[en] High-entropy alloys (HEAs) distinguish themselves from other multi-component alloys through their unique nanostructures and mechanical properties. This study employs molecular dynamics (MD) simulations and machine learning to investigate the deformation mechanisms of AlCoCuCrFeNi HEA under varying temperatures, strain rates, and average grain sizes. The modeling results show that interactions between partial dislocations in AlCoCrCuFeNi HEA during tension and compression deformation cause various lattice disorders. The effect of temperature, strain rates, and grain boundaries on lattice disorder, plastic deformation behavior, dislocation density, and von-Mises stress (VMS) is disclosed. This study offers new insights into the atomic-scale deformation mechanisms governing the mechanical behavior of AlCoCrCuFeNi HEAs. It also presents a comprehensive workflow for predicting the mechanical properties of this HEA using machine learning models. The proposed approach provides several advantages, including significantly reduced simulation time and robust model validation. By employing the machine learning model trained in Stage 1, the time needed to simulate mechanical properties in Stage 2 is significantly decreased. Additionally, the framework ensures that the machine learning model effectively captures and understands the underlying representations of the mechanical properties of HEAs, thereby enhancing both the efficiency and accuracy of the predictions.
Disciplines :
Materials science & engineering
Author, co-author :
Nguyen, Hoang-Giang; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Electronic Engineering, National United University, Miaoli City, Taiwan ; Faculty of Engineering, Kien Giang University, Viet Nam
Young, Sheng-Joue; Department of Electronic Engineering, National United University, Miaoli City, Taiwan
LE, Thanh-Dung ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Department of Electrical Engineering, Écolede Technologie Supérieure, University of Québec, Montréal, Canada
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Fang, Te-Hua; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
External co-authors :
yes
Language :
English
Title :
Deformation mechanisms of AlCoCrCuFeNi: A molecular dynamics and machine learning approach
Bộ Giáo dục và Ðào tạo National Science and Technology Council
Funding text :
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Te-Hua Fang reports financial support was provided by National Kaohsiung University of Science and Technology. Sheng-Joue Young reports financial support was provided by National United University. Hoang-Giang Nguyen reports financial support was provided by Kien Giang University. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.The authors acknowledge the support by the National Science and Technology Council, Taiwan, under grant numbers NSTC 113-2221-E-992-067-MY3, NSTC 113-2811-E239-002, NSTC 114-2221-E-992 -029 -MY3, NSTC 114-2221-E-992 -030 -MY3, the Industry Cooperation Project No. 113A00262, and the Ministry of Education and Training, Vietnam, under grant number B2026-TKG-01.The authors acknowledge the support by the National Science and Technology Council , Taiwan, under grant numbers NSTC 113-2221-E-992-067-MY3 , NSTC 113-2811-E239-002 , NSTC 114-2221-E-992 -029 -MY3 , NSTC 114-2221-E-992 -030 -MY3 , the Industry Cooperation Project No. 113A00262 , and the Ministry of Education and Training , Vietnam, under grant number B2026-TKG-01 .
Pandey, P., Khatavkar, N., Kumar, S., Oh, H., Godha, A., Makineni, S.K., Chattopadhyay, K., Plastic deformation and strengthening mechanisms in CoNiCrFe high entropy alloys: the role of lattice site occupancy. Int. J. Plast., 2024, 104145.
Itoh, K., Yoshioka, Y., Barney, E.R., Hannon, A.C., Free volume distribution and structural inhomogeneity in Ni50V50 amorphous alloy. J. Alloys Compd. 770 (2019), 350–355.
Fu, J.X., et al. The tensile properties and serrated flow behavior of a thermomechanically treated CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng., A 690 (2017), 418–426.
Sun, Z., Roscher, M., Paolantonio, M.C., Soh, V., Liu, C., Tsai, S.P., Jägle, E.A., Additive manufacturing of sustainable and heat-resistant Al-Fe-Mo-Si-Zr alloys. J. Alloys Compd., 2024, 177118.
