabilities
of other attractors are exponentially suppressed with N
[23,44,45,57,72,74-77]. As a result, this scenario is not
robust to small perturbations of the system dynamics. By
this we mean that the coexistence of fixed points becomes
suppressed (i.e., one of the attractors becomes occupied
with probability %7, = 1) under certain perturbations of
transition rates W,;(N) — W,(N) + €G,(N), with arbitrar-
ily small ¢ and finite G,(N)/N. Physically, such perturba-
tion may be related to the change of some system
parameters. For example, in the ferromagnetic phase of
the Ising model, two fixed points with opposite magneti-
zation are occupied with probability &7, = 1/2 at zero
magnetic field, while any finite magnetic field makes one of
them occupied with probability &7, = 1. More generally,
the coexistence of fixed points is observed at discontinuous
phase transition points separating two macroscopic phases,
but it is suppressed by any perturbation of the system
parameters that moves it away from the phase transition
point [44,45,57,74-77].

In contrast, the extensive scaling in scenario (I) can be
robust sinc
theory—there are many examples of time-dependent attrac-
tors which are structurally stable, i.e., whose existence is
robust to small perturbations of the transition rates (e.g.,
hyperbolic limit cycles [78,79] or certain chaotic attractors
[80-83]). Crucially, such attractors can occur only out of
equilibrium, which implies that robust extensive scaling of
correlations can only occur in the presence of energy
dissipation. Conversely, robust extensive scaling of multi-
partite correlations cannot occur in thermal equilibrium,
where only fixed point attractors are allowed (as proven
in Ref. [23]).

Example: Nonequilibrium Potts model—We illustrate
our theory with the nonequilibrium Potts model (Fig. 1),
a minimum thermodynamically consistent model of syn-
chronization [37—40]. It consists of N d-state units coupled
via all-to-all ferromagnetic interaction so that the system
energy is reduced by J/N for every pair of units occupying
the same state. Consequently, the system energy Ey is
solely a function of the occupation vector N:
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FIG. 1. (a) Single unit with 3 states (orange bullets), with a
green arrow pointing to the occupied state. The nonconservative
force f drives transitions in the clockwise direction. (b) The
system energy is reduced by J/N for each pair of units occupying
the same state.

d—1
J
j=0

where ¢; is the energy of the unit state ;. It is assumed that
only transitions between adjacent states of the units (i.e., j
and j+ 1, with j defined modulo d) are allowed. The
system is also driven by a nonconservative force such that
the transition j — j 4 1 is associated with the flow of
energy *+f to the environment.

The dynamics of the model is described by the master
equation [Eq. (1)] with the jump of type A= (j,j £ 1)
corresponding to the transition j — j+ 1 and A ;i) =
{8214 — 6, }{Zi. To provide consistency with the laws of
thermodynamics, the transition rates must obey the local
detailed balance condition [23,54],

W(j,jil) (N)

Jn —EDY
W1, (V')

=p(xf+Fy—Fy), (13)

where ff = 1/(kgT) is the inverse temperature of the
environment, N =N+ A; ;11), and Fy = Ey—f~' InQy
is the free energy of the mesostate N. In the absence of
nonconservative force, the system relaxes to the equilibrium
state py! o« e P~ Specifically, following Refs. [37-40], we
define the transition rates and the intensive rates [Eq. (9)],
using the Arrhenius rate model:

(N) —_ F]\]jeﬁ'[if—ejil—0—6_,--‘,—!(N,-i1—N,--"-l)/N]/Z7

W e (14a)

w(j jier) (1) = Tnjel e =eartertl a=m)i/2, (14b)
where I is the kinetic rate.

