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ARTICLE INFO ABSTRACT

Keywords: Emerging millimeter-wave (mmWave) MIMO radars combine the benefits of large bandwidth available at
Array configuration mmWave frequencies with the spatial diversity provided by MIMO architectures, significantly enhancing radar
Beampattern optimization capabilities for automotive, surveillance, and imaging applications. However, deploying large numbers of

Sparse array
MIMO radar
Antenna placement
Planar array

antennas and transceivers at these high frequencies substantially increases chip complexity and hardware
costs. In this paper, we address the design of sparse two-dimensional (2D) antenna arrays that retain
the desirable beampattern characteristics of fully populated arrays — namely, narrow mainlobes and low
sidelobes — while significantly reducing the required number of antenna elements. We formulate the sparse
array design problem as a beampattern matching optimization, which selects optimal subsets of transmit
and receive antenna positions from an initial dense grid. To efficiently solve this challenging nonconvex
optimization problem, we introduce an iterative algorithm combining Majorization-Minimization (MM) and
Alternating Optimization (AO) techniques. We provide theoretical guarantees for convergence to at least a
local optimum. Additionally, we propose a weighting vector optimization step to further enhance sidelobe
suppression. Numerical simulations confirm that the proposed method maintains angular resolution and
Sidelobe Levels (SLLs) comparable to those of full arrays, while substantially reducing hardware complexity
and cost. Performance comparisons against existing methods demonstrate notable improvements in sidelobe
suppression and computational efficiency without compromising processing gain.

1. Introduction them particularly appealing for automotive radar, surveillance, and
high-resolution imaging applications [3].
Multiple-input multiple-output (MIMO) radar has emerged as a A critical aspect of mmWave MIMO radar systems is the antenna

array design, which inherently involves a trade-off between system
performance, cost, and complexity. Fully populated antenna arrays,
characterized by densely arranged antennas spaced uniformly at half-
wavelength intervals and supported by dedicated transceivers, achieve
excellent spatial resolution and beamforming capabilities. However,
their practical deployment is often limited by high hardware costs,
substantial power consumption, and complex signal processing require-
ments. To address these challenges, Sparse Antenna Arrays (SAAs) have
gained considerable attention due to their reduced complexity, lower
hardware costs, and improved energy efficiency [4]. Nevertheless,

powerful technology, significantly enhancing radar performance
through improved target detection, localization, and tracking capa-
bilities [1,2]. Utilizing multiple transmitting and receiving antennas,
MIMO radar systems exploit spatial diversity, resulting in superior
resolution and parameter estimation accuracy. The recent advance-
ment of millimeter-wave (mmWave) technologies has further accel-
erated these capabilities, combining the substantial available band-
width at mmWave frequencies with the inherent spatial diversity
offered by MIMO architectures. Consequently, mmWave MIMO radars
have demonstrated unprecedented performance advantages, making

* This work has been partially supported by the Luxembourg National Research Fund (FNR) under the projects C20/IS/14799710/SENCOM, INTER/MO-
BILITY/2023/1S/18014377/MCR, and the Italian Ministry of Education and Research (MUR) in the framework of the FoReLab project (Departments of
Excellence).

* Corresponding author.

E-mail address: Nazila.karimian@ing.unipi.it (N. Karimian-Sichani).

https://doi.org/10.1016/j.sigpro.2025.110086

Received 16 October 2024; Received in revised form 28 March 2025; Accepted 1 May 2025

Available online 21 May 2025

0165-1684/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/sigpro
https://www.elsevier.com/locate/sigpro
https://orcid.org/0000-0002-4105-4166
https://orcid.org/0009-0000-3242-8122
https://orcid.org/0000-0002-5362-7320
https://orcid.org/0000-0003-2298-6774
mailto:Nazila.karimian@ing.unipi.it
https://doi.org/10.1016/j.sigpro.2025.110086
https://doi.org/10.1016/j.sigpro.2025.110086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2025.110086&domain=pdf

S. Sedighi et al.

sparse array designs must be carefully optimized to avoid degrading
spatial resolution or inadvertently increasing SLLs.