Gao, R., Ye, X.X., Yan, S., Lu, Y., Jiang, L., Li, Z., Zhou, X., Effects of tungsten content on the high-temperature oxidation behavior of Ni-xW-6Cr alloys. Corros. Sci. 149 (2019), 87–99.
Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Heilmaier, M., Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J. Alloys Compd. 661 (2016), 206–215.
Prasad, H., Singh, S., Panigrahi, B.B., Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J. Alloys Compd. 692 (2017), 720–726.
Li, W., Xie, D., Li, D., Zhang, Y., Gao, Y., Liaw, P.K., Mechanical behavior of high-entropy alloys. Prog. Mater. Sci., 118, 2021, 100777.
Tsai, M.H., Three strategies for the design of advanced high-entropy alloys. Entropy, 18(7), 2016, 252.
Ibrahim, P.A., Özkul, İ., Canbay, C.A., An overview of high-entropy alloys. Emergent Materials 5:6 (2022), 1779–1796.
Li, W., Liu, P., Liaw, P.K., Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters 6:4 (2018), 199–229.
Li, Z., Gu, Y., Wang, C., Pan, M., Zhang, H., Wu, Z., Xu, H., Microstructure and magnetic properties of the FeCoNi (CuAl) 0.8 Ga0. 06 high-entropy alloy during the phase transition. J. Alloys Compd. 779 (2019), 293–300.
Li, W., Liaw, P.K., Gao, Y., Fracture resistance of high entropy alloys: a review. Intermetallics 99 (2018), 69–83.
Wu, W., Liu, Z., Li, X., Du, C., Cui, Z., Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater. Sci. Eng., A 759 (2019), 124–141.
Nguyen, H.G., Young, S.J., Le, T.D., Vu, T.N., Fang, T.H., Bauschinger effect on high entropy alloy under cyclic deformation. Intermetallics, 183, 2025, 108830.
Nguyen, H.G., Le, T.D., Nguyen, H.G., Fang, T.H., Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning. Mater. Sci. Eng. R Rep., 160, 2024, 100833.
Wang, C.H., Chao, K.C., Fang, T.H., Stachiv, I., Hsieh, S.F., Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. J. Alloys Compd. 659 (2016), 224–231.
Gao, Y., Urbassek, H.M., Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl. Surf. Sci. 389 (2016), 688–695.
Qin, S., Zhu, L., Surface and subsurface damage of laser assisted grinding CrCoNi medium-entropy alloy at atomic/nano scale. Tribol. Int., 191, 2024, 109121.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:80 (2016), 76409–76419.
Doan, D.Q., Fang, T.H., Chen, T.H., Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. Int. J. Mech. Sci., 185, 2020, 105865.
Nguyen, H.G., Wu, M.J., Fang, T.H., Study on copper-to-copper bonding of three-dimensional integrated circuits using the quasicontinuum method. Phys. Scri., 99(6), 2024, 065114.
AlMotasem, A.T., Bergström, J., Gåård, A., Krakhmalev, P., Holleboom, L.J., Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: an atomic level simulation. Wear 370 (2017), 39–45.
Chavoshi, S.Z., Luo, X., Molecular dynamics simulation study of deformation mechanisms in 3C–SiC during nanometric cutting at elevated temperatures. Mater. Sci. Eng., A 654 (2016), 400–417.
Wang, G., Zhao, G., Song, J., Ding, Q., Study on tribological properties of TMDs-coated copper from the nanoscale. Mater. Today Commun., 31, 2022, 103815.
Chang, R., Fang, W., Yu, H., Bai, X., Zhang, X., Liu, B., Yin, F., Heterogeneous banded precipitation of (CoCrNi) 93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity. Scr. Mater. 172 (2019), 144–148.
