Antenna placement; Array configuration; Beampattern optimization; MIMO radar; Planar array; Sparse array; Antenna array design; Array configurations; Beam pattern; Hardware cost; Planar arrays; Side-lobe suppression; Sparse arrays; Two-dimensional; Control and Systems Engineering; Software; Signal Processing; Computer Vision and Pattern Recognition; Electrical and Electronic Engineering
Abstract :
[en] Emerging millimeter-wave (mmWave) MIMO radars combine the benefits of large bandwidth available at mmWave frequencies with the spatial diversity provided by MIMO architectures, significantly enhancing radar capabilities for automotive, surveillance, and imaging applications. However, deploying large numbers of antennas and transceivers at these high frequencies substantially increases chip complexity and hardware costs. In this paper, we address the design of sparse two-dimensional (2D) antenna arrays that retain the desirable beampattern characteristics of fully populated arrays – namely, narrow mainlobes and low sidelobes – while significantly reducing the required number of antenna elements. We formulate the sparse array design problem as a beampattern matching optimization, which selects optimal subsets of transmit and receive antenna positions from an initial dense grid. To efficiently solve this challenging nonconvex optimization problem, we introduce an iterative algorithm combining Majorization–Minimization (MM) and Alternating Optimization (AO) techniques. We provide theoretical guarantees for convergence to at least a local optimum. Additionally, we propose a weighting vector optimization step to further enhance sidelobe suppression. Numerical simulations confirm that the proposed method maintains angular resolution and Sidelobe Levels (SLLs) comparable to those of full arrays, while substantially reducing hardware complexity and cost. Performance comparisons against existing methods demonstrate notable improvements in sidelobe suppression and computational efficiency without compromising processing gain.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Sedighi, Saeid ; Valeo Schalter und Sensoren GmbH, Germany
Karimian-Sichani, Nazila ; Department of Information Engineering, University of Pisa, Pisa, Italy
M.R., Bhavani Shankar; Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
Greco, Maria S.; Department of Information Engineering, University of Pisa, Pisa, Italy
Gini, Fulvio ; Department of Information Engineering, University of Pisa, Pisa, Italy
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Ottersten
External co-authors :
yes
Language :
English
Title :
Optimized sparse 2D antenna array design via beampattern matching
University of Pisa Ministero dell'Università e della Ricerca Ministero dell’Istruzione, dell’Università e della Ricerca FNR
Funding text :
This work has been partially supported by the Luxembourg National Research Fund (FNR) under the projects C20/IS/14799710/SENCOM, INTER/MOBILITY/2023/IS/18014377/MCR, and the Italian Ministry of Education and Research (MUR) in the framework of the FoReLab project (Departments of Excellence).
Bekkerman, I., Tabrikian, J., Target detection and localization using MIMO radars and sonars. IEEE Trans. Signal Process. 54:10 (2006), 3873–3883.
Li, J., Stoica, P., MIMO Radar Signal Processing. 2008, John Wiley & Sons.
Venon, A., Dupuis, Y., Vasseur, P., Merriaux, P., Millimeter wave FMCW RADARs for perception, recognition and localization in automotive applications: A survey. IEEE Trans. Intell. Veh. 7:3 (2022), 533–555.
Hopperstad, J.-F., Holm, S., The coarray of sparse arrays with minimum sidelobe level. 1998.
Raei, E., Sedighi, S., Alaee-Kerahroodi, M., Bhavani Shankar, M.R., MIMO radar transmit beampattern shaping for spectrally dense environments. IEEE Trans. Aerosp. Electron. Syst. 59:2 (2023), 1007–1020.
Vasanelli, C., Batra, R., Serio, A.D., Boegelsack, F., Waldschmidt, C., Assessment of a millimeter-wave antenna system for MIMO radar applications. IEEE Antennas Wirel. Propag. Lett. 16 (2017), 1261–1264.
Cheng, Z., Lu, Y., He, Z., Yufengli, Li, J., Luo, X., Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design. 2018 IEEE Radar Conference, RadarConf18, 2018, 1073–1077.
Syeda, R.Z., Savelyev, T.G., van Beurden, M.C., Smolders, A.B., Sparse MIMO array for improved 3D mm- wave imaging radar. 2020 17th European Radar Conference, EuRAD, 2021, 342–345.
Haowei, Z., Junwei, X., Junpeng, S., Zhaojian, Z., Antenna selection in MIMO radar with collocated antennas. J. Syst. Eng. Electron. 30:6 (2019), 1119–1131.
Deng, M., Cheng, Z., He, Z., Co-design of waveform correlation matrix and antenna positions for MIMO radar transmit beampattern formation. IEEE Sensors J. 20:13 (2020), 7326–7336.
Ghafi, E.K., Ghorashi, S.A., Mehrshahi, E., Reconfigurable linear antenna arrays for beam-pattern matching in collocated MIMO radars. IEEE Trans. Aerosp. Electron. Syst. 57:5 (2021), 2715–2724.
Tohidi, E., Coutino, M., Chepuri, S.P., Behroozi, H., Nayebi, M.M., Leus, G., Sparse antenna and pulse placement for colocated MIMO radar. IEEE Trans. Signal Process. 67:3 (2019), 579–593.
Wang, X., Amin, M., Cao, X., Analysis and design of optimum sparse array configurations for adaptive beamforming. IEEE Trans. Signal Process. 66:2 (2018), 340–351.
Wang, X., Hassanien, A., Amin, M.G., Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans. Aerosp. Electron. Syst. 55:3 (2019), 1213–1226.
Joshi, S., Boyd, S., Sensor selection via convex optimization. IEEE Trans. Signal Process. 57:2 (2009), 451–462.
Stolz, M., Wolf, M., Meinl, F., Kunert, M., Menzel, W., A new antenna array and signal processing concept for an automotive 4D radar. 2018 15th European Radar Conference, EuRAD, 2018, 63–66.
Wang, X., Aboutanios, E., Amin, M.G., Adaptive array thinning for enhanced DOA estimation. IEEE Signal Process. Lett. 22:7 (2015), 799–803.
Karimian-Sichani, N., Alaee-Kerahroodi, M., Mysore Rama Rao, B.S., Mehrshahi, E., Ghorashi, S.A., Antenna array and waveform design for 4-d-imaging mmwave MIMO radar sensors. IEEE Trans. Aerosp. Electron. Syst. 60:2 (2024), 1848–1864.
Elbir, A.M., Mishra, K.V., Eldar, Y.C., Cognitive radar antenna selection via deep learning. IET Radar, Sonar Navig. 13:6 (2019), 871–880.
Wang, X., Zhai, W., Greco, M.S., Gini, F., Cognitive sparse beamformer design in dynamic environment via regularized switching network. IEEE Trans. Aerosp. Electron. Syst. 59:2 (2023), 1816–1833.
Elbir, A.M., Mishra, K.V., Sparse array selection across arbitrary sensor geometries with deep transfer learning. IEEE Trans. Cogn. Comm. Netw. 7:1 (2021), 255–264.
Wandale, S., Ichige, K., Design of sparse arrays via deep learning for enhanced DOA estimation. EURASIP J. Adv. Signal Process. 2021 (2021), 1–13.
Sichani, N.K., Alaee-Kerahroodi, M., Raei, E., R., B.S.M., Mehrshahi, E., Ghorashi, S.A., MIMO virtual array design for mmwave 4D-imaging radar sensors. 2023 31st European Signal Processing Conference, EUSIPCO, 2023, 1569–1573.
Boyd, S., Vandenberghe, L., Convex Optimization. 2004, Cambridge University Press.
Sedighi, S., Shankar, M.R.B., Soltanalian, M., Ottersten, B., Doa estimation using low-resolution multi-bit sparse array measurements. IEEE Signal Process. Lett. 28 (2021), 1400–1404.
Hunter, D.R., Lange, K.L., A tutorial on MM algorithms. Amer. Statist. 58 (2004), 30–37 URL https://api.semanticscholar.org/CorpusID:228631.
Sun, Y., Babu, P., Palomar, D.P., Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 65:3 (2017), 794–816.
Grant, M., Boyd, S., CVX package. 2012 URL http://www.cvxr.com/cvx.
Senning, J.R., Computing and estimating the rate of convergence. 2007.
Horn, R.A., Johnson, C.R., Matrix Analysis. 2012, Cambridge University Press.
du Plessis, W.P., Weighted thinned linear array design with the iterative FFT technique. IEEE Trans. Antennas and Propagation 59:9 (2011), 3473–3477.
Kumar, S., Raj, S., Sharma, P., Sharma, A., Gowri, R., Design of weighted circular array for 5G applications with fixed beam forming. 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN, 2018, 940–943.
Sarker, M.R., Islam, M.M., Alam, M.T., Hossam-E-Haider, M., Side lobe level reduction in antenna array using weighting function. 2014 International Conference on Electrical Engineering and Information and Communication Technology, 2014, 1–5.