1.1. Related works

The design and optimization of sparse antenna arrays for mmWave
MIMO radar have been extensively studied, and existing works can
be categorized based on the dimensionality of the arrays (1D or 2D)
and their respective optimizationobjectives [5-24]. In the context of
one-dimensional (1D) SAAs, joint optimization of waveform covariance
matrices and antenna positions for transmit beampattern matching was
explored in [7,10]. Specifically, [7] developed an iterative algorithm
to minimize the mean-square error (MSE) between designed and de-
sired transmit beampatterns. On the other hand, the work in [10]
extends this idea by not only minimizing the transmit beampattern
matching error but also integrating additional constraints to enable
flexible control of the beampattern characteristics within predefined
angular regions, including mainlobe ripple and peak SLLs. Further-
more, the authors in [11] proposed a sparse antenna design method
exploiting the relationship between diagonal elements of the optimized
waveform covariance matrix and transmitted antenna power, retaining
only antennas significantly contributing to the desired beampattern.
Joint transmit-receive beampattern optimization for 1D sparse array
design was studied in [6,8]. A genetic algorithm was employed in [6]
to optimize Sparse Linear Array (SLA) configurations for enhanced
direction-of-arrival (DOA) estimation in multistatic scenarios. The au-
thors in [8] developed a two-step synthesis procedure tailored for 3D
imaging radar, significantly reducing the number of antenna elements
while maintaining angular resolution and effectively suppressing SLLs.
Moreover, the Cramer-Rao lower bound (CRLB) was employed as
a metric in joint antenna and pulse placement designs to minimize
hardware complexity and energy consumption without sacrificing ac-
curacy [9,12]. Recently, convolutional neural networks (CNNs) were
leveraged in [23] for optimal SLA design aimed at improved DOA
estimation.

Despite the substantial research on 1D SSA designs, fewer works
have addressed two-dimensional (2D) configurations. The authors in
[18] introduced an optimization framework for designing 2D MIMO
virtual arrays, employing an iterative coordinate descent algorithm to
minimize the MSE between the designed and desired virtual arrays
under constraints on the number of transmit and receive antennas.

However, existing research has not yet simultaneously addressed
key performance metrics such as mainlobe resolution, sidelobe sup-
pression, and processing gain within the context of sparse 2D antenna
array design. To bridge this gap, we formulate and solve the 2D SAA
design problem, explicitly considering mainlobe resolution, sidelobe
level, processing gain, and array flexibility for a given sparsity order.
Our approach is designed for offline application, facilitating the man-
ufacturing of optimized antenna arrays and associated chip designs
without the need for subsequent reconfiguration.

1.2. Contribution of this paper

Motivated by these research gaps, this paper proposes an SAA design
for mmWave MIMO radars with 4D imaging capabilities, consider-
ing both transmit and receive beampattern characteristics. The main
contributions of this paper are as follows:

» We formulate the joint transmit and receive beampattern match-
ing optimization problem for 2D SAAs with predefined numbers
of transmit and receive elements. By employing binary transmit
and receive array position vectors, we design arrays that achieve
specified beampattern characteristics with significantly reduced
SLLs while preserving the mainlobe resolution comparable to fully
populated arrays.
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» To solve the resulting non-convex NP-hard discrete optimization
problem, we propose a novel iterative algorithm based on the
method of majorization-minimization (MM) and an alternating
optimization (AO) approach. We provide theoretical guarantees
for convergence to at least a local optimum, ensuring algorithm
robustness and stability.

We integrate a weighting vector optimization into the array de-
sign process, adding flexibility and further enhancing the array’s
beampattern quality, particularly in sidelobe suppression.
Comprehensive numerical evaluations demonstrate that our pro-
posed algorithm achieves the required angular resolution, low
sidelobe performance and processing gain despite substantial an-
tenna sparsity.

1.3. Organization and notation

The rest of this paper is organized as follows: Section 2 formulates
the antenna array design problem. Section 3 details the proposed
optimization algorithm. Section 4 discusses the enhancement of the
designed array’s beampattern through a weighting vector optimization.
Simulation results validating our method are presented in Section 5.
Finally, Section 6 concludes the paper.

Notation: We use boldface upper case X for matrices and boldface
lower case x for vectors. In(.), and mod(.) and vec(.) define the natural
logarithm, reminder and vectorization operator, respectively. ||.|| ¢, I|.Ilo
and |||, and ||.||, are the Frobenius, Zero, Manhattan and Euclidean
norm, respectively. Also, the transpose and Hermitian operators are
denoted by ()T and (.)¥, respectively. |x| denotes modulus of the
complex number x and |x| is a vector of element wise absolute values
of x, i.e, x| = [Ix;].Ix3l, ... |xL|]T. RN and CV are the N-dimensional
real and complex vector spaces. X > 0 denotes the matrix X is positive
semidefinite. I, is a N x N Identity matrix. The Hadamard product,
Kronecker product, gradient and floor function are denoted by 0, ®, V
and |.|, respectively.

2. Problem formulation for 2D sparse antenna array design

In this section, we define the system model and formulate the
problem of designing 2D SAAs for MIMO radar. Specifically, we con-
sider a colocated MIMO radar system, where multiple transmit and
receive antennas are closely spaced, enabling coherent signal process-
ing. We assume that each transmit antenna is assumed to emit an
orthogonal waveform, ensuring negligible cross-correlation between
the received signals, thereby decoupling the array’s spatial beampattern
design from the transmitted waveform design. Additionally, antenna
coupling effects are assumed to be sufficiently weak and thus negli-
gible. If, however, coupling effects become significant, their impact
can be measured through calibration to obtain a coupling matrix,
which can subsequently be used to compensate and effectively miti-
gate the coupling effects on the array beampattern. Thus, even arrays
designed under ideal (uncoupled) assumptions can closely achieve their
theoretical performance specifications in practical scenarios.