Qiu, J., Zhou, C., Liu, B., Liu, Y., Li, H., Liang, X., Zan, X., Precipitation behavior of Ti-45Al-3Fe-2Mo-0.5 C intermetallics after creep tests at 750° C. Mater. Char., 155, 2019, 109825.
Durodola, J.F., Machine learning for design, phase transformation and mechanical properties of alloys. Prog. Mater. Sci., 123, 2022, 100797.
Nguyen, H.G., Fang, T.H., Material properties and machining behavior of AlCuNiTiZr with molecular dynamic simulation. Model. Simulat. Mater. Sci. Eng., 33(5), 2025, 055015.
Rao, Z., Tung, P.Y., Xie, R., Wei, Y., Zhang, H., Ferrari, A., Raabe, D., Machine learning–enabled high-entropy alloy discovery. Science 378:6615 (2022), 78–85.
Xin, B., Zhang, A., Han, J., Su, B., Meng, J., Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0. 2Co1. 5CrFeNi1. 5Ti0. 5 high entropy alloy matrix composites. J. Alloys Compd., 836, 2020, 155273.
Mayahi, R., An investigation concerning generalized stacking fault behavior of AlCoxCrFeNi (0.25≤ x≤ 2) high entropy alloys: insights from first-principles study. J. Alloys Compd., 818, 2020, 152928.
Jiang, H., Qiao, D., Jiao, W., Han, K., Yiping, L., Liaw, P.K., Tensile deformation behavior and mechanical properties of a bulk cast Al0. 9CoFeNi2 eutectic high-entropy alloy. J. Mater. Sci. Technol. 61 (2021), 119–124.
Ri, J.B., Wen, Z., Jiang, Q., A criterion for the glass-forming ability of binary bulk metallic glasses. J. Non-Cryst. Solids 471 (2017), 264–267.
Meshi, L., Linden, Y., Munitz, A., Salhov, S., Pinkas, M., Retardation of the σ phase formation in the AlCoCrFeNi multi-component alloy. Mater. Char. 148 (2019), 171–177.
Sun, J., Li, H., Chen, Y., An, X., Bidirectional phase transformations in multi‐principal element alloys: mechanisms, physics, and mechanical property implications. Adv. Sci., 2024, 2407283.
Ni, C., Shi, Y., Liu, J., Huang, G., Characterization of Al0. 5FeCu0. 7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt Laser. Technol. 105 (2018), 257–263.
Su, J., Wu, X., Raabe, D., Li, Z., Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Mater. 167 (2019), 23–39.
Deng, N., Wang, J., Wang, J., He, Y., Beaugnon, E., Li, J., Effect of high magnetic field assisted heat treatment on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Mater. Lett., 303, 2021, 130540.
Zhang, L., Qian, K., Schuller, B.W., Shibuta, Y., Prediction on mechanical properties of non-equiatomic high-entropy alloy by atomistic simulation and machine learning. Metals, 11(6), 2021, 922.
Li, Z., Zhao, S., Ritchie, R.O., Meyers, M.A., Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 102 (2019), 296–345.
Tang, K., Wu, Y.K., Wei, R., Chen, L.B., Lu, S., Qi, Y.L., Sun, J., Achieving superior cryogenic tensile properties in a Ti-doped (Fe40Mn40Co10Cr10) 96.7 C3. 3 high-entropy alloy by recovering deformation twinning. Mater. Sci. Eng., A, 808, 2021, 140927.
Yang, T.N., Lu, C., Velisa, G., Jin, K., Xiu, P., Zhang, Y., Wang, L., Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd. Scr. Mater. 158 (2019), 57–61.
Karathanasopoulos, N., Hadjidoukas, P., Deep learning based automated fracture identification in material characterization experiments. Adv. Eng. Inform., 60, 2024, 102402.
Chew, Y., Bi, G.J., Zhu, Z.G., Ng, F.L., Weng, F., Liu, S.B., Lee, B.Y., Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng., A 744 (2019), 137–144.