‘We now focus on the case d = 3. First, as in Refs. [37-40],
we consider a system with cyclic symmetry (i.e., symmetry
with respect to the cyclic permutation of N) by taking
€g =€, =€, =0. In this case, when increasing f, the
system exhibits a sequence of two continuous nonequili-
brium phase transitions between three distinct phases; see
Ref. [37] for a detailed analysis. Below ., =3 J~!, the
system has a single fixed point (SF phase). Between 3., and
B ~6.11 J7!, the system exhibits a unique limit cycle

(a) 1.2 : : : :
SF LC MS
Lot .
Bcl 502
Z 0.8} e1=0
== o6}
=
M~ oaf
0.2}
0.0
(b)
0.5
Z 0.4F
\E 0.3f
M~ 02f
0.1f
0.0 ; ‘ ‘
0 2 4 6 8
BJ
FIG. 2. Intensive multipartitt mutual information [,,/N for

€y =€, =0and (a) ¢; =0, (b) ¢, = 0.05J. The solid green line
represents the predictions of our theory, and dots represent the
master equation results for different system sizes N. Dotted lines
are added for eye guidance. The acronyms in the top denote the
single fixed point (SF), limit cycle (LC), and multistable (MS)
phases. Parameter: f = J.

attractor (LC phase). Finally, at f.,, the system enters the
multistable phase (MS) with three stable fixed points via the
infinite period (IP) bifurcation. Due to the cyclic symmetry
of the system, these fixed points are occupied with equal
probabilities &7, = 1/3. Consequently, in the SF and LC
phases we calculate I,,/N using Eq. (10), while for the MS
phase we use Eq. (11). As shown in Fig. 2(a), the intensive
mutual information 1,,/N appears at the Hopf bifurcation
and then grows monotonically with S, exhibiting a non-
analytic behavior at the IP bifurcation. This behavior is
confirmed by the master equation results for finite system
sizes, which quantitatively agree with the predictions of our
theory, especially in the limit cycle phase.

To verify the robustness of extensive scaling of [,
inspired by Ref. [34], we now break the cyclic symmetry by
taking €; > 0. Then, the transition 0 — 1 is suppressed, and
the units tend to predominantly occupy the state 0. As
before, the system enters the limit cycle phase at f. =
3.05 J7! due to the Hopf bifurcation. However, the IP
bifurcation at 3., ~ 5.15 J~! brings the system again to the
SF phase, rather than to the multistable phase. Such a
reentry into the same phase is called the reentrant phase
transition [84,85]. As a result, as illustrated in Fig. 2(b),
I/ N exhibits a nonmonotonic behavior: it appears at the
Hopf bifurcation and vanishes at the IP bifurcation. When
increases further, the system becomes multistable, with a
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(b)
0.8
=
e N =60 E
= N =100 0.4
ceeN=150| ™
LC ——N —
(BT =4)
0.
-0.03 0. 0.03 -0.03 0. 0.03
61/J 61/J
FIG. 3. I,,/N as a function of ¢, = —¢, in (a) limit cycle (LC)

phase with fJ = 4 and (b) multistable (MS) phase with pJ = 7.
Parameters: f = J, ¢y = 0. Symbols are as in Fig. 2; note that the
results denoted by the green line in (b) apply to all e; apart
from ¢; = 0.

second (third) stable fixed point generated by a saddle-node
bifurcation [34] at f~ 6.64 J=! (~6.66 J~!). However,
I/ N still vanishes for N - oo because a single attractor,
corresponding to a predominant occupation of state 0, tends
to be occupied with probability &7, = 1. The nonmono-
tonic behavior of I,,/N is reproduced by the master
equation results, which gradually approach the predictions
of our theory for increasing N. In the limit cycle phase, the
results agree quantitatively already for a relatively small
N = 60. This shows that the extensive scaling of multi-
partite mutual information is robust to perturbations break-
ing the cyclic symmetry for limit cycle attractors, while it is
not robust for fixed point attractors; the former results from
hyperbolicity of the limit cycle, which makes its existence
robust to perturbations (see the Appendix A).