Our objective is to achieve predefined angular resolutions in both
azimuth and elevation dimensions while ensuring the SLLs remain
below a specified threshold, using a constrained number of transmit
and receive antenna elements. To meet these performance criteria, we
formulate the array design as an optimization problem. In particular,
our goal is to approximate the mainlobe characteristics of a reference
2D fully populated uniform rectangular array (FPURA), which inher-
ently provides the desired angular resolutions, while simultaneously
constraining the SLLs and the number of antenna elements.

Let I'(6, ¢) denote the normalized array beampattern of a 2D FPURA
(shown in Fig. 1(a)) with half-wavelength spacing, i.e., d = 1/2, where
A is the wavelength. The azimuth and elevation angles are denoted
by 6 € © = [-90°,90°] and ¢ € @ = [-90°,90°], respectively. In
addition, let L = L, x L, represent the total number of elements in



S. Sedighi et al.

T T T T T T T T T
10 <+“—>
r 00 O0DO0ODO0OOoOOoOOoOOoODOoOOoODOoOOaoOOoOaQ 1
Mziu 000000000000 aoao
8+ 0000000000000 DOoaoaon g
- 00O o0obo0oboo0oOooooooooao S
% 6 0000000000000 oD0aoF g
2 0000000000000 DOoaoaon =,IN
N 4t 0O00O0O0OOODODOOGoOQO OO oaooaoao 4
0000000000000 DOoaoaon
2+ 0000000000000 DOoaoaon g
0000DO0DO0DO0O0DO0O0OOoOoaoaon
oF (Ly-1) A2 1
N N

2 I I I I I I I
-2 0 2 4 6 8 10 12 14 16 18

X Position

(a)

Signal Processing 238 (2026) 110086

T T T T T T T T T
12 = = ]
22 L,=15, L,=10
<>
10 o o oo o o o ]
o o 0O0DoDooaoao
8r a2h” o ©oen 1
< vo o oo oo g
= 6l o o 0O oo o - 1
@ s
n? o o oo o =3
N 4L o o oo o o 1
OO0 Do0oao o o o o
ol o o o o oo o 1
o oo o oo oo u]
0r (L,-1) A2 1
O Antenna elements
N N

2 I I I I I I I
-2 0 2 4 6 8 10 12 14 16

X Position

(b)

Fig. 1. Configuration and positions of (a): a dense and (b): a sparse array antennas.

the 2D FPURA, with L, and L, being the number of elements along
the azimuth and elevation dimensions, respectively (see Fig. 1). The
transmitter and receiver array steering vectors are denoted by a,(0, ¢) €
CL and a,(8,$) € CL, respectively. The /th element of each steering
vector is given by

a,,(0,9) = a, (0, ) = exp(jzx sin(f) cos(P) + jrzsin(¢h)), (@D)]

where x =mod(/ - 1, L), z = [’L‘—'J and /€ (1,2,...,L}).
1
Accordingly, the problem of 2D SSA design can now be formulated

as the following optimization problem:

al (0. ))p,p 2,0, $) :

min r—
lerpr 1,

Pi-Pr

—-I'®.9)

06y,
dedy,

J [l = M,

[pflo =N

al (0,¢)p,pT a,(0.¢)
17ppl1,

L
p; € {0, 1}%, )
p, € {0, 1}F,
2
<.Mls V0665’¢e¢s'

where 0,, and ®,, represent the discrete angular grids in the mainlobe
region for the azimuth and elevation angles, while ©; and &, denote
the corresponding angular grids in the sidelobe region. Vectors p, and
p, are binary arrays that indicate the placement of the transmitter
and receiver antennas, respectively. The values of M and N define
the number of transmit and receive antennas, and the elements of
these vectors are arranged row-wise. Further, x4, denotes the desired
maximum sidelobe level.

In (2), the objective function seeks to minimize the Euclidean
distance between the beampattern of the desired 2D SSA and that of
a reference 2D FPURA in the mainlobe region. Further, the first and
second constraints ensure that the total number of antennas used is
limited to M x N, which is significantly fewer than that in the reference
2D FPURA, i.e., M X N < L (see Fig. 1(b)). The third constraint
guarantees that the SLLs do not exceed a predetermined threshold ;.

Due to the nonconvexity of the objective function and the binary
nature of the optimization variables, this optimization problem is clas-
sified as a nonconvex binary optimization problem [25]. In the next
section, we present the proposed method for solving this problem.