Lee, C., Maresca, F., Feng, R., Chou, Y., Ungar, T., Widom, M., Curtin, W.A., Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nat. Commun., 12(1), 2021, 5474.
Pickering, E.J., Stone, H.J., Jones, N.G., Fine-scale precipitation in the high-entropy alloy Al0. 5CrFeCoNiCu. Mater. Sci. Eng., A 645 (2015), 65–71.
Xian, X., Lin, L., Zhong, Z., Zhang, C., Chen, C., Song, K., Wu, Y., Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Mater. Sci. Eng., A 713 (2018), 134–140.
Zhao, D., Jin, X., Qiao, J., Zhang, Y., Liaw, P.K., Machine-learning-assisted modeling of alloy ordering phenomena at the electronic scale through electronegativity. Appl. Phys. Lett., 124(11), 2024.
Zhao, D., Qiao, J., Space group prediction of complex alloy systems by product-based neural networks. Intermetallics, 175, 2024, 108489.
Nguyen, H.G., Young, S.J., Le, T.D., Nguyen, C.N., Do, L.B., Nguyen, T.N., Fang, T.H., Molecular dynamics simulation and machine learning to predict mechanical behavior of Cu/Zr multilayer nanofilms under tension-compression. J. Non-Cryst. Solids, 666, 2025, 123682.
Jiang, K., Zhang, Q., Li, J., Li, X., Zhao, F., Hou, B., Suo, T., Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension. Int. J. Plast., 159, 2022, 103463.
Zhang, Q., Huang, R., Jiang, J., Cao, T., Zeng, Y., Li, J., Li, X., Size effects and plastic deformation mechanisms in single-crystalline CoCrFeNi micro/nanopillars. J. Mech. Phys. Solid., 162, 2022, 104853.
Allen, M.P., Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins 23:1 (2004), 1–28.
Segel, L.A., Handelman, G.H., Mathematics Applied to Continuum Mechanics. 2007, Society for Industrial and Applied Mathematics.
Komanduri, R., Raff, L.M., A review on the molecular dynamics simulation of machining at the atomic scale. Proc. IME B J. Eng. Manufact. 215:12 (2001), 1639–1672.
Sharma, A., Ranjan, P., Balasubramaniam, R., Investigation of effect of uncut chip thickness to edge radius ratio on nanoscale cutting behavior of single crystal copper: MD simulation approach. Journal of Micromanufacturing 4:1 (2021), 6–17.
Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1 (1995), 1–19.
Plimpton, S.J., Knight, C., Rendezvous algorithms for large-scale modeling and simulation. J. Parallel Distr. Comput. 147 (2021), 184–195.
Verlet, L., Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159(1), 1967, 98.
Verlet, L., Computer experiments on classical fluids. ii. equilibrium correlation functions. Phys. Rev. 165 (1968), 201–214.
Eastwood, J.W., Arter, W., Brealey, N.J., Hockney, R.W., Body-fitted electromagnetic PIC software for use on parallel computers. Comput. Phys. Commun. 87:1–2 (1995), 155–178.
Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76:1 (1982), 637–649.
Jang, H.L., Kim, J.H., Kang, S.H., Cho, S., Park, Y., Optimal mass distribution in carbon nanotubes for extreme thermal conductivity: analytical manipulation of isotope effects. Comput. Mater. Sci. 150 (2018), 273–282.
Della Valle, E., Marracino, P., Setti, S., Cadossi, R., Liberti, M., Apollonio, F., Magnetic molecular dynamics simulations with Velocity Verlet algorithm. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017, August, IEEE, 1–4.
Jung, J., Kobayashi, C., Sugita, Y., Optimal temperature evaluation in molecular dynamics simulations with a large time step. J. Chem. Theor. Comput. 15:1 (2018), 84–94.
Massobrio, C., Essomba, I.A., Boero, M., Diarra, C., Guerboub, M., Ishisone, K., Wansi Wendji, S.D., On the actