[en] The rapid melting of mountain glaciers and the vanishing of their streams is emblematic of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable ecosystems in which life is dominated by microbial biofilms2,3. However, current knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, we provide a comprehensive survey of bacteria in the benthic microbiome across 152 GFSs draining the Earth's major mountain ranges. We find that the GFS bacterial microbiome is taxonomically and functionally distinct from other cryospheric microbiomes. GFS bacteria are diverse, with more than half being specific to a given mountain range, some unique to single GFSs and a few cosmopolitan and abundant. We show how geographic isolation and environmental selection shape their biogeography, which is characterized by distinct compositional patterns between mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered microdiverse clades resulting from environmental selection, probably promoting functional resilience and contributing to GFS bacterial biodiversity and biogeography. Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study provides a global reference for future climate-change microbiology studies on the vanishing GFS ecosystem.
Disciplines :
Microbiology
Author, co-author :
Ezzat, Leïla ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland. leila.ezzat@gmail.com ; MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France. leila.ezzat@gmail.com
Peter, Hannes ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Bourquin, Massimo ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
BUSI, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Michoud, Grégoire ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Fodelianakis, Stilianos; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Kohler, Tyler J; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland ; Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
Lamy, Thomas ; MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
Geers, Aileen ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Pramateftaki, Paraskevi; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Baier, Florian; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Marasco, Ramona ; Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
Daffonchio, Daniele ; Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
Deluigi, Nicola ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Styllas, Michail ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland ; Institut de Physique du Globe de Paris, Paris, France
Schön, Martina ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Tolosano, Matteo; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
De Staercke, Vincent; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Battin, Tom J ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland. tom.battin@epfl.ch
H2020 - 863664 - ExpoBiome - Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease
Funders :
SNSF - Swiss National Science Foundation European Union
Funding number :
CRSII5_180241
Funding text :
The Vanishing Glaciers project is supported by The NOMIS Foundation, to T.J.B. We thank A. McIntosh and L. Morris in New Zealand, J. Abermann and T. Juul-Pedersen in Greenland, O. Solomina and T. Kuderina Maratovna in Russia, V. Crespo-P\u00E9rez and P. Andino Guarderas in Ecuador, J. Yde and S. Leth J\u00F8rgensen in Norway, S. Sharma and P. Joshi in Nepal, N. Shaidyldaeva-Myktybekovna and R. Kenzhebaev in Kyrgyzstan, J. Nattabi Kigongo, R. Nalwanga and C. Masembe in Uganda, M. Gonzal\u00E9z and J. Luis Rodriguez in Chile and C. Kuhle and P. Tomco in Alaska for various logistical support; see https://www.glacierstreams.ch for all institutions involved in the logistics of the expeditions. We particularly acknowledge help from the porters and guides in Nepal, Uganda and Kyrgyzstan. We also acknowledge E. Oppliger for laboratory support and the Bioscience Core Laboratory at King Abdullah University and Technology (KAUST) for DNA sequencing. T.J.K. was supported by Charles University project no. PRIMUS/22/SCI/001. D.D. acknowledges financial support from KAUST through the baseline research fund. S.B.B. was supported by Swiss National Science Foundation grant no. CRSII5_180241 to T.J.B., and by the European Research Council under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement no. 863664) to P.W.
R. Hugonnet et al. Accelerated global glacier mass loss in the early twenty-first century Nature 592 726 731 2021Natur.592.726H 1:CAS:528:DC%2BB3MXhtVSrurrP 33911269
A.M. Milner et al. Glacier shrinkage driving global changes in downstream systems Proc. Natl Acad. Sci. USA 114 9770 9778 2017PNAS.114.9770M 1:CAS:528:DC%2BC2sXhsVers7bO 28874558 5603989
T.J. Battin K. Besemer M.M. Bengtsson A.M. Romani A.I. Packmann The ecology and biogeochemistry of stream biofilms Nat. Rev. Microbiol. 14 251 263 1:CAS:528:DC%2BC28XktVOksLc%3D 26972916
S. Cauvy-Fraunié O. Dangles A global synthesis of biodiversity responses to glacier retreat Nat. Ecol. Evol. 3 1675 1685 31740846
S. Hotaling E. Hood T.L. Hamilton Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate Environ. Microbiol. 19 2935 2948 28419666
Pörtner, H.-O. et al. (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).
G. Ménot et al. Early reactivation of European rivers ruring the last deglaciation Science 313 1623 1625 2006Sci..313.1623M 16973877
W.W. Immerzeel et al. Importance and vulnerability of the world’s water towers Nature 577 364 369 1:CAS:528:DC%2BB3cXlslejsQ%3D%3D 31816624
C. Clason et al. Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities Ann. Glaciol. 63 73 78 2022AnGla.63..73C
D. Jacobsen A.M. Milner L.E. Brown O. Dangles Biodiversity under threat in glacier-fed river systems Nat. Clim. Chang. 2 361 364 2012NatCC..2.361J
S. Hotaling D.S. Finn J. Joseph Giersch D.W. Weisrock D. Jacobsen Climate change and alpine stream biology: progress, challenges, and opportunities for the future Biol. Rev. 92 2024 2045 28105701
E. Vega M. Bastidas Navarro N. Martyniuk E. Balseiro B. Modenutti Glacial recession in Andean North-Patagonia (Argentina): microbial communities in benthic biofilms of glacier-fed streams Hydrobiologia 850 3965 3979 1:CAS:528:DC%2BB3sXht1GjtLzN
Z. Ren H. Gao J.J. Elser Q. Zhao Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams Sci. Rep. 7 2017NatSR..712668R 28978929 5627277 12668
L. Wilhelm G.A. Singer C. Fasching T.J. Battin K. Besemer Microbial biodiversity in glacier-fed streams ISME J. 7 1651 1660 1:CAS:528:DC%2BC3sXhtFOju73I 23486246 3721114
Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022).
T.J. Kohler et al. Global emergent responses of stream microbial metabolism to glacier shrinkage Nat. Geosci. 17 309 315 2024NatGe.17.309K 1:CAS:528:DC%2BB2cXkvFGltrg%3D
M. Bourquin et al. The microbiome of cryospheric ecosystems Nat. Commun. 13 2022NatCo.13.3087B 1:CAS:528:DC%2BB38XhsVOqtrnO 35655063 9163120 3087
F. Bastida et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes ISME J. 15 2081 2091 1:CAS:528:DC%2BB3MXmvFGgtrs%3D 33564112 8245509
W.R. Shoemaker K.J. Locey J.T. Lennon A macroecological theory of microbial biodiversity Nat. Ecol. Evol. 1 107 28812691
W.D. Orsi Ecology and evolution of seafloor and subseafloor microbial communities Nat. Rev. Microbiol. 16 671 683 1:CAS:528:DC%2BC1cXht1OjsrfE 29967420
R. Danovaro C. Corinaldesi E. Rastelli A.D. Anno Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor Aquat. Microb. Ecol. 75 81 90
S. Hotaling et al. Microbial assemblages reflect environmental heterogeneity in alpine streams Glob. Chang. Biol. 25 2576 2590 2019GCBio.25.2576H 31077498
L. Ezzat et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater Appl. Environ. Microbiol. 88 e00421 e00422 35674429 9238418
J. Wang et al. Embracing mountain microbiome and ecosystem functions under global change New Phytol. 234 1987 2002 35211983
E. Bertuzzo et al. Geomorphic controls on elevational gradients of species richness Proc. Natl Acad. Sci. USA 113 1737 1742 2016PNAS.113.1737B 1:CAS:528:DC%2BC28XhslWgs7o%3D 26831107 4763792
F. Picazo et al. Climate mediates continental scale patterns of stream microbial functional diversity Microbiome 8 32534595 7293791 92
S. Louca et al. Function and functional redundancy in microbial systems Nat. Ecol. Evol. 2 936 943 29662222
S.D. Allison J.B.H. Martiny Resistance, resilience, and redundancy in microbial communities Proc. Natl Acad. Sci. USA 105 11512 11519 2008PNAS.10511512A 1:CAS:528:DC%2BD1cXhtVSjtrzO 18695234 2556421
B.J. Callahan et al. DADA2: high-resolution sample inference from Illumina amplicon data Nat. Methods 13 581 583 1:CAS:528:DC%2BC28XosVWitb4%3D 27214047 4927377
A. Amir et al. Deblur rapidly resolves single-nucleotide community sequence patterns mSystems 2 e00191-16 28289731 5340863
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at bioRxivhttps://doi.org/10.1101/081257 (2016).