Remark 1. If the elevation angles ¢ in (2) and the parameter z in
transmit and receive array steering vectors in (1) are set to zero, the
2D SSA design Problem in (2) simplifies to a 1D SSA design problem.

3. Solution to the optimization problem

To address the nonconvex binary optimization problem in (2), we
start by defining the position vector p = [p],pl]”, concatenating

the transmitter and receiver array position vectors. In addition, we
introduce the zero-padded array steering vectors as,

a,00,¢)=1[a; 071" e C*t, 3
a,(0,¢)=10],a]]" e C*". )

Exploiting the constraints 17p, = M and p/1; = N, the original
objective function in (2) can be reformulated as shown in (7). We also
define the auxiliary vectors:

e, =[17,0T1", (5)
e, =07, 17, (6)

which allow us to express the equality constraints from (2) as ||e,0Op||, =
M and |le, © pll, = N. Since e,, e,, and p are binary vectors, these
constraints are equivalent to e/p = M and efp = N. With these
modifications, the optimization problem becomes:

a’ (0, »)pp”a, (0. ?
min Z , (0, d)pp” 4,0, p) _ro.¢)
P ooy, MN
bED,
p € {0,1}%£,
1 etTp =M, ™
st. ep=N,
T Ts 2 2
a, (0,¢)pp a,(0,¢)| <(MN)'u, VOe€O,,
pe D

Introducing additional auxiliary variables:

Q2pp’ € {0, 1}, ®)
E& ere,T € (0,1)21°2L 9
a0, ¢) 22,00, ) ®4,0,¢) € C*, (10)

we reformulate the optimization problem as,

~T 2
in a7, $ec@Q _ 1, 4
Qo MN
PED),
p € {01},
h¢ e?p =M, (1D
5.t eer =N,
Q=pp’,
2
"0, pyvec(Q)| <(MNY’u;, VO€O,ped,

Although the objective function is now quadratic and convex, the
problem remains nonconvex due to the binary constraint on p and the
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equality constraint Q = pp’. In the following, we present an equivalent
reformulation of (11), which paves the way for solving this noconvex
optimization problem. To tackle the binary constraint on p, we replace
it with:

g(p) = (p; — DIn(1 — p;) — p;In(p;) <0, 12)
p,€I0,1], Vie(l,2,...,2L}. 13)

It is readily verified that (12) and (13) are satisfied if only if p, = 0 or
1. Hence, the optimization problem (11) can be rewritten as,

. al'(o, p)vec 2

e 2| S o]+
peDy,
0<p; <1, Vie{l,2,....2L},
g(p) <0, Vie{l,2,..,2L}, a4
ep=M,

s.t. p=N,
Q=pp’,
a’ (0, gp)vec(Q) : <S(MNY*u,, V€O, ped,,

Next, to efficiently handle the challenging equality constraint Q =
pp’, we leverage the results provided in [26, Theorem 1] and [5,
Theorem 3.1]. Specifically, according to [26, Theorem 1], the equality
constraint Q = pp’ is equivalent to imposing a rank-one constraint on
the augmented matrix C defined as,

T
C= [1 L= [0, 1]@L+DXQLE).
p Q
This rank-one constraint, i.e., rank(C) = 1, can be equivalently

represented by enforcing that all eigenvalue of C, except the largest,
are zero. Following [5, Theorem 3.1], this condition can be realized
by introducing an auxiliary orthonormal matrix A € C?L+D>X2L where
AH A =1,,, and imposing the following constraint:

(L, —-ARCA >0 15)

where choosing ¢ — 0 ensures that all the eigenvalues of C, except
the largest one, approaches zero.! Consequently, making use of this
reformulation, the optimization problem (14) can now be recast as
follows,

2

a’'(0, p)vec(Q)

min ————= T, +

R gezg;n MN (X)) mé
bedy,
0<p, <1, Vie{l,2,.. 2L},
g(p) <0, Vie{l,2,...,2L},
T _

) ep=M, (16)
e,Tp=N,

S.t. 2
a'(0. p)vec(Q)| <(MN)Y*y, VOe€O,.ped,,

¢L;, —AHCA >0,
ATA =1,
C>0,

where 7, is a regularization parameter. This reformulation transforms
the original equality constraint into semidefinite constraints suitable for
numerical optimization.

1 A detailed proof of this equivalence is given in [5, Theorem 3.1].
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Finally, by introducing a regularization parameter #, and moving
the constrains g(p;) <0, Vi € {1,2,...,2L} to the objective function,
the optimization problem (16) can be recast as,

~ 2 2L
min %Z@m w ~ 1.6 +nétn 3 o)
pePy,
0<p; <1, Vie(l,2,..,2L},
e,Tp =M,
3 e'p=N, aa7)
st al (0, p)vec(Q) : <(MNY*y,, V9o, ped,,
¢L; —ACA >0,
AIA =1,
C>0.

The optimization problem (17) can be solved iteratively by majoriz-
ing g(p;) and alternating between the optimization variables. Let p®,
Q®, c%*=D and ¢® be the values of p, Q, C and ¢ at kth iteration, re-
spectively. Using Majorization-Minimization (MM) technique [27,28],
the concave functions g(p;) Vi € {1,2,...,2L} in (12) can be majorized
by their first-order Taylor expansion as,

2@ < hp{) = @) + Ve e - p "), a8
where

1-p; .
Vg(p,) =In Vie(l1,2,...,2L}. 19

i

Given A%®D and ¢*-D, the optimization problem with respect to
p%®, Q® and ¢® becomes (20), shown at the top of the next page.
The optimization problem (20) is a Semi-Definite Programming (SDP),
which can be solved efficiently, e.g. using CVX.

2

a’ (0, p)vec(Q®)

MN - TI®.9)

2L
k
+m¢® 4, Y hp()

i=1

ol 2
PEDy,
) o<p® <1, Vie(l2..,2L},
() e p¥=M,
y (3) efp® =N,
T k 2 2
al (9, p)vec(QW)|” < (MN)’y,, V0 €0O,, ¢cd,,
(€5 €® >0,
_nHH —
(c6) W1, — A6 chAG=D »
(c7) W g glb,

s.t. (c4)

(20)

Once p®, Q® and ¢® are found by solving (20), A® can be
obtained by seeking an (2L +1)x(2L) matrix with orthonormal columns
such that (P1,; > A®TCOA® 1t was shown in [5] that choosing
A® to be equal to the matrix composed of the eigenvectors of C*)
corresponding to its 2L smallest eigenvalues is the appropriate choice.

Accordingly, at each iteration of the proposed algorithm, we need to
solve SDP, followed by an Eigenvalue Decomposition (EVD). Algorithm
1 summarizes the steps of the proposed iterative approach for solving
(2). To initialize the algorithm, A® can be found through the eigen-
value decomposition of C(, obtained from solving (20) with omitting
constraints (c6) and (c7). Further, we terminate the algorithm when
the convergence criterion, as specified in line 7 of Algorithm 1, is met.
Further, to facilitate better understanding, we illustrate the main steps
of Algorithm 1 in Fig. 2 using a flow diagram.
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Algorithm 1 Proposed Method; 2D Antenna Array Placement For
Beampattern Matching Design.

1: Inputs: n,, np, v, I, ©,,, O, @, &, M, N and L.

2: Outputs: p/, p* and w*.

3: k<0

4: Obtain Q© and p® by solving (20) with constraints (c6) and (c7)
removed;

5: Compute C© and its EVD;

: Compute A?, composed of the 2L eigenvectors of C©) associated
with its smallest 2L eigenvalues;

7: While [|p, —pyllp > 7

o)}

8: p; < p%;

9: k—k+1;

10: Obtain p®, QW and ¢® by solving (20);

11: Compute C% and its EVD;

12: Compute A®, composed of the 2L eigenvectors of CXassoci-
ated with its smallest 2L eigenvalues;

13 py < p®;

14: end While

15: p* =py;

16: Solve (25) Using CVX [29] for designing w* = w;
17: Outputs: p* = [p*7, p*T T and w*.

Proposition 1 (Convergence). The proposed iterative algorithm converges
to at least a local minimizer of the optimization problem defined in (11)

1¢®]
< 1. This implies that ¢® converges at least sub-linearly to zero [30].
Consequently, for any arbitrary small tolerance ¢; > 0, there exists
an integer 7, such that (¥ < ¢, for k > I,. Utilizing this result and
considering constraint (c6) in (20), it follows directly that,

Proof. It readily follows from constraint (c7) in (20) that lim, _,

ACDTCOA®D <o p - forall k > 1,. (21)

Now let p(lk) < p(zk) < - < p(zklj denote the eigenvalues of C*) cor-

responding to its 2L smallest eigenvalues. According to [31, Corollary
4.3.16], the following inequality holds,

. _nHH —
Diag((p{", py”, ... P31 < AUV R AKD, 22)

Combining (21) and (22), it follows that Rank(C®) ~ 1 for k > I,
which in turn indicates that Q¥ = p®p®” [5] for k > I,. This implies
that [Q®), p®], for any k > I, is a feasible point for the optimization
problem (11).

