
Signal Processing 238 (2026) 110086 

A
0

 

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro  

Optimized sparse 2D antenna array design via beampattern matchingI

Saeid Sedighi a , Nazila Karimian-Sichani b ,∗, Bhavani Shankar M.R. c, Maria S. Greco b, 
Fulvio Gini b , Björn Ottersten c
a Valeo Schalter und Sensoren GmbH, Germany
b Department of Information Engineering, University of Pisa, Pisa, Italy
c Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

A R T I C L E  I N F O

Keywords:
Array configuration
Beampattern optimization
Sparse array
MIMO radar
Antenna placement
Planar array

 A B S T R A C T

Emerging millimeter-wave (mmWave) MIMO radars combine the benefits of large bandwidth available at 
mmWave frequencies with the spatial diversity provided by MIMO architectures, significantly enhancing radar 
capabilities for automotive, surveillance, and imaging applications. However, deploying large numbers of 
antennas and transceivers at these high frequencies substantially increases chip complexity and hardware 
costs. In this paper, we address the design of sparse two-dimensional (2D) antenna arrays that retain 
the desirable beampattern characteristics of fully populated arrays – namely, narrow mainlobes and low 
sidelobes – while significantly reducing the required number of antenna elements. We formulate the sparse 
array design problem as a beampattern matching optimization, which selects optimal subsets of transmit 
and receive antenna positions from an initial dense grid. To efficiently solve this challenging nonconvex 
optimization problem, we introduce an iterative algorithm combining Majorization–Minimization (MM) and 
Alternating Optimization (AO) techniques. We provide theoretical guarantees for convergence to at least a 
local optimum. Additionally, we propose a weighting vector optimization step to further enhance sidelobe 
suppression. Numerical simulations confirm that the proposed method maintains angular resolution and 
Sidelobe Levels (SLLs) comparable to those of full arrays, while substantially reducing hardware complexity 
and cost. Performance comparisons against existing methods demonstrate notable improvements in sidelobe 
suppression and computational efficiency without compromising processing gain.
1. Introduction

Multiple-input multiple-output (MIMO) radar has emerged as a 
powerful technology, significantly enhancing radar performance
through improved target detection, localization, and tracking capa-
bilities [1,2]. Utilizing multiple transmitting and receiving antennas, 
MIMO radar systems exploit spatial diversity, resulting in superior 
resolution and parameter estimation accuracy. The recent advance-
ment of millimeter-wave (mmWave) technologies has further accel-
erated these capabilities, combining the substantial available band-
width at mmWave frequencies with the inherent spatial diversity 
offered by MIMO architectures. Consequently, mmWave MIMO radars 
have demonstrated unprecedented performance advantages, making 
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Excellence).
∗ Corresponding author.
E-mail address: Nazila.karimian@ing.unipi.it (N. Karimian-Sichani).

them particularly appealing for automotive radar, surveillance, and 
high-resolution imaging applications [3].

A critical aspect of mmWave MIMO radar systems is the antenna 
array design, which inherently involves a trade-off between system 
performance, cost, and complexity. Fully populated antenna arrays, 
characterized by densely arranged antennas spaced uniformly at half-
wavelength intervals and supported by dedicated transceivers, achieve 
excellent spatial resolution and beamforming capabilities. However, 
their practical deployment is often limited by high hardware costs, 
substantial power consumption, and complex signal processing require-
ments. To address these challenges, Sparse Antenna Arrays (SAAs) have 
gained considerable attention due to their reduced complexity, lower 
hardware costs, and improved energy efficiency [4]. Nevertheless, 
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sparse array designs must be carefully optimized to avoid degrading 
spatial resolution or inadvertently increasing SLLs.

1.1. Related works

The design and optimization of sparse antenna arrays for mmWave 
MIMO radar have been extensively studied, and existing works can 
be categorized based on the dimensionality of the arrays (1D or 2D) 
and their respective optimizationobjectives [5–24]. In the context of 
one-dimensional (1D) SAAs, joint optimization of waveform covariance 
matrices and antenna positions for transmit beampattern matching was 
explored in [7,10]. Specifically, [7] developed an iterative algorithm 
to minimize the mean-square error (MSE) between designed and de-
sired transmit beampatterns. On the other hand, the work in [10] 
extends this idea by not only minimizing the transmit beampattern 
matching error but also integrating additional constraints to enable 
flexible control of the beampattern characteristics within predefined 
angular regions, including mainlobe ripple and peak SLLs. Further-
more, the authors in [11] proposed a sparse antenna design method 
exploiting the relationship between diagonal elements of the optimized 
waveform covariance matrix and transmitted antenna power, retaining 
only antennas significantly contributing to the desired beampattern. 
Joint transmit-receive beampattern optimization for 1D sparse array 
design was studied in [6,8]. A genetic algorithm was employed in [6] 
to optimize Sparse Linear Array (SLA) configurations for enhanced 
direction-of-arrival (DOA) estimation in multistatic scenarios. The au-
thors in [8] developed a two-step synthesis procedure tailored for 3D 
imaging radar, significantly reducing the number of antenna elements 
while maintaining angular resolution and effectively suppressing SLLs. 
Moreover, the Cramer–Rao lower bound (CRLB) was employed as 
a metric in joint antenna and pulse placement designs to minimize 
hardware complexity and energy consumption without sacrificing ac-
curacy [9,12]. Recently, convolutional neural networks (CNNs) were 
leveraged in [23] for optimal SLA design aimed at improved DOA 
estimation.

Despite the substantial research on 1D SSA designs, fewer works 
have addressed two-dimensional (2D) configurations. The authors in
[18] introduced an optimization framework for designing 2D MIMO 
virtual arrays, employing an iterative coordinate descent algorithm to 
minimize the MSE between the designed and desired virtual arrays 
under constraints on the number of transmit and receive antennas.

