Betti numbers; Lipschitz–Killing curvatures; Spin random eigenfunctions; Spin random fields; Analysis; Algebra and Number Theory; Mathematical Physics
Abstract :
[en] Spin (spherical) random fields are very important in many physical applications, in particular they play a key role in Cosmology, especially in connection with the analysis of the Cosmic Microwave Background radiation. These objects can be viewed as random sections of the s-th complex tensor power of the tangent bundle of the 2-sphere. In this paper, we discuss how to characterize their expected geometry and topology. In particular, we investigate the asymptotic behaviour, under scaling assumptions, of general classes of geometric and topological functionals including Lipschitz–Killing Curvatures and Betti numbers for (properly defined) excursion sets; we cover both the cases of fixed and diverging spin parameters s. In the special case of monochromatic fields (i.e., spin random eigenfunctions) our results are particularly explicit; we show how their asymptotic behaviour is non-universal and we can obtain in particular complex versions of Berry’s random waves and of Bargmann–Fock’s models as subcases of a new generalized model, depending on the rate of divergence of the spin parameter s.
Agence Nationale de la Recherche Conseil Régional des Pays de la Loire Fonds National de la Recherche Luxembourg Dipartimenti di Eccellenza Istituto Nazionale di Alta Matematica "Francesco Severi"
Funding text :
The authors would like to thank an anonymous referee for insightful remarks and useful suggestions. DM acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome \u201CTor Vergata\u201D, CUP E83C18000100006 and INdAM. The research of MR has been supported by the ANR-17-CE40-0008 Project UNIRANDOM and INdAM. MS is supported by the grant TROPICOUNT of R\u00E9gion Pays de la Loire, the ANR Project ENUMGEOM NR-18-CE40-0009-02 and by the Luxembourg National Research Fund (Grant 021/16236290/HDSA).
D. Armentano J.-M. Azaïs F. Dalmao J.R. León Central limit theorem for the number of real roots of Kostlan Shub Smale random polynomial systems Am. J. Math. 143 4 1011 1042 4291248 1469.60170
M. Ancona T. Letendre Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem Ann. Henri Lebesgue 4 1659 1703 4353974 1487.60048
M. Ancona Random sections of line bundles over real Riemann surfaces Int. Math. Res. Not. IMRN 9 7004 7059 4251296 1474.14056
R.J. Adler J.E. Taylor Random Fields and Geometry. Springer Monographs in Mathematics New York Springer 1149.60003
P.A.R. Ade the Bicep/Keck Collaboration Improved constraints on primordial gravitational waves using planck, WMAP, and BICEP/Keck observations through the 2018 observing season Phys. Rev. Lett. 127 15 151301
Allys, E., the LiteBIRD Collaboration: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. arXiv e-prints arXiv:2202.02773, February (2022)
N. Aghanim the Planck Collaboration Planck 2018 results. I. Overview and the cosmological legacy of Planck Astron. Astrophys. 641 A1 1473.81184
J. Bochnak M. Coste M.-F. Roy Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Berlin Springer 0912.14023 36
M.V. Berry Regular and irregular semiclassical wavefunctions J. Phys. A Math. Gen. 10 12 2083 2091 489542 0377.70014
M.V. Berry Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature J. Phys. A Math. Gen. 35 13 3025 3038 1913853 1044.81047
D. Beliaev S. Muirhead A. Rivera A covariance formula for topological events of smooth Gaussian fields Ann. Probab. 48 6 2845 2893 4164455 1468.60060
D. Beliaev S. Muirhead I. Wigman Russo–Seymour–Welsh estimates for the Kostlan ensemble of random polynomials Ann. Inst. Henri Poincaré Probab. Stat. 57 4 2189 2218 4328561 1483.30028
P. Breiding H. Kenehlou A. Lerario Quantitative singularity theory for random polynomials Int. Math. Res. Not. 22 8 5685 5719 4406118 1494.14058
P. Baldi M. Rossi Representation of Gaussian isotropic spin random fields Stoch. Process. Appl. 124 5 1910 1941 3170229 1319.60104
P. Bleher B. Shiffman S. Zelditch Universality and scaling of correlations between zeros on complex manifolds Invent. Math. 142 351 395 1794066 0964.60096
D. Cheng V. Cammarota Y. Fantaye D. Marinucci A. Schwartzman Multiple testing of local maxima for detection of peaks on the (celestial) sphere Bernoulli 26 1 31 60 4036027 1446.62254
Y. Canzani B. Hanin Local universality for zeros and critical points of monochromatic random waves Commun. Math. Phys. 378 3 1677 1712 4150887 1476.58031
V. Cammarota D. Marinucci On the limiting behaviour of needlets polyspectra Ann. Inst. Henri Poincaré Probab. Stat. 51 3 1159 1189 3365977 1325.60014