Additionally, by properly selecting #,, there exists another integer
1, such that 212:1 h(pl(.k)) <, for k > T, where ¢, > 0 is an arbitrarily
small tolerance. Therefore, considering»also the fact that {® < ¢, for
k > 1,, we conclude that Q¥ = p®p®" | for any k > T = max(Z,,1,),
is also a minimizer of
2

a’ (0, p)vec(QX)
H; — o 6.9 . (23)
BeDy,

These imply that [Q®), p®] for i > T is at least a local minimizer of the
optimization problem (11). This complete the convergence proof. []

Remark 2. After obtaining the optimum solution p* € {0, 1}(Ni+N)X1|
we can easily reconstruct the transmit- and receive-array position vec-
tors, i.e., p¥ € {0, 1} and p* € {0, 1}¥*!, by splitting the vector p*.
Indeed, the first N, entries of p* correspond to transmit array position
vector, i.e., p;, and the next N, entries to receive array position vector,
i.e., p;.

Remark 3. The primary computational burden of the proposed algo-
rithm at each iteration arises from two key operations: solving the SDP
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Fig. 2. Overview of the steps in Algorithm 1.
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Fig. 3. Objective values of the proposed algorithm for different settings.

problem (20) and performing the EVD of matrix C¥). Based on the
number of constraints and decision variables in the SDP formulation
(20), the computational complexity of solving the SDP problem using
an interior-point method is approximately O(7(2L+1)3 +49(2L+1)?) per



S. Sedighi et al.

iteration [25]. Additionally, the computational complexity of the EVD
operation required to update A® is O(2L +1)%). Therefore, the overall
computational complexity of the proposed algorithm per iteration is
approximately O(8(Q2L + 1)° + 492L + 1)?).

After solving the nonconvex optimization problem and obtaining
the sparse antenna array configuration, we achieve the desired an-
gular resolution while adhering to the sidelobe constraints. However,
although the array design is optimized, there is still room for improve-
ment in the overall beampattern performance, specifically in terms of
controlling SLLs with as little sacrifice to mainlobe resolution and the
Processing Gain (PG) as possible. In practice, this is often achieved by
introducing a weighting vector that adjusts the contributions of each
antenna element in the array. This allows us to refine the beampattern
further, improving the array’s performance by reducing sidelobes while
preserving the desired mainlobe characteristics to the greatest extent
possible.

4. Weighting vector design for improving the array beampattern

In this section, we focus on designing a weighting/windowing vec-
tor to further enhance the beampattern of the array obtained from
the previous optimization process [32-34]. The goal is to enhance
the beampattern by preserving angular resolution and PG as much
as possible, while simultaneously minimizing SLLs. Let a*(9,¢) =
ax0.9)®ar0.¢) € C*L* denote the manifold vector of the optimized
array obtained from the solution in the previous section. The design

problem for the weighting vector can now be formulated as,

w'a* 0, ¢)

2
-I®,¢
lIwlly

min E
w
00,
PED),

2
[Iwll{ . 24

2 =z b
1wz

s.t.
wla* |?
1w
where w is the weighting vector. The objective function seeks to
maintain the desired beampattern I'(6, ¢)) in the mainlobe region. The
first constraint ensures a certain level of Processing Gain (PG), while
the second constraint limits the array SLLs. We note that the maximum
achievable PG is M N, i.e., t < M N. This occurs only when all elements
of w are identical, which corresponds to applying a rectangular win-
dow. Here the goal is to shape w such that the sidelobe level becomes
a desired smaller value while the PG approaches M N. Without loss of
generality, we can assume ||wl||; is normalized to a constant, e.g., 1.
Thus, the optimization problem (24) can be reformulated as,

<uy VOEO,PED,

min Y [Wa0.0) - [0.9)

0€0,
bEDy,
wll, =1, (25)
2 1
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s.t. ” “2 yMN
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where 0 < y < 1 represents a scalar that should be as close to 1 as
possible to attain the maximum PG. There is always a trade-off between
y and u, as a higher y leads to a higher value of u,. The optimization
problem (25) is convex and can be efficiently solved using CVX [29].
This step is summarized in line 16 of Algorithm 1.

Remark 4. Although the proposed algorithm may be computationally
expensive due to the use of AO and MM techniques, this computational
burden occurs during the offline design phase of the chip and cor-
responding antenna array configuration. Once the design is finalized
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and the antenna array is manufactured, there is no need for further
optimization, as the chip and array configuration remain fixed. Besides,
w optimization described in this section, will give further flexibility to
such designs.

5. Numerical results

In this section, we present numerical results to evaluate the per-
formance of the proposed algorithm across various scenarios. Fig. 3
illustrates the convergence behavior of the objective function across
iterations of Algorithm 1, under different configurations with varying
array dimensions and sparsity levels in both 1D and 2D scenarios.
As shown, the objective function decreases monotonically, confirming
the convergence behavior of the proposed method, as established in
Proposition 1.

The subsequent numerical and simulation results are divided into
two parts, corresponding to the 2D and 1D SSA design cases. For the
2D case, we compare the performance of the designed 2D SSA using our
proposed algorithm with that of the method introduced in [18], which,
to the best of our knowledge, is the only existing work addressing
the 2D SSA design problem. For the 1D case, we benchmark the
performance of our proposed algorithm against both the method in [18]
and the approach presented in [12], which is among the state-of-the-art
techniques for 1D SSA design.

5.1. 2D antenna array configuration

In this part, we consider the design of a 2D antenna array to enable
both azimuth and elevation angle estimation. We use 2D arrays with
grid sizes set to half-wavelength spacing in our designs. The desired
beampattern, depicted in Fig. 4(a), features 3 dB beamwidths of 6.8°
and 15.2° in azimuth and elevation angles, respectively. In addition,
the maximum sidelobe level is set to —9 dB within a FoV of (—90°,90°)
in azimuth angles and (-20°20°) in elevation angles. Achieving this
conventionally requires a uniform 2D rectangular array with 144 virtual
elements, which could arise from 18 physical transmit antennas and 8
physical receive antenna. The aim is to achieve such a beampattern
using only 4 transmit and receive antennas, i.e., M = N = 4. This
design provides a virtual array that is 89% sparser compared to the
uniform 2D rectangular antenna array, resulting in significant computa-
tional savings. Further, this design requires 70% less physical transmit
and receive antenna elements, which remarkably reduces the hardware
costs.

The beampattern of the designed antenna array using the proposed
algorithm is shown in Fig. 4(b). Moreover, Figs. 5(a) and 5(b) depict
the azimuth and elevation cuts of the 2D beampattern of the designed
antenna array, respectively. The designed sparse array’s transmit and
receive antenna configurations, along with the related virtual array,
are shown in Figs. 6(a) and 6(c), respectively. As observed, the de-
signed beampattern retains the mainlobe width and achieves SLLs of
approximately —9.5 dB, demonstrating effectiveness of the proposed
algorithm. Note that the grating lobes seen in Fig. 5(b) for the design
array beampattern are due to the FOV design considerations and are
outside the desired FoV.

Figs. 4 and 5 also compare the results with those obtained from
the TALA algorithm [18]. It is observed that our proposed algorithm
achieves lower SLLs (by approximately 7.5 dB) compared to the TALA
algorithm. Furthermore, we can directly interleave the beampattern to
design the antenna array structure, whereas in [18], the authors design
the array to achieve only a specific virtual array configuration. Addi-
tionally, there is no control over the SLLs in the beampattern obtained
from the TALA algorithm. This lack of control results in significantly
high SLLs, reaching approximately —2 dB at azimuth angles of —20°
and 20°, as observed in Fig. 5(a). Table 1 summarizes the comparison
of key performance metrics between the antenna array designed using
our proposed algorithm and that obtained from the TALA algorithm.
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Fig. 4. (a) Desired and (b) designed 2D antenna array beampatterns; (c) beampattern
of the designed array after applying array weighting; (d) designed beampattern obtained
using the method in [18].

5.2. 1D antenna array configuration

As highlighted earlier in Remark 1, the proposed method can be
readily adapted to the 1D SSA design with minor modifications. Ac-
cordingly, in this section, we evaluate its performance under a 1D
configuration for both transmit and receive antenna elements. The
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Fig. 5. Desired and designed antenna array beampatterns in (a) azimuth and (b)
elevation, including the proposed design before and after array weight optimization,
along with the beampattern obtained using the method in [18].

Table 1

Performance comparison of 2D SSA design.
Method 3 dB BW (Az.) 3 dB BW (EL) SLL
Proposed 6.8° 15.2° ~-9.5 dB
TALA [18] 6.8° 15.2° ~—2dB
Proposed (Weighted) 6.8° 15.2° ~—10.8 dB

goal is to achieve a beampattern with the 3 dB-beamwidth of 3.6°
and the maximum sidelobe level of —10 dB within Field of View
(FoV) of (=90°,90°) in azimuth direction using only 4 transmit and
receive antennas, i.e., M = N = 4. Traditionally, to achieve such a
3 dB-beamwidth, a 30-element virtual uniform linear antenna array
is required. This would arise from 6 physical transmit antennas and
5 physical receive antenna. This implies that our design provides a
virtual array that is 47% sparser compared to the virtual uniform linear
antenna array, enabling significant savings in computational resources.
Further, this design requires 28% less physical transmit and receive
antenna elements, significantly reducing the hardware costs.

The beampattern of the designed antenna using the proposed algo-
rithm is shown in Fig. 7. The results were obtained using scaling factors
n = 1.6, n, = 1.3, and termination parameter ¢ = 10~*. As seen, the
designed antenna array provides almost 3 dB-beamwidth of 3.6° and
the maximum sidelobe level of —10 dB as desired. Fig. 8(a) presents
the configuration and positions of the transmit and receive antennas
for the designed array. The corresponding virtual array, derived from
the convolution of the transmit and receive antenna locations, is also
illustrated Fig. 8(b).