However, existing research has not yet simultaneously addressed 
key performance metrics such as mainlobe resolution, sidelobe sup-
pression, and processing gain within the context of sparse 2D antenna 
array design. To bridge this gap, we formulate and solve the 2D SAA 
design problem, explicitly considering mainlobe resolution, sidelobe 
level, processing gain, and array flexibility for a given sparsity order. 
Our approach is designed for offline application, facilitating the man-
ufacturing of optimized antenna arrays and associated chip designs 
without the need for subsequent reconfiguration.

1.2. Contribution of this paper

Motivated by these research gaps, this paper proposes an SAA design 
for mmWave MIMO radars with 4D imaging capabilities, consider-
ing both transmit and receive beampattern characteristics. The main 
contributions of this paper are as follows: 

• We formulate the joint transmit and receive beampattern match-
ing optimization problem for 2D SAAs with predefined numbers 
of transmit and receive elements. By employing binary transmit 
and receive array position vectors, we design arrays that achieve 
specified beampattern characteristics with significantly reduced 
SLLs while preserving the mainlobe resolution comparable to fully 
populated arrays.
2 
• To solve the resulting non-convex NP-hard discrete optimization 
problem, we propose a novel iterative algorithm based on the 
method of majorization–minimization (MM) and an alternating 
optimization (AO) approach. We provide theoretical guarantees 
for convergence to at least a local optimum, ensuring algorithm 
robustness and stability.

• We integrate a weighting vector optimization into the array de-
sign process, adding flexibility and further enhancing the array’s 
beampattern quality, particularly in sidelobe suppression.

• Comprehensive numerical evaluations demonstrate that our pro-
posed algorithm achieves the required angular resolution, low 
sidelobe performance and processing gain despite substantial an-
tenna sparsity.

1.3. Organization and notation

The rest of this paper is organized as follows: Section 2 formulates 
the antenna array design problem. Section 3 details the proposed 
optimization algorithm. Section 4 discusses the enhancement of the 
designed array’s beampattern through a weighting vector optimization. 
Simulation results validating our method are presented in Section 5. 
Finally, Section 6 concludes the paper.

Notation: We use boldface upper case 𝐗 for matrices and boldface 
lower case 𝐱 for vectors. ln(.), and mod(.) and vec(.) define the natural 
logarithm, reminder and vectorization operator, respectively. ‖.‖𝐹 , ‖.‖0
and ‖.‖1 and ‖.‖2 are the Frobenius, Zero, Manhattan and Euclidean 
norm, respectively. Also, the transpose and Hermitian operators are 
denoted by (.)𝑇  and (.)𝐻 , respectively. |𝑥| denotes modulus of the 
complex number 𝑥 and |𝐱| is a vector of element wise absolute values 
of 𝐱, i.e., |𝐱| = [

|𝑥1|, |𝑥2|,… , |𝑥𝐿|
]𝑇 . R𝑁  and C𝑁  are the N-dimensional 

real and complex vector spaces. 𝐗 ⪰ 0 denotes the matrix 𝐗 is positive 
semidefinite. 𝐈𝑁  is a 𝑁 × 𝑁 Identity matrix. The Hadamard product, 
Kronecker product, gradient and floor function are denoted by ⊙, ⊗, ∇
and ⌊.⌋, respectively.

2. Problem formulation for 2D sparse antenna array design

In this section, we define the system model and formulate the 
problem of designing 2D SAAs for MIMO radar. Specifically, we con-
sider a colocated MIMO radar system, where multiple transmit and 
receive antennas are closely spaced, enabling coherent signal process-
ing. We assume that each transmit antenna is assumed to emit an 
orthogonal waveform, ensuring negligible cross-correlation between 
the received signals, thereby decoupling the array’s spatial beampattern 
design from the transmitted waveform design. Additionally, antenna 
coupling effects are assumed to be sufficiently weak and thus negli-
gible. If, however, coupling effects become significant, their impact 
can be measured through calibration to obtain a coupling matrix, 
which can subsequently be used to compensate and effectively miti-
gate the coupling effects on the array beampattern. Thus, even arrays 
designed under ideal (uncoupled) assumptions can closely achieve their 
theoretical performance specifications in practical scenarios.

Our objective is to achieve predefined angular resolutions in both 
azimuth and elevation dimensions while ensuring the SLLs remain 
below a specified threshold, using a constrained number of transmit 
and receive antenna elements. To meet these performance criteria, we 
formulate the array design as an optimization problem. In particular, 
our goal is to approximate the mainlobe characteristics of a reference 
2D fully populated uniform rectangular array (FPURA), which inher-
ently provides the desired angular resolutions, while simultaneously 
constraining the SLLs and the number of antenna elements.

Let 𝛤 (𝜃, 𝜙) denote the normalized array beampattern of a 2D FPURA 
(shown in Fig.  1(a)) with half-wavelength spacing, i.e., 𝑑 = 𝜆∕2, where 
𝜆 is the wavelength. The azimuth and elevation angles are denoted 
by 𝜃 ∈ 𝛩 = [−90◦, 90◦] and 𝜙 ∈ 𝛷 = [−90◦, 90◦], respectively. In 
addition, let 𝐿 = 𝐿 × 𝐿  represent the total number of elements in 
1 2
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Fig. 1. Configuration and positions of (a): a dense and (b): a sparse array antennas.
the 2D FPURA, with 𝐿1 and 𝐿2 being the number of elements along 
the azimuth and elevation dimensions, respectively (see Fig.  1). The 
transmitter and receiver array steering vectors are denoted by 𝐚𝑡(𝜃, 𝜙) ∈
C𝐿 and 𝐚𝑟(𝜃, 𝜙) ∈ C𝐿, respectively. The 𝑙th element of each steering 
vector is given by 
𝐚𝑡,𝑙(𝜃, 𝜙) = 𝐚𝑟,𝑙(𝜃, 𝜙) = exp(𝑗𝜋𝑥 sin(𝜃) cos(𝜙) + 𝑗𝜋𝑧 sin(𝜙)), (1)

where 𝑥 = mod(𝑙 − 1, 𝐿1), 𝑧 =
⌊

𝑙−1
𝐿1

⌋

, and 𝑙 ∈ {1, 2,… , 𝐿}.
Accordingly, the problem of 2D SSA design can now be formulated 

as the following optimization problem: 
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩𝑡 ,𝐩𝐫

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚𝑇𝑡 (𝜃, 𝜙)𝐩𝑡𝐩
𝑇
𝑟 𝐚𝑟(𝜃, 𝜙)

𝟏𝑇𝐿𝐩𝑡𝐩𝑇𝑟 𝟏𝐿
− 𝛤 (𝜃, 𝜙)

|

|

|

|

|

2

𝑠.𝑡.