We illustrate these observations further by considering
the dependence of 7,/ N on the magnitude of perturbation
from the cyclic symmetry. We parameterize this magnitude
by €, taking ¢, = 0 and €, = «€,. In Fig. 3 we present the
results for ¢ = —1. As shown, in the LC phase, for both
e; =0and e, #0,1,/N converges with N to a finite value
that agrees with the predictions of our theory. In contrast, in
the MS phase, I,,/N is suppressed with N for e; # 0 so that
it becomes increasingly narrowly peaked around the cyclic
symmetry point. As discussed in the Appendix B, the same
behavior is observed for other parameters «, except for
some peculiar values for which the energy perturbation
goes along the discontinuous phase transition line in
(€1,€,) plane. This confirms that the extensive scaling of
I, is robust to perturbations in the LC phase, but not in the
MS phase.

Final remarks—We note that a robust extensive scaling
of multipartite correlations in time-dependent attractors is
accompanied by an extensive scaling of the energy dis-
sipation [23]. This contrasts with bipartite correlations
between two macroscopic systems, whose extensive
scaling was shown to require dissipation that scales super-
extensively with system size [25,26]. An open question
is whether our conclusions concerning the conditions

for an extensive scaling of correlations hold beyond
the permutation-invariant systems that we considered
in our Letter. For finite-dimensional lattice models
[28,29,32,33,41,42,46,52] an interesting direction may
be the information-theoretic characterization of complex
spatiotemporal patterns (such as waves), which do not exist
in permutation-invariant systems [86—89]. Disordered sys-
tems [31,47] should also be investigated. Since these
systems can give rise to a complex free energy landscape
at equilibrium with an extensive number of degenerate
minima (e.g., spin glasses [90]), different scaling of
suitably defined mutual information may be expected.
Beyond demonstrating a fundamental link between
dissipation and correlations, our Letter has practical rel-
evance. Among others, in the vein of Ref. [91], the multi-
partite mutual information /,, can be used as a universal
(model-independent) order parameter of synchroniza-
tion in all-to-all coupled networks consisting of a large
number of oscillators [28-30,33-40,43-45]. Equation (10)
enables a practical calculation of this quantity using
mean-field dynamics. Additionally, as demonstrated in the
Appendix B, I, can also be used as a witness of emergent
discontinuous phase transitions in finite-size systems.
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End Matter

Appendix A: Structural stability of limit cycles—In the
main text, we noted that the existence of hyperbolic
limit cycles is robust to small perturbations of the
transition rates W,(N) [and thus, the intensive transition
rates w,(n) appearing in Eq. (8)]. In dynamical systems
theory, this feature is called structural stability [78,79].
We also stated that the limit cycle in the Potts model is
hyperbolic and thus robust. Here we briefly define how
the hyperbolicity of the limit cycle is defined. To that
end, we first define the Jacobian of the deterministic
dynamics evaluated around the time-evolved state n;:

I(n,) = [ank’;lj(nt)]lgj,kgd—l’ (A1)
where 72;(n) =3, A; jw;(n) is the deterministic rate of
change of the element n; given by Eq. (8). We note that
the Jacobian has dimension d — 1 rather than d because,
due to the conservation law Y 4jn; =1, the system
dynamics is characterized by d — 1 independent variables
{ny,....nq1}, with ng = 1= 3791 n;. We then focus on
a situation where the system exhibits a time-periodic
limit cycle solution with n, =n,,;, where T is the
oscillation period. We consider the time evolution of the
fundamental matrix M(z),

dM(1) = J(m,M(2), (A2)
with M(0) = 1. The hyperbolicity of the limit cycle is
then determined by the eigenvalues of the monodromy
matrix M(7T'), called the Floquet multipliers: the cycle is
hyperbolic if a single Floquet multiplier equals 1, while
all others have moduli different from 1. In particular, for
attractive limit cycles, the latter multipliers have moduli
smaller than 1. We verified numerically that this is true
for the Potts model considered in the main text, which
confirms that the existence of the limit cycle is robust to
small perturbations of the dynamics.

Appendix B: Energy perturbations in the multistable
phase—In this appendix, we analyze in more detail the
influence of perturbations of energies ¢; on the scaling
of I); in the multistable phase of the Potts model.
Specifically, we consider the dependence of I,;/N on ¢,
€,, setting ¢y = 0 as a reference. We recall that in Fig. 3
we considered a specific parameterization €, = —e;. For
such a case, we observed that I,,;/N is suppressed with
N for €¢; # 0. In fact, we observed such a behavior for
most parametrizations €, = «€; (not shown). However,
there are some peculiar exceptions for « ~ {0, 1, £oo}.

As an example of such an exception, let us consider the
case of @ = 0 (e, = 0). This corresponds to the sweep of
€, along line I in Fig. 4(a). The behavior of I,,/N is
presented in Fig. 4(b). As in the case analyzed in Fig. 3,

I/ N is suppressed with N for e; > 0. However, in contrast
to the previously described behavior, I,,/N does not vanish
for ¢; < 0.

To explain this behavior, we recall that I, can scale
extensively when several fixed points are occupied with
finite probabilities &,. Such a situation occurs, for exam-
ple, at discontinuous phase transition points separating
macroscopic phases corresponding to different fixed points
[44,45,57,74-T7]. In the setup considered, in the multi-
stable phase, the system exhibits three stable fixed points.
Consequently, the phase diagram in the (e;,€,) plane
consists of three macroscopic phases corresponding to
these fixed points. These regions are separated by three
discontinuous phase transitions lines in the (e, €,) plane.
Due to symmetry reasons, these line emanate from the
cyclic symmetry point €; = ¢, = 0, where all three fixed
points coexist with the same probability. Thus, the apparent
nonvanishing of I,;/N for ¢, =0 and ¢; <0 suggests
that, for those parameter values, the system is at (or at least
close to) one of discontinuous phase transition lines in
(€1, €>) plane.

To confirm this, in Figs. 4(c) and 4(d) we analyze the
effect of perturbation of ¢, for a fixed ¢; = —0.03J. This
corresponds to the sweep of ¢, along line II in Fig. 4(a),
which can be expected to be perpendicular to the discon-
tinuous phase transition line. In fact, as shown in Fig. 4(c),
the normalized occupancy of the state j = 1, labeled (n,),
exhibits a rapid jump at €, =~ 0, which becomes increasingly
sharp with increasing N. Analogously, one observes also a

(@) 0.05F— (b)
1
L1
1
~ : I =
~~ 0. : ~ X
! woN=1000 3y &
| LN =150 LS e,
~0.05 b 0. 59§
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S 05
~
.o _" 3::'.‘."‘.‘
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FIG. 4. (a) Lines in (e}, ¢,) plane representing the considered

energy perturbations. (b) I,,/N as a function of ¢, for ¢, =0
[along line T'in (a)]. (c), (d) (n;) and I,,/N as a function of ¢, for
€; = —0.03J [along line II in (a)]. Parameters: f = J, ¢, = 0.
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rapid decrease of (n,) (not shown). This witnesses the
presence of discontinuous phase transition between fixed
points with dominant occupations of states j =1 and
j = 2. In agreement with our theory, I,,;/N is suppressed
with N on both sides of the phase transition, so it becomes
increasingly narrowly peaked around the phase transition
point [Fig. 4(d)]. The magnitude of this peak is around
I;/N =~ 0.6. This approximately corresponds to I;,/N ~
0.605 calculated at ¢, = 0 using Eq. (11), assuming equal

probabilities &7, = 1/2 of the fixed points separated by the
phase transition.

We thus conclude that the extensive scaling of 7,,/N in
the multistable case is suppressed for most points (e, €,),
apart from those located at discontinuous phase transition
lines in the (e;,e€,) plane. This further suggests that the
analysis of I); may serve the detection of emergent
discontinuous phase transitions in simulations of finite-
size systems.
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