REMLEIN, Benedikt ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
AVANZINI, Francesco ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
External co-authors :
yes
Language :
English
Title :
What is a chemostat? Insights from hybrid dynamics and stochastic thermodynamics
X. Yang, M. Heinemann, J. Howard, G. Huber, S. Iyer-Biswas, G. Le Treut, M. Lynch, K. L. Montooth, D. J. Needleman, S. Pigolotti, J. Rodenfels, P. Ronceray, S. Shankar, I. Tavassoly, S. Thutupalli, D. V. Titov, J. Wang, and P. J. Foster, “ Physical bioenergetics: Energy fluxes, budgets, and constraints in cells,” Proc. Natl. Acad. Sci. U. S. A. 118, e2026786118 ( 2021). 10.1073/pnas.2026786118
G. Ashkenasy, T. M. Hermans, S. Otto, and A. F. Taylor, “ Systems chemistry,” Chem. Soc. Rev. 46, 2543- 2554 ( 2017). 10.1039/c7cs00117g
M. Esposito, “ Open questions on nonequilibrium thermodynamics of chemical reaction networks,” Commun. Chem. 3, 107 ( 2020). 10.1038/s42004-020-00344-7
A. Wachtel, R. Rao, and M. Esposito, “ Free-energy transduction in chemical reaction networks: From enzymes to metabolism,” J. Chem. Phys. 157, 024109 ( 2022). 10.1063/5.0091035
M. Bilancioni and M. Esposito, “ Gears in chemical reaction networks: Optimizing energy transduction efficiency,” arXiv:2405.17960 ( 2025).
D. Voet and J. G. Voet, Biochemistry ( John Wiley & Sons, 2010).
P. Solís Muñana, G. Ragazzon, J. Dupont, C. Z. J. Ren, L. J. Prins, and J. L. Y. Chen, “ Substrate-induced self-assembly of cooperative catalysts,” Angew. Chem., Int. Ed. 57, 16469- 16474 ( 2018). 10.1002/anie.201810891
K. Das, L. Gabrielli, and L. J. Prins, “ Chemically fueled self-assembly in biology and chemistry,” Angew. Chem., Int. Ed. 60, 20120- 20143 ( 2021). 10.1002/anie.202100274
D. Andrieux and P. Gaspard, “ Fluctuation theorem and mesoscopic chemical clocks,” J. Chem. Phys. 128, 154506 ( 2008). 10.1063/1.2894475
P. Gaspard, “ Stochastic approach to entropy production in chemical chaos,” Chaos: Interdiscip. J. Nonlinear Sci. 30, 113103 ( 2020). 10.1063/5.0025350
B. Altaner, A. Wachtel, and J. Vollmer, “ Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models,” Phys. Rev. E 92, 042133 ( 2015). 10.1103/physreve.92.042133
G. Falasco, T. Cossetto, E. Penocchio, and M. Esposito, “ Negative differential response in chemical reactions,” New J. Phys. 21, 073005 ( 2019). 10.1088/1367-2630/ab28be
D. Forastiere, G. Falasco, and M. Esposito, “ Strong current response to slow modulation: A metabolic case-study,” J. Chem. Phys. 152, 134101 ( 2020). 10.1063/1.5143197
S. G. Marehalli Srinivas, M. Polettini, M. Esposito, and F. Avanzini, “ Deficiency, kinetic invertibility, and catalysis in stochastic chemical reaction networks,” J. Chem. Phys. 158, 204108 ( 2023). 10.1063/5.0147283
P. Gaspard, “ Fluctuation theorem for nonequilibrium reactions,” J. Chem. Phys. 120, 8898- 8905 ( 2004). 10.1063/1.1688758
T. Schmiedl and U. Seifert, “ Stochastic thermodynamics of chemical reaction networks,” J. Chem. Phys. 126, 044101 ( 2007). 10.1063/1.2428297
R. Rao and M. Esposito, “ Conservation laws and work fluctuation relations in chemical reaction networks,” J. Chem. Phys. 149, 245101 ( 2018). 10.1063/1.5042253
H. Qian and D. A. Beard, “ Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium,” Biophys. Chem. 114, 213- 220 ( 2005). 10.1016/j.bpc.2004.12.001
R. Rao and M. Esposito, “ Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics,” Phys. Rev. X 6, 041064 ( 2016). 10.1103/physrevx.6.041064
F. Avanzini, E. Penocchio, G. Falasco, and M. Esposito, “ Nonequilibrium thermodynamics of non-ideal chemical reaction networks,” J. Chem. Phys. 154, 094114 ( 2021). 10.1063/5.0041225
F. Avanzini, M. Bilancioni, V. Cavina, S. Dal Cengio, M. Esposito, G. Falasco, D. Forastiere, J. N. Freitas, A. Garilli, P. E. Harunari, V. Lecomte, A. Lazarescu, S. G. Marehalli Srinivas, C. Moslonka, I. Neri, E. Penocchio, W. D. Piñeros, M. Polettini, A. Raghu, P. Raux, K. Sekimoto, and A. Soret, “ Methods and conversations in (post)modern thermodynamics,” SciPost Physics Lecture Notes ( SciPost, 2024), Vol. 80.