N. Myers R.A. Mittermeier C.G. Mittermeier G.A.B. da Fonseca J. Kent Biodiversity hotspots for conservation priorities Nature 403 853 858 2000Natur.403.853M 1:CAS:528:DC%2BD3cXhs1Olsr4%3D 10706275
C. Rahbek et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365 1108 1113 2019Sci..365.1108R 1:CAS:528:DC%2BC1MXhslGksbfE 31515383
V. Souza L.E. Eguiarte J. Siefert J.J. Elser Microbial endemism: does phosphorus limitation enhance speciation? Nat. Rev. Microbiol. 6 559 564 1:CAS:528:DC%2BD1cXntFOrtrk%3D 18521074
Rinaldo, A., Gatto, M. & Rodríguez-Iturbe, I. River Networks as Ecological Corridors: Species, Populations, Pathogens (Cambridge Univ. Press, 2020).
D.R. Nemergut et al. Global patterns in the biogeography of bacterial taxa Environ. Microbiol. 13 135 144 21199253 5834236
L. Wu et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants Nat. Microbiol. 4 1183 1195 1:CAS:528:DC%2BC1MXhtVWqtbrP 31086312
D.R. Clark G.J.C. Underwood T.J. McGenity A.J. Dumbrell What drives study-dependent differences in distance–decay relationships of microbial communities? Glob. Ecol. Biogeogr. 30 811 825
C. Rahbek et al. Building mountain biodiversity: geological and evolutionary processes Science 365 1114 1119 2019Sci..365.1114R 1:CAS:528:DC%2BC1MXhslGktr%2FJ 31515384
A. Antonelli et al. Geological and climatic influences on mountain biodiversity Nat. Geosci. 11 718 725 2018NatGe.11.718A 1:CAS:528:DC%2BC1cXhvVGntbbI
Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science336, 48–51 (2012).
J.C. Stegen et al. Quantifying community assembly processes and identifying features that impose them ISME J. 7 2069 2079 23739053 3806266
D. Ning et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming Nat. Commun. 11 2020NatCo.11.4717N 1:CAS:528:DC%2BB3cXhvFSis7bK 32948774 7501310 4717
S. Fodelianakis A. Valenzuela-Cuevas A. Barozzi D. Daffonchio Direct quantification of ecological drift at the population level in synthetic bacterial communities ISME J. 15 55 66 32855435
A.A. Larkin A.C. Martiny Microdiversity shapes the traits, niche space, and biogeography of microbial taxa Environ. Microbiol. Rep. 9 55 70 1:CAS:528:DC%2BC2sXksVSqtb8%3D 28185400
C. Averill et al. Defending Earth’s terrestrial microbiome Nat. Microbiol. 7 1717 1725 1:CAS:528:DC%2BB38XisFCgurjP 36192539
Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020).
S.B. Busi et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams PeerJ 8 e9973 33194372 7597623
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, e1 (2013).
M. Martin Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet J. 17 10 12
Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019).
C. Quast et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools Nucleic Acids Res. 41 D590 D596 23193283 3531112
C. Piñeiro J.M. Abuín J.C. Pichel Very Fast Tree: speeding up the estimation of phylogenies for large alignments through parallelization and vectorization strategies Bioinformatics 36 4658 4659 32573652
Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunities in glacier-fed streams. Nat. Commun. 13, 2168 (2022).
S. Narayanasamy et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses Genome Biol. 17 27986083 5159968 260
D. Li C.-M. Liu R. Luo K. Sadakane T.-W. Lam MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph Bioinformatics 31 1674 1676 1:CAS:528:DC%2BC28XhtFyltL3N 25609793
D. Hyatt et al. Prodigal: prokaryotic gene recognition and translation initiation site identification BMC Bioinform. 11 119
M. Steinegger J. Söding MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets Nat. Biotechnol. 35 1026 1028 1:CAS:528:DC%2BC2sXhs1GqsLzE 29035372
P. Queirós F. Delogu O. Hickl P. May P. Wilmes Mantis: flexible and consensus-driven genome annotation Gigascience 10 34076241 8170692 giab042
T. Aramaki et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold Bioinformatics 36 2251 2252 1:CAS:528:DC%2BB3cXitlOlsr%2FK 31742321
T.C. Hsieh K.H. Ma A. Chao iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) Methods Ecol. Evol. 7 1451 1456
L. Jost Entropy and diversity Oikos 113 363 375 2006Oikos.113.363J
D. Li hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers J. Open Source Softw. 3 1041 2018JOSS..3.1041L
Wood, S. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package v.1.8-42 (CRAN, 2023).