A comparison of the array designs obtained by our proposed al-
gorithm with those produced by the TALA algorithm in [18] and the
CRLB-based approach in [12] is presented in Figs. 7 and 8. The results
clearly demonstrate the superior performance of the proposed method.
Specifically, the beampattern designed by our algorithm exhibits SLLs
approximately 2 dB lower than those achieved by the TALA algorithm.
This improvement is primarily due to the absence of sidelobe control in
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Fig. 7. Desired and designed 1D antenna array beampatterns, including the proposed
design before and after array weight optimization, along with the beampatterns
obtained using the methods in [12,18].

Signal Processing 238 (2026) 110086

°
T

4a 4O

@ @[> 8

® Tx-Proposed Algrithm
Rx-Proposed Algorithm

Tx-TALA Algorithm [18]

b Rx-TALA Algorithm [18] 4
Tx-CLRB-based Algorithm [12]

Rx-CLRB-based Algorithm [12]

I I I I I I I | | I I

-1 0 1 2 3 7 8 9 10 1n

Normalized location {-

4 6
Normalized location {-

(a)

°
T

Normalized location

B Virtual Array-Proposed Algorithm
Virtual Array-TALA Algorithm [18]
Virtual Array-CLRB-based [12]

I I I I I I I I I
8 .0 Lo 14 16 18
Normalized location -

(b)
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corresponding virtual arrays, obtained using the proposed algorithm, as well as the
methods in [18] and [12].

Table 2

Performance comparison of 1D SSA design.
Method 3 dB BW (Az.) SLL
Proposed 3.6° ~-9.8 dB
TALA [18] 3.6° ~—8.5 dB
CRLB-based [12] 5° ~—11dB
Proposed (Weighted) 3.6° ~—11.5 dB

the array design formulation of [18], whereas our approach explicitly
accounts for sidelobe suppression. Additionally, the 3 dB beamwidths
of both methods are very similar.

In contrast, compared to the CRLB-based approach in [12], the
proposed method achieves a significantly narrower 3 dB beamwidth
(3.6° vs. 5°), which translates to enhanced angular resolution. Although
the SLLs of the CRLB-based design are slightly lower, the trade-off in
beamwidth performance highlights the advantage of our method in
providing improved resolution while maintaining acceptable SLLs. Ta-
ble 2 summarizes the comparison of key performance metrics between
the antenna array designed using our proposed algorithm and those
obtained from the TALA algorithm and the CRLB-based approach.

5.3. Weighting vector design for beampattern improvement

As discussed in Section 4, we formulated an additional optimization
problem to design the array weight vectors, aiming to further enhance
the beampattern of the sparse antenna array obtained in Section 3. The
objective of this step was to reduce the maximum SLLs without affect-
ing the mainlobe width. The resulting weighted array beampatterns
for both the 1D and 2D cases are illustrated in Figs. 7, 5, and 4(c),
respectively.

These results clearly show that the weighted array beampatterns
successfully retain the desired mainlobe width while achieving notice-
able sidelobe suppression, thereby enhancing the overall performance
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of the array design obtained from Algorithm 1. Specifically, the maxi-
mum SLLs are reduced by approximately 2 dB in the 1D case and 1 dB
in the 2D case, respectively. In particular, for the 1D design, this side-
lobe reduction results in a beampattern that slightly outperforms the
CRLB-based approach in [12] in terms of SLLs, while still maintaining
a significant advantage in 3 dB beamwidth.

6. Conclusion

In conclusion, the paper presents a comprehensive investigation
into the design of sparse planar antenna arrays for emerging mmWave
MIMO radars. By leveraging high-frequency characteristics and spa-
tial diversity, these radars offer enhanced capabilities for applications
such as automotive radar and surveillance. The paper introduces an
innovative algorithm that optimizes array placement to maintain equiv-
alent characteristics of full antenna arrays with fewer transceivers,
addressing the challenge of increased chip design costs and energy
consumption. Through Majorization-Minimization algorithms and ar-
ray weighting vectors, the proposed method effectively optimizes array
beampatterns, reducing SLLs while preserving the mainlobe width and
processing gain of the full array. We formulate the problem of joint
transmit and receive array beampattern matching design and propose
an optimization technique to tackle nonconvex NP-hard discrete opti-
mization problems. The simulation results demonstrate the capability
of the proposed method in designing sparse antenna arrays with de-
sired characteristics. Overall, this work provides insights and paves the
way for future research in sparse planar antenna array design for the
4D-Imaging mmWave MIMO radars.
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