‖

‖

𝐩𝑡‖‖0 = 𝑀, 𝐩𝑡 ∈ {0, 1}𝐿,
‖

‖

𝐩𝑟‖‖0 = 𝑁, 𝐩𝑟 ∈ {0, 1}𝐿,
|

|

|

|

|

𝐚𝑇𝑡 (𝜃, 𝜙)𝐩𝑡𝐩
𝑇
𝑟 𝐚𝑟(𝜃, 𝜙)

𝟏𝑇𝐿𝐩𝑡𝐩𝑇𝑟 𝟏𝐿

|

|

|

|

|

2

⩽ 𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠.

(2)

where 𝛩𝑚 and 𝛷𝑚 represent the discrete angular grids in the mainlobe 
region for the azimuth and elevation angles, while 𝛩𝑠 and 𝛷𝑠 denote 
the corresponding angular grids in the sidelobe region. Vectors 𝐩𝑡 and 
𝐩𝑟 are binary arrays that indicate the placement of the transmitter 
and receiver antennas, respectively. The values of 𝑀 and 𝑁 define 
the number of transmit and receive antennas, and the elements of 
these vectors are arranged row-wise. Further, 𝜇1 denotes the desired 
maximum sidelobe level.

In (2), the objective function seeks to minimize the Euclidean 
distance between the beampattern of the desired 2D SSA and that of 
a reference 2D FPURA in the mainlobe region. Further, the first and 
second constraints ensure that the total number of antennas used is 
limited to 𝑀×𝑁 , which is significantly fewer than that in the reference 
2D FPURA, i.e., 𝑀 × 𝑁 ≪ 𝐿 (see Fig.  1(b)). The third constraint 
guarantees that the SLLs do not exceed a predetermined threshold 𝜇1.

Due to the nonconvexity of the objective function and the binary 
nature of the optimization variables, this optimization problem is clas-
sified as a nonconvex binary optimization problem [25]. In the next 
section, we present the proposed method for solving this problem.

Remark 1.  If the elevation angles 𝜙 in (2) and the parameter 𝑧 in 
transmit and receive array steering vectors in (1) are set to zero, the 
2D SSA design Problem in (2) simplifies to a 1D SSA design problem.

3. Solution to the optimization problem

To address the nonconvex binary optimization problem in (2), we 
start by defining the position vector 𝐩 = [𝐩𝑇 ,𝐩𝑇 ]𝑇 , concatenating 
𝑡 𝑟

3 
the transmitter and receiver array position vectors. In addition, we 
introduce the zero-padded array steering vectors as,
𝐚̄𝑡(𝜃, 𝜙) = [𝐚𝑇𝑡 , 𝟎

𝑇
𝐿]

𝑇 ∈ C2𝐿, (3)

𝐚̄𝑟(𝜃, 𝜙) = [𝟎𝑇𝐿, 𝐚
𝑇
𝑟 ]

𝑇 ∈ C2𝐿. (4)

Exploiting the constraints 𝟏𝑇𝐿𝐩𝑡 = 𝑀 and 𝐩𝑇𝑟 𝟏𝐿 = 𝑁 , the original 
objective function in (2) can be reformulated as shown in (7). We also 
define the auxiliary vectors:
𝐞𝑡 = [𝟏𝑇𝐿, 𝟎

𝑇
𝐿]

𝑇 , (5)

𝐞𝑟 = [𝟎𝑇𝐿, 𝟏
𝑇
𝐿]

𝑇 , (6)

which allow us to express the equality constraints from (2) as ‖𝐞𝑡⊙𝐩‖0 =
𝑀 and ‖𝐞𝑟 ⊙ 𝐩‖0 = 𝑁 . Since 𝐞𝑡, 𝐞𝑟, and 𝐩 are binary vectors, these 
constraints are equivalent to 𝐞𝑇𝑡 𝐩 = 𝑀 and 𝐞𝑇𝑟 𝐩 = 𝑁 . With these 
modifications, the optimization problem becomes: 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̄𝑇𝑡 (𝜃, 𝜙)𝐩𝐩
𝑇 𝐚̄𝑟(𝜃, 𝜙)

𝑀𝑁
− 𝛤 (𝜃, 𝜙)

|

|

|

|

|

2

𝑠.𝑡.

𝐩 ∈ {0, 1}2𝐿,

𝐞𝑇𝑡 𝐩 = 𝑀,

𝐞𝑇𝑟 𝐩 = 𝑁,
|

|

|

𝐚̄𝑇𝑡 (𝜃, 𝜙)𝐩𝐩
𝑇 𝐚̄𝑟(𝜃, 𝜙)

|

|

|

2
⩽ (𝑀𝑁)2𝜇, ∀𝜃 ∈ 𝛩𝑠,

𝜙 ∈ 𝛷𝑠.

(7)

Introducing additional auxiliary variables:
𝐐 ≜ 𝐩𝐩𝑇 ∈ {0, 1}2𝐿×2𝐿, (8)

𝐄 ≜ 𝐞𝑟𝐞𝑇𝑡 ∈ {0, 1}2𝐿×2𝐿, (9)

𝐚̃(𝜃, 𝜙) ≜ 𝐚̄𝑟(𝜃, 𝜙)⊗ 𝐚̄𝑡(𝜃, 𝜙) ∈ C4𝐿2
, (10)

we reformulate the optimization problem as, 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩,𝐐

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)𝑣𝑒𝑐(𝐐)
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

𝑠.𝑡.