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).
J. Oksanen R. Kindt B. O’Hara Vegan: R functions for vegetation ecologists Date of access 15 2014
Martinez Arbizu, P. pairwiseAdonis: pairwise multilevel comparison using adonis. R package v.0.4 (GitHub, 2017).
D.I. Warton S.T. Wright Y. Wang Distance‐based multivariate analyses confound location and dispersion effects Methods Ecol. Evol. 3 89 101
Y.I. Wang U. Naumann S.T. Wright D.I. Warton mvabund—An R package for model-based analysis of multivariate abundance data Methods Ecol. Evol. 3 471 474
P. Legendre M. De Cáceres Beta diversity as the variance of community data: dissimilarity coefficients and partitioning Ecol. Lett. 16 951 963 23809147
Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package v.0.3-21 (CRAN, 2023).
Y. Benjamini Y. Hochberg Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc. Series B Stat. Methodol. 57 289 300 1325392
C. Ricotta S. Pavoine B.E.L. Cerabolini V.D. Pillar A new method for indicator species analysis in the framework of multivariate analysis of variance J. Veg. Sci. 32 e13013
S. Pavoine adiv: An R package to analyse biodiversity in ecology Methods Ecol. Evol. 11 1106 1112
Wilke, C. O. ggridges: ridgeline plots in ‘ggplot2’. R package v.0.5.4 (CRAN, 2021).
P.J. McMurdie S. Holmes phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data PLoS ONE 8 e61217 2013PLoSO..861217M 1:CAS:528:DC%2BC3sXntVWht7w%3D 23630581 3632530
R.J. Hijmans E. Williams C. Vennes M.R.J. Hijmans Package ‘geosphere’ Spherical trigonometry 1 1 45
D. Borcard P. Legendre P. Drapeau Partialling out the spatial component of ecological variation Ecology 73 1045 1055
P. Legendre D. Borcard P.R. Peres-Neto Analyzing beta diversity: partitioning the spatial variation of community composition data Ecol. Monogr. 75 435 450
P.R. Peres-Neto P. Legendre S. Dray D. Borcard Variation partitioning of species data matrices: estimation and comparison of fractions Ecology 87 2614 2625 17089669
S. Dray P. Legendre P.R. Peres-Neto Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) Ecol. Model. 196 483 493
F.G. Blanchet P. Legendre D. Borcard Forward selection of explanatory variables Ecology 89 2623 2632 18831183
P. Legendre E.D. Gallagher Ecologically meaningful transformations for ordination of species data Oecologia 129 271 280 2001Oecol.129.271L 28547606
Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). R package v.0.0-8 (R-Forge, 2007).
P. Legendre et al. Partitioning beta diversity in a subtropical broad‐leaved forest of China Ecology 90 663 674 19341137
S. Xu et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data Mol. Biol. Evol. 38 4039 4042 1:CAS:528:DC%2BB38XhslKjs7nI 34097064 8382893
F. Keck F. Rimet A. Bouchez A. Franc phylosignal: an R package to measure, test, and explore the phylogenetic signal Ecol. Evol. 6 2774 2780 27066252 4799788
H. Mallick et al. Multivariable association discovery in population-scale meta-omics studies PLoS Comput. Biol. 17 e1009442 1:CAS:528:DC%2BB38XptFCltA%3D%3D 34784344 8714082
Tenenbaum, D. et al. KEGGREST: client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). R package v.1.32.0 (Bioconductor, 2021).
Wickham, H. et al. ggplot2: create elegant data visualisations using the grammar of graphics. R package v.3.5.0 (CRAN, 2024).
Kolde, R. pheatmap: pretty heatmaps. R package v.1.0.12 (CRAN, 2019).
Q. Yan et al. Distinct strategies of the habitat generalists and specialists in sediment of Tibetan lakes Environ. Microbiol. 24 4153 4166 35590455
Salazar, G. EcolUtils: utilities for community ecology analysis. R package v.3 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
RStudio Team. RStudio: integrated development environment for R (RStudio, 2021).
Massicotte, P. & South, A.rnaturalearth: world map data from Natural Earth. R package v.1.0.1 (CRAN, 2017).
Ezzat, L. et al. Diversity and biogeography of the glacier-fed stream bacterial microbiome. Zenodo https://doi.org/10.5281/zenodo.13897903 (2024).