V. Cammarota D. Marinucci A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions Ann. Probab. 46 6 3188 3228 3857854 1428.60067
R. Durrer The Cosmic Microwave Background London Cambridge University Press 0897.58062
Y. Eliashberg N.M. Mishachev S. Ariki Introduction to the h-Principle. Graduate studies in mathematics New York American Mathematical Society 1008.58001
R. Feng S. Zelditch Critical values of random analytic functions on complex manifolds Indiana Univ. Math. J. 63 3 651 686 3254520 1303.32013
M. Goresky R. MacPherson Stratified Morse Theory, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete Springer-Verlag 0639.14012
D. Geller D. Marinucci Spin wavelets on the sphere J. Fourier Anal. Appl. 16 6 840 884 2737761 1206.42039
D. Gayet J.-Y. Welschinger Betti numbers of random real hypersurfaces and determinants of random symmetric matrices J. Eur. Math. Soc. (JEMS) 18 4 733 772 3474455 1408.14187
D. Gayet J.-Y. Welschinger Universal components of random nodal sets Commun. Math. Phys. 347 3 777 797 3551254 1375.58023
A. Hatcher Algebraic Topology Cambridge Cambridge University Press 1044.55001
Hirsch. M.W.: Differential Topology, Volume 33 of Graduate Texts in Mathematics. Springer, New York (1994) (Corrected reprint of the 1976 original)
D. Husemoller Fibre Bundles, Volume 20 of Graduate Texts in Mathematics 3 New York Springer 0821.46089
S. Ilić the Euclid Collaboration Euclid preparation. XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis Astron. Astrophys. 657 A91 1507.60060
J. Jung S. Zelditch Topology of the nodal set of random equivariant spherical harmonics on S3 Int. Math. Res. Not. IMRN 11 8521 8549 1507.35085
T. Letendre Expected volume and Euler characteristic of random submanifolds J. Funct. Anal. 270 8 3047 3110 3470435 1349.58007
N. Leonenko L. Sakhno On spectral representations of tensor random fields on the sphere Stoch. Anal. Appl. 30 1 44 66 2870527 1239.60038
Lerario, A., Stecconi, M.: Differential topology of Gaussian random fields. Preprint ArXiv:1902.03805 (2019)
A. Lerario M. Stecconi What is the degree of a smooth hypersurface? J. Singul. 23 205 235 4366662 1489.14080
A. Lerario M. Stecconi Maximal and typical topology of real polynomial singularities Annales de l’Institut Fourier 74 2 589 626 4748181 1541.14081
A. Lerario M. Stecconi The probabilistic method in real singularity theory Arnold Math J. 10 355 370 4792738 07949273
A. Malyarenko Invariant random fields in vector bundles and application to cosmology Ann. Inst. Henri Poincaré Probab. Stat. 47 4 1068 1095 2884225 1268.60072
A. Malyarenko Invariant Random Fields on Spaces with a Group Action. Probability and its Applications (New York) Heidelberg Springer 1268.60006
Mather, J.: Notes on topological stability (1970)
L. Mathis M. Stecconi Expectation of a random submanifold: the zonoid section Ann. Henri Lebesgue 7 903 967 4799913 1547.60019
D. Marinucci G. Peccati Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series London Cambridge University Press 1260.60004
D. Marinucci G. Peccati M. Rossi I. Wigman Non-universality of nodal length distribution for arithmetic random waves Geom. Funct. Anal. 26 3 926 960 3540457 1347.60013
D. Marinucci M. Rossi I. Wigman The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics Ann. Inst. Henri Poincaré Probab. Stat. 56 1 374 390 4058991 1465.60044
E.T. Newman R. Penrose Note on the Bondi–Metzner–Sachs group J. Math. Phys. 7 863 870 194172 0926.90038
I. Nourdin G. Peccati M. Rossi Nodal statistics of planar random waves Commun. Math. Phys. 369 1 99 151 3959555 1431.60025
F. Nazarov M. Sodin On the number of nodal domains of random spherical harmonics Am. J. Math. 131 5 1337 1357 2555843 1186.60022
F. Nazarov M. Sodin Correlation functions for random complex zeroes: strong clustering and local universality Commun. Math. Phys. 310 1 75 98 2885614 1238.60059
L. Nicolaescu A stochastic Gauss–Bonnet–Chern formula Probab. Theory Relat. Fields 165 235 265 3500271 1346.35140
A. Rivera H. Vanneuville The critical threshold for Bargmann–Fock percolation Ann. Henri Lebesgue 169–215 3 4060853 1434.60302
M. Sodin B. Tsirelson Random complex zeroes. I. Asymptotic normality Israel J. Math. 144 125 149 2121537 1072.60043
M. Stecconi Isotropic random spin weighted functions on S2 vs isotropic random fields on S3 Theor. Probab. Math. Stat. 107 77 109 4511145 07618874
M. Stecconi Kac–Rice formula for transverse intersections Anal. Math. Phys. 12 2 44 4386457 1484.60008
P. Sarnak I. Wigman Topologies of nodal sets of random band-limited functions Commun. Pure Appl. Math. 72 2 275 342 3896022 1414.58019
I. Wigman Fluctuations of the nodal length of random spherical harmonics Commun. Math. Phys. 298 3 787 831 2670928 1213.33019