𝐩 ∈ {0, 1}2𝐿,

𝐞𝑇𝑡 𝐩 = 𝑀,

𝐞𝑇𝑟 𝐩 = 𝑁,

𝐐 = 𝐩𝐩𝑇 ,
|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)||
|

2
⩽ (𝑀𝑁)2𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

(11)

Although the objective function is now quadratic and convex, the 
problem remains nonconvex due to the binary constraint on 𝐩 and the 
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equality constraint 𝐐 = 𝐩𝐩𝑇 . In the following, we present an equivalent 
reformulation of (11), which paves the way for solving this noconvex 
optimization problem. To tackle the binary constraint on 𝐩, we replace 
it with:

𝑔(𝐩𝑖) ≜ (𝐩𝑖 − 1)ln(1 − 𝐩𝑖) − 𝐩𝑖ln(𝐩𝑖) ≤ 0, (12)

𝐩𝑖 ∈ [0, 1], ∀𝑖 ∈ {1, 2,… , 2𝐿}. (13)

It is readily verified that (12) and (13) are satisfied if only if 𝐩𝑖 = 0 or 
1. Hence, the optimization problem (11) can be rewritten as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩,𝐐,Λ,𝜁

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

+ 𝜂1𝜁

𝑠.𝑡.

0 ⩽ 𝐩𝑖 ⩽ 1, ∀𝑖 ∈ {1, 2,… , 2𝐿},

𝑔(𝐩𝑖) ⩽ 0, ∀𝑖 ∈ {1, 2,… , 2𝐿},

𝐞𝑇𝑡 𝐩 = 𝑀,

𝐞𝑇𝑟 𝐩 = 𝑁,

𝐐 = 𝐩𝐩𝑇 ,
|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)||
|

2
⩽ (𝑀𝑁)2𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

(14)

Next, to efficiently handle the challenging equality constraint 𝐐 =
𝐩𝐩𝑇 , we leverage the results provided in [26, Theorem 1] and [5, 
Theorem 3.1]. Specifically, according to [26, Theorem 1], the equality 
constraint 𝐐 = 𝐩𝐩𝑇  is equivalent to imposing a rank-one constraint on 
the augmented matrix 𝐂 defined as,

𝐂 =
[

1 𝐩𝑇
𝐩 𝐐

]

∈ [0, 1](2𝐿+1)×(2𝐿+1).

This rank-one constraint, i.e., rank(𝐂) = 1, can be equivalently 
represented by enforcing that all eigenvalue of 𝐂, except the largest, 
are zero. Following [5, Theorem 3.1], this condition can be realized 
by introducing an auxiliary orthonormal matrix Λ ∈ C(2𝐿+1)×2𝐿, where 
Λ𝐻Λ = 𝐈2𝐿, and imposing the following constraint: 

𝜁𝐈2𝐿 −Λ𝐻𝐂Λ ⪰ 0 (15)

where choosing 𝜁 → 0 ensures that all the eigenvalues of 𝐂, except 
the largest one, approaches zero.1 Consequently, making use of this 
reformulation, the optimization problem (14) can now be recast as 
follows, 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩,𝐐,Λ,𝜁

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

+ 𝜂1𝜁

𝑠.𝑡.

0 ⩽ 𝐩𝑖 ⩽ 1, ∀𝑖 ∈ {1, 2,… , 2𝐿},

𝑔(𝐩𝑖) ⩽ 0, ∀𝑖 ∈ {1, 2,… , 2𝐿},

𝐞𝑇𝑡 𝐩 = 𝑀,

𝐞𝑇𝑟 𝐩 = 𝑁,
|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)||
|

2
⩽ (𝑀𝑁)2𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

𝜁𝐈2𝐿 −Λ𝐻𝐂Λ ⪰ 0,

Λ𝐻Λ = 𝐈2𝐿,
𝐂 ⪰ 0,

(16)

where 𝜂1 is a regularization parameter. This reformulation transforms 
the original equality constraint into semidefinite constraints suitable for 
numerical optimization.

1 A detailed proof of this equivalence is given in [5, Theorem 3.1].
4 
Finally, by introducing a regularization parameter 𝜂2 and moving 
the constrains 𝑔(𝐩𝑖) ≤ 0, ∀𝑖 ∈ {1, 2,… , 2𝐿} to the objective function, 
the optimization problem (16) can be recast as, 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩,𝐐,Λ,𝜁

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

+ 𝜂1𝜁 + 𝜂2
2𝐿
∑

𝑖=1
𝑔(𝐩𝑖)

𝑠.𝑡.

0 ⩽ 𝐩𝑖 ⩽ 1, ∀𝑖 ∈ {1, 2,… , 2𝐿},

𝐞𝑇𝑡 𝐩 = 𝑀,

𝐞𝑇𝑟 𝐩 = 𝑁,
|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐)||
|

2
⩽ (𝑀𝑁)2𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

𝜁𝐈2𝐿 −Λ𝐻𝐂Λ ⪰ 0,

Λ𝐻Λ = 𝐈2𝐿,
𝐂 ⪰ 0.

(17)

The optimization problem (17) can be solved iteratively by majoriz-
ing 𝑔(𝐩𝑖) and alternating between the optimization variables. Let 𝐩(𝑘), 
𝐐(𝑘), 𝐂(𝑘−1) and 𝜁 (𝑘) be the values of 𝐩, 𝐐, 𝐂 and 𝜁 at 𝑘th iteration, re-
spectively. Using Majorization-Minimization (MM) technique [27,28], 
the concave functions 𝑔(𝐩𝑖) ∀𝑖 ∈ {1, 2,… , 2𝐿} in (12) can be majorized 
by their first-order Taylor expansion as, 

𝑔(𝐩(𝑘)𝑖 ) ≤ ℎ(𝐩(𝑘)𝑖 ) = 𝑔(𝐩(𝑘−1)𝑖 ) + ∇𝑔(𝐩(𝑘−1)𝑖 )(𝐩(𝑘)𝑖 − 𝐩(𝑘−1)𝑖 ), (18)

where 

∇𝑔(𝐩𝑖) = ln
1 − 𝐩𝑖
𝐩𝑖

∀𝑖 ∈ {1, 2,… , 2𝐿}. (19)

Given Λ(𝑘−1) and 𝜁 (𝑘−1), the optimization problem with respect to 
𝐩(𝑘), 𝐐(𝑘) and 𝜁 (𝑘) becomes (20), shown at the top of the next page. 
The optimization problem (20) is a Semi-Definite Programming (SDP), 
which can be solved efficiently, e.g. using CVX.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐩(𝐤) ,𝐐(𝐤) ,𝜁 (𝑘)

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐(𝑘))
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

+ 𝜂1𝜁
(𝑘) + 𝜂2

2𝐿
∑

𝑖=1
ℎ(𝐩(𝑘)𝑖 )

𝑠.𝑡.

(𝑐1) 0 ⩽ 𝐩(𝑘)𝑖 ⩽ 1, ∀𝑖 ∈ {1, 2,… , 2𝐿},

(𝑐2) 𝐞𝑇𝑡 𝐩
(𝑘) = 𝑀,

(𝑐3) 𝐞𝑇𝑟 𝐩
(𝑘) = 𝑁,

(𝑐4) |

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐(𝑘))||
|

2
⩽ (𝑀𝑁)2𝜇1, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

(𝑐5) 𝐂(𝐤) ⪰ 0,

(𝑐6) 𝜁 (𝑘)𝐈2𝐿 −Λ(𝑘−1)𝐻𝐂(𝑘)Λ(𝑘−1) ⪰ 0,

(𝑐7) 𝜁 (𝑘) ⩽ 𝜁 (𝑘−1).

(20)

Once 𝐩(𝑘), 𝐐(𝑘) and 𝜁 (𝑘) are found by solving (20), Λ(𝑘) can be 
obtained by seeking an (2𝐿+1)×(2𝐿) matrix with orthonormal columns 
such that 𝜁 (𝑘)𝐈2𝐿 ≽ Λ(𝑘)†𝐂(𝑘)Λ(𝑘). It was shown in [5] that choosing 
Λ(𝑘) to be equal to the matrix composed of the eigenvectors of 𝐂(𝑘)

corresponding to its 2𝐿 smallest eigenvalues is the appropriate choice.
Accordingly, at each iteration of the proposed algorithm, we need to 

solve SDP, followed by an Eigenvalue Decomposition (EVD). Algorithm 
1 summarizes the steps of the proposed iterative approach for solving 
(2). To initialize the algorithm, Λ(0) can be found through the eigen-
value decomposition of 𝐂(0), obtained from solving (20) with omitting 
constraints (c6) and (c7). Further, we terminate the algorithm when 
the convergence criterion, as specified in line 7 of Algorithm 1, is met. 
Further, to facilitate better understanding, we illustrate the main steps 
of Algorithm 1 in Fig.  2 using a flow diagram.



S. Sedighi et al. Signal Processing 238 (2026) 110086 
Algorithm 1 Proposed Method; 2D Antenna Array Placement For 
Beampattern Matching Design.
1: Inputs: 𝜂1, 𝜂2, 𝛾, 𝛤 , 𝛩𝑚, 𝛩𝑠, 𝛷𝑚, 𝛷𝑠, 𝑀 , 𝑁 and 𝐿.
2: Outputs: 𝐩⋆𝑡 , 𝐩⋆𝑟  and 𝐰⋆.
3: 𝑘 ← 0;
4: Obtain 𝐐(0) and 𝐩(0) by solving (20) with constraints (c6) and (c7) 
removed;

5: Compute 𝐂(0) and its EVD;
6: Compute 𝚲(0), composed of the 2𝐿 eigenvectors of 𝐂(0) associated 
with its smallest 2𝐿 eigenvalues;

7: While ||𝐩2 − 𝐩1||𝐹 > 𝛾
8:  𝐩1 ← 𝐩(𝑘);
9: 𝑘 ← 𝑘 + 1;
10:  Obtain 𝐩(𝑘), 𝐐(𝑘) and 𝜁 (𝑘) by solving (20);
11:  Compute 𝐂(𝑘) and its EVD;
12:  Compute 𝚲(𝑘), composed of the 2𝐿 eigenvectors of 𝐂(𝑘)associ-

ated with its smallest 2𝐿 eigenvalues;
13:  𝐩2 ← 𝐩(𝑘);
14: end While
15: 𝐩⋆ = 𝐩2;
16: Solve (25) Using CVX [29] for designing 𝐰⋆ = 𝐰;
17: Outputs: 𝐩⋆ = [𝐩⋆𝑇𝑡 ,𝐩⋆𝑇𝑟 ]𝑇  and 𝐰⋆.