L. Oberreiter, U. Seifert, and A. C. Barato, “ Universal minimal cost of coherent biochemical oscillations,” Phys. Rev. E 106, 014106 ( 2022). 10.1103/physreve.106.014106
B. Remlein, V. Weissmann, and U. Seifert, “ Coherence of oscillations in the weak-noise limit,” Phys. Rev. E 105, 064101 ( 2022). 10.1103/physreve.105.064101
S. G. Marehalli Srinivas, F. Avanzini, and M. Esposito, “ Thermodynamics of growth in open chemical reaction networks,” Phys. Rev. Lett. 132, 268001 ( 2024). 10.1103/physrevlett.132.268001
S. G. Marehalli Srinivas, F. Avanzini, and M. Esposito, “ Characterizing the conditions for indefinite growth in open chemical reaction networks,” Phys. Rev. E 109, 064153 ( 2024). 10.1103/physreve.109.064153
V. Voorsluijs, F. Avanzini, G. Falasco, M. Esposito, and A. Skupin, “ Calcium oscillations optimize the energetic efficiency of mitochondrial metabolism,” iScience 27, 109078 ( 2024). 10.1016/j.isci.2024.109078
K. Yoshimura and S. Ito, “ Information geometric inequalities of chemical thermodynamics,” Phys. Rev. Res. 3, 013175 ( 2021). 10.1103/physrevresearch.3.013175
K. Yoshimura and S. Ito, “ Thermodynamic uncertainty relation and thermodynamic speed limit in deterministic chemical reaction networks,” Phys. Rev. Lett. 127, 160601 ( 2021). 10.1103/physrevlett.127.160601
J. H. Fritz, B. Nguyen, and U. Seifert, “ Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator,” J. Chem. Phys. 152, 235101 ( 2020). 10.1063/5.0006115
A. Blokhuis, D. Lacoste, and P. Gaspard, “ Reaction kinetics in open reactors and serial transfers between closed reactors,” J. Chem. Phys. 148, 144902 ( 2018). 10.1063/1.5022697
F. Avanzini and M. Esposito, “ Thermodynamics of concentration vs flux control in chemical reaction networks,” J. Chem. Phys. 156, 014116 ( 2022). 10.1063/5.0076134
K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala, “ Asymptotic analysis of multiscale approximations to reaction networks,” Ann. Appl. Probab. 16, 1925- 1961 ( 2006). 10.1214/105051606000000420
S. Menz, J. C. Latorre, C. Schütte, and W. Huisinga, “ Hybrid stochastic-deterministic solution of the chemical master equation,” Multiscale Model. Simul. 10, 1232- 1262 ( 2012). 10.1137/110825716
A. Crudu, A. Debussche, A. Muller, and O. Radulescu, “ Convergence of stochastic gene networks to hybrid piecewise deterministic processes,” Ann. Appl. Probab. 22, 1822- 1859 ( 2012). 10.1214/11-aap814
H.-W. Kang and T. G. Kurtz, “ Separation of time-scales and model reduction for stochastic reaction networks,” Ann. Appl. Probab. 23, 529- 583 ( 2013). 10.1214/12-aap841
D. Anderson and T. Kurtz, Stochastic Analysis of Biochemical Systems, Mathematical Biosciences Institute Lecture Series ( Springer International Publishing, 2015).
S. Winkelmann and C. Schütte, “ Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems,” J. Chem. Phys. 147, 114115 ( 2017). 10.1063/1.4986560
P. G. Hufton, Y. T. Lin, and T. Galla, “ Model reduction methods for population dynamics with fast-switching environments: Reduced master equations, stochastic differential equations, and applications,” Phys. Rev. E 99, 032122 ( 2019). 10.1103/physreve.99.032122
H. Risken, The Fokker-Planck Equation, 2nd ed. ( Springer-Verlag, Berlin, 1989).
H. Touchette, “ The large deviation approach to statistical mechanics,” Phys. Rep. 478, 1- 69 ( 2009). 10.1016/j.physrep.2009.05.002
P. Bressloff, Stochastic Processes in Cell Biology, Interdisciplinary Applied Mathematics ( Springer International Publishing, Cham, 2014).
H. Touchette, “ Introduction to dynamical large deviations of Markov processes,” Physica A 504, 5- 19 ( 2018), a part of Special Issue: lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics. 10.1016/j.physa.2017.10.046
H. Qian and H. Ge, Stochastic Chemical Reaction Systems in Biology ( Springer Nature, Cham, 2021).
G. Falasco and M. Esposito, “ Macroscopic stochastic thermodynamics,” Rev. Mod. Phys. 97, 015002 ( 2025). 10.1103/revmodphys.97.015002
J. M. Horowitz, “ Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium,” J. Chem. Phys. 143, 044111 ( 2015). 10.1063/1.4927395
A. Ceccato and D. Frezzato, “ Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium,” J. Chem. Phys. 148, 064114 ( 2018). 10.1063/1.5016158
T. G. Kurtz, “ The relationship between stochastic and deterministic models for chemical reactions,” J. Chem. Phys. 57, 2976- 2978 ( 1972). 10.1063/1.1678692
Z. G. Nicolaou, T. Nishikawa, S. B. Nicholson, J. R. Green, and A. E. Motter, “ Non-normality and non-monotonic dynamics in complex reaction networks,” Phys. Rev. Res. 2, 043059 ( 2020). 10.1103/physrevresearch.2.043059
S. Schuster and R. Schuster, “ A generalization of Wegscheider’s condition. implications for properties of steady states and for quasi-steady-state approximation,” J. Math. Chem. 3, 25- 42 ( 1989). 10.1007/bf01171883
A. Faggionato, D. Gabrielli, and M. Ribezzi Crivellari, “ Non-equilibrium thermodynamics of piecewise deterministic Markov processes,” J. Stat. Phys. 137, 259- 304 ( 2009). 10.1007/s10955-009-9850-x
C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences, 1st ed. ( Springer Cham, 2015), Vol. 191.