Proposition 1 (Convergence).  The proposed iterative algorithm converges 
to at least a local minimizer of the optimization problem defined in (11)

Proof.  It readily follows from constraint (c7) in (20) that lim𝑘→∞
|𝜁 (𝑘)|
|𝜁 (𝑘−1)|

≤ 1. This implies that 𝜁 (𝑘) converges at least sub-linearly to zero [30]. 
Consequently, for any arbitrary small tolerance 𝜖1 > 0, there exists 
an integer 1 such that 𝜁 (𝑘) ≤ 𝜖1 for 𝑘 ≥ 1. Utilizing this result and 
considering constraint (c6) in (20), it follows directly that, 

Λ(𝑘−1)𝐻𝐂(𝑘)Λ(𝑘−1) ≼ 𝜖1𝐈2𝐿, for all 𝑘 ≥ 1. (21)

 Now let 𝜌(𝑘)1 ≤ 𝜌(𝑘)2 ≤ ⋯ ≤ 𝜌(𝑘)2𝐿 denote the eigenvalues of 𝐂(𝑘) cor-
responding to its 2𝐿 smallest eigenvalues. According to [31, Corollary 
4.3.16], the following inequality holds, 

Diag([𝜌(𝑘)1 , 𝜌(𝑘)2 ,… , 𝜌(𝑘)2𝐿]
𝑇 ) ≼ Λ(𝑘−1)𝐻𝐂(𝑘)Λ(𝑘−1). (22)

 Combining (21) and (22), it follows that Rank(𝐂(𝑘)) ≃ 1 for 𝑘 ≥ 1, 
which in turn indicates that 𝐐(𝑘) = 𝐩(𝑘)𝐩(𝑘)𝑇  [5] for 𝑘 ≥ 1. This implies 
that [𝐐(𝑘),𝐩(𝑘)], for any 𝑘 ≥ 1, is a feasible point for the optimization 
problem (11).

Additionally, by properly selecting 𝜂2, there exists another integer 
2 such that 

∑2𝐿
𝑖=1 ℎ(𝐩

(𝑘)
𝑖 ) ≤ 𝜖2 for 𝑘 ≥ 2 where 𝜖2 > 0 is an arbitrarily 

small tolerance. Therefore, considering also the fact that 𝜁 (𝑘) ≤ 𝜖1 for 
𝑘 ≥ 1, we conclude that 𝐐(𝑘) = 𝐩(𝑘)𝐩(𝑘)𝑇 , for any 𝑘 ≥  = max(1,2), 
is also a minimizer of 
∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐚̃𝑇 (𝜃, 𝜙)vec(𝐐(𝑘))
𝑀𝑁

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

. (23)

 These imply that [𝐐(𝑘),𝐩(𝑘)] for 𝑖 ≥  is at least a local minimizer of the 
optimization problem (11). This complete the convergence proof. □

Remark 2.  After obtaining the optimum solution 𝐩⋆ ∈ {0, 1}(𝑁𝑡+𝑁𝑟)×1, 
we can easily reconstruct the transmit- and receive-array position vec-
tors, i.e., 𝐩⋆𝑡 ∈ {0, 1}𝑁𝑡×1 and 𝐩⋆𝑟 ∈ {0, 1}𝑁𝑟×1, by splitting the vector 𝐩⋆. 
Indeed, the first 𝑁𝑡 entries of 𝐩⋆ correspond to transmit array position 
vector, i.e., 𝐩∗𝑡 , and the next 𝑁𝑟 entries to receive array position vector, 
i.e., 𝐩∗𝑟 .

Remark 3.  The primary computational burden of the proposed algo-
rithm at each iteration arises from two key operations: solving the SDP 
5 
Fig. 2. Overview of the steps in Algorithm 1.

Fig. 3. Objective values of the proposed algorithm for different settings.

problem (20) and performing the EVD of matrix 𝐂(𝑘). Based on the 
number of constraints and decision variables in the SDP formulation 
(20), the computational complexity of solving the SDP problem using 
an interior-point method is approximately (7(2𝐿+1)3+49(2𝐿+1)2) per 



S. Sedighi et al. Signal Processing 238 (2026) 110086 
iteration [25]. Additionally, the computational complexity of the EVD 
operation required to update Λ(𝑘) is ((2𝐿+1)3). Therefore, the overall 
computational complexity of the proposed algorithm per iteration is 
approximately (8(2𝐿 + 1)3 + 49(2𝐿 + 1)2).

After solving the nonconvex optimization problem and obtaining 
the sparse antenna array configuration, we achieve the desired an-
gular resolution while adhering to the sidelobe constraints. However, 
although the array design is optimized, there is still room for improve-
ment in the overall beampattern performance, specifically in terms of 
controlling SLLs with as little sacrifice to mainlobe resolution and the 
Processing Gain (PG) as possible. In practice, this is often achieved by 
introducing a weighting vector that adjusts the contributions of each 
antenna element in the array. This allows us to refine the beampattern 
further, improving the array’s performance by reducing sidelobes while 
preserving the desired mainlobe characteristics to the greatest extent 
possible.

4. Weighting vector design for improving the array beampattern

In this section, we focus on designing a weighting/windowing vec-
tor to further enhance the beampattern of the array obtained from 
the previous optimization process [32–34]. The goal is to enhance 
the beampattern by preserving angular resolution and PG as much 
as possible, while simultaneously minimizing SLLs. Let 𝐚̃⋆(𝜃, 𝜙) ≜
𝐚̄⋆𝑟 (𝜃, 𝜙)⊗ 𝐚̄⋆𝑡 (𝜃, 𝜙) ∈ C4𝐿2  denote the manifold vector of the optimized 
array obtained from the solution in the previous section. The design 
problem for the weighting vector can now be formulated as,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
𝐰

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

|

|

𝐰𝑇 𝐚̃⋆(𝜃, 𝜙)
‖𝐰‖1

− 𝛤 (𝜃, 𝜙)
|

|

|

|

|

2

𝑠.𝑡.

‖𝐰‖21
‖𝐰‖22

⩾ 𝑡,

|

|

|

|

𝐰𝑇 𝐚̃⋆
𝟏𝑇𝐰

|

|

|

|

2
⩽ 𝜇2, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

(24)

where 𝐰 is the weighting vector. The objective function seeks to 
maintain the desired beampattern 𝛤 (𝜃, 𝜙) in the mainlobe region. The 
first constraint ensures a certain level of Processing Gain (PG), while 
the second constraint limits the array SLLs. We note that the maximum 
achievable PG is 𝑀𝑁 , i.e., 𝑡 ⩽ 𝑀𝑁 . This occurs only when all elements 
of 𝐰 are identical, which corresponds to applying a rectangular win-
dow. Here the goal is to shape 𝐰 such that the sidelobe level becomes 
a desired smaller value while the PG approaches 𝑀𝑁 . Without loss of 
generality, we can assume ‖𝐰‖1 is normalized to a constant, e.g., 1. 
Thus, the optimization problem (24) can be reformulated as, 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
𝐰

∑

𝜃∈𝛩𝑚
𝜙∈𝛷𝑚

|

|

|

𝐰𝑇 𝐚̃⋆(𝜃, 𝜙) − 𝛤 (𝜃, 𝜙)||
|

2

𝑠.𝑡.

‖𝐰‖1 = 1,

‖𝐰‖22 ⩽
1

𝛾𝑀𝑁
,

|

|

|

𝐰𝑇 𝐚̃⋆||
|

2
⩽ 𝜇2, ∀𝜃 ∈ 𝛩𝑠, 𝜙 ∈ 𝛷𝑠,

(25)

where 0 < 𝛾 ⩽ 1 represents a scalar that should be as close to 1 as 
possible to attain the maximum PG. There is always a trade-off between 
𝛾 and 𝜇2 as a higher 𝛾 leads to a higher value of 𝜇2. The optimization 
problem (25) is convex and can be efficiently solved using CVX [29]. 
This step is summarized in line 16 of Algorithm 1.

Remark 4.  Although the proposed algorithm may be computationally 
expensive due to the use of AO and MM techniques, this computational 
burden occurs during the offline design phase of the chip and cor-
responding antenna array configuration. Once the design is finalized 
6 
and the antenna array is manufactured, there is no need for further 
optimization, as the chip and array configuration remain fixed. Besides, 
𝐰 optimization described in this section, will give further flexibility to 
such designs.

5. Numerical results

In this section, we present numerical results to evaluate the per-
formance of the proposed algorithm across various scenarios. Fig.  3 
illustrates the convergence behavior of the objective function across 
iterations of Algorithm 1, under different configurations with varying 
array dimensions and sparsity levels in both 1D and 2D scenarios. 
As shown, the objective function decreases monotonically, confirming 
the convergence behavior of the proposed method, as established in 
Proposition  1.

The subsequent numerical and simulation results are divided into 
two parts, corresponding to the 2D and 1D SSA design cases. For the 
2D case, we compare the performance of the designed 2D SSA using our 
proposed algorithm with that of the method introduced in [18], which, 
to the best of our knowledge, is the only existing work addressing 
the 2D SSA design problem. For the 1D case, we benchmark the 
performance of our proposed algorithm against both the method in [18] 
and the approach presented in [12], which is among the state-of-the-art 
techniques for 1D SSA design.

5.1. 2D antenna array configuration

In this part, we consider the design of a 2D antenna array to enable 
both azimuth and elevation angle estimation. We use 2D arrays with 
grid sizes set to half-wavelength spacing in our designs. The desired 
beampattern, depicted in Fig.  4(a), features 3 dB beamwidths of 6.8◦
and 15.2◦ in azimuth and elevation angles, respectively. In addition, 
the maximum sidelobe level is set to −9 dB within a FoV of (−90◦, 90◦)
in azimuth angles and (−20◦20◦) in elevation angles. Achieving this 
conventionally requires a uniform 2D rectangular array with 144 virtual 
elements, which could arise from 18 physical transmit antennas and 8
physical receive antenna. The aim is to achieve such a beampattern 
using only 4 transmit and receive antennas, i.e., 𝑀 = 𝑁 = 4. This 
design provides a virtual array that is 89% sparser compared to the 
uniform 2D rectangular antenna array, resulting in significant computa-
tional savings. Further, this design requires 70% less physical transmit 
and receive antenna elements, which remarkably reduces the hardware 
costs.

The beampattern of the designed antenna array using the proposed 
algorithm is shown in Fig.  4(b). Moreover, Figs.  5(a) and 5(b) depict 
the azimuth and elevation cuts of the 2D beampattern of the designed 
antenna array, respectively. The designed sparse array’s transmit and 
receive antenna configurations, along with the related virtual array, 
are shown in Figs.  6(a) and 6(c), respectively. As observed, the de-
signed beampattern retains the mainlobe width and achieves SLLs of 
approximately −9.5 dB, demonstrating effectiveness of the proposed 
algorithm. Note that the grating lobes seen in Fig.  5(b) for the design 
array beampattern are due to the FOV design considerations and are 
outside the desired FoV.

Figs.  4 and 5 also compare the results with those obtained from 
the TALA algorithm [18]. It is observed that our proposed algorithm 
achieves lower SLLs (by approximately 7.5 dB) compared to the TALA
algorithm. Furthermore, we can directly interleave the beampattern to 
design the antenna array structure, whereas in [18], the authors design 
the array to achieve only a specific virtual array configuration. Addi-
tionally, there is no control over the SLLs in the beampattern obtained 
from the TALA algorithm. This lack of control results in significantly 
high SLLs, reaching approximately −2 dB at azimuth angles of −20◦
and 20◦, as observed in Fig.  5(a). Table  1 summarizes the comparison 
of key performance metrics between the antenna array designed using 
our proposed algorithm and that obtained from the TALA algorithm.
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Fig. 4. (a) Desired and (b) designed 2D antenna array beampatterns; (c) beampattern 
of the designed array after applying array weighting; (d) designed beampattern obtained 
using the method in [18].

5.2. 1D antenna array configuration

As highlighted earlier in Remark  1, the proposed method can be 
readily adapted to the 1D SSA design with minor modifications. Ac-
cordingly, in this section, we evaluate its performance under a 1D 
configuration for both transmit and receive antenna elements. The 
7 
Fig. 5. Desired and designed antenna array beampatterns in (a) azimuth and (b) 
elevation, including the proposed design before and after array weight optimization, 
along with the beampattern obtained using the method in [18].

Table 1
Performance comparison of 2D SSA design.
 Method 3 dB BW (Az.) 3 dB BW (El.) SLL  
 Proposed 6.8◦ 15.2◦ ≈ − 9.5 dB  
 TALA [18] 6.8◦ 15.2◦ ≈ − 2 dB  
 Proposed (Weighted) 6.8◦ 15.2◦ ≈ − 10.8 dB 

goal is to achieve a beampattern with the 3 dB-beamwidth of 3.6◦
and the maximum sidelobe level of −10 dB within Field of View 
(FoV) of (−90◦, 90◦) in azimuth direction using only 4 transmit and 
receive antennas, i.e., 𝑀 = 𝑁 = 4. Traditionally, to achieve such a 
3 dB-beamwidth, a 30-element virtual uniform linear antenna array 
is required. This would arise from 6 physical transmit antennas and 
5 physical receive antenna. This implies that our design provides a 
virtual array that is 47% sparser compared to the virtual uniform linear 
antenna array, enabling significant savings in computational resources. 
Further, this design requires 28% less physical transmit and receive 
antenna elements, significantly reducing the hardware costs.

The beampattern of the designed antenna using the proposed algo-
rithm is shown in Fig.  7. The results were obtained using scaling factors 
𝜂1 = 1.6, 𝜂2 = 1.3, and termination parameter 𝜖 = 10−4. As seen, the 
designed antenna array provides almost 3 dB-beamwidth of 3.6◦ and 
the maximum sidelobe level of −10 dB as desired. Fig.  8(a) presents 
the configuration and positions of the transmit and receive antennas 
for the designed array. The corresponding virtual array, derived from 
the convolution of the transmit and receive antenna locations, is also 
illustrated Fig.  8(b).

A comparison of the array designs obtained by our proposed al-
gorithm with those produced by the TALA algorithm in [18] and the 
CRLB-based approach in [12] is presented in Figs.  7 and 8. The results 
clearly demonstrate the superior performance of the proposed method. 
Specifically, the beampattern designed by our algorithm exhibits SLLs 
approximately 2 dB lower than those achieved by the TALA algorithm. 
This improvement is primarily due to the absence of sidelobe control in 
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Fig. 6. Configuration and element positions of the designed (a) sparse array and (b) 
corresponding virtual array, obtained using the proposed algorithm, as well as the 
method in [18].

Fig. 7. Desired and designed 1D antenna array beampatterns, including the proposed 
design before and after array weight optimization, along with the beampatterns 
obtained using the methods in [12,18].
8 
Fig. 8. Configuration and element positions of the designed (a) sparse array and (b) 
corresponding virtual arrays, obtained using the proposed algorithm, as well as the 
methods in [18] and [12].

Table 2
Performance comparison of 1D SSA design.
 Method 3 dB BW (Az.) SLL  
 Proposed 3.6◦ ≈ − 9.8 dB  
 TALA [18] 3.6◦ ≈ − 8.5 dB  
 CRLB-based [12] 5◦ ≈ − 11 dB  
 Proposed (Weighted) 3.6◦ ≈ − 11.5 dB 

the array design formulation of [18], whereas our approach explicitly 
accounts for sidelobe suppression. Additionally, the 3 dB beamwidths 
of both methods are very similar.

In contrast, compared to the CRLB-based approach in [12], the 
proposed method achieves a significantly narrower 3 dB beamwidth 
(3.6◦ vs. 5◦), which translates to enhanced angular resolution. Although 
the SLLs of the CRLB-based design are slightly lower, the trade-off in 
beamwidth performance highlights the advantage of our method in 
providing improved resolution while maintaining acceptable SLLs. Ta-
ble  2 summarizes the comparison of key performance metrics between 
the antenna array designed using our proposed algorithm and those 
obtained from the TALA algorithm and the CRLB-based approach.

5.3. Weighting vector design for beampattern improvement

As discussed in Section 4, we formulated an additional optimization 
problem to design the array weight vectors, aiming to further enhance 
the beampattern of the sparse antenna array obtained in Section 3. The 
objective of this step was to reduce the maximum SLLs without affect-
ing the mainlobe width. The resulting weighted array beampatterns 
for both the 1D and 2D cases are illustrated in Figs.  7, 5, and  4(c), 
respectively.

These results clearly show that the weighted array beampatterns 
successfully retain the desired mainlobe width while achieving notice-
able sidelobe suppression, thereby enhancing the overall performance 
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of the array design obtained from Algorithm 1. Specifically, the maxi-
mum SLLs are reduced by approximately 2 dB in the 1D case and 1 dB 
in the 2D case, respectively. In particular, for the 1D design, this side-
lobe reduction results in a beampattern that slightly outperforms the 
CRLB-based approach in [12] in terms of SLLs, while still maintaining 
a significant advantage in 3 dB beamwidth.

6. Conclusion

In conclusion, the paper presents a comprehensive investigation 
into the design of sparse planar antenna arrays for emerging mmWave 
MIMO radars. By leveraging high-frequency characteristics and spa-
tial diversity, these radars offer enhanced capabilities for applications 
such as automotive radar and surveillance. The paper introduces an 
innovative algorithm that optimizes array placement to maintain equiv-
alent characteristics of full antenna arrays with fewer transceivers, 
addressing the challenge of increased chip design costs and energy 
consumption. Through Majorization–Minimization algorithms and ar-
ray weighting vectors, the proposed method effectively optimizes array 
beampatterns, reducing SLLs while preserving the mainlobe width and 
processing gain of the full array. We formulate the problem of joint 
transmit and receive array beampattern matching design and propose 
an optimization technique to tackle nonconvex NP-hard discrete opti-
mization problems. The simulation results demonstrate the capability 
of the proposed method in designing sparse antenna arrays with de-
sired characteristics. Overall, this work provides insights and paves the 
way for future research in sparse planar antenna array design for the 
4D-Imaging mmWave MIMO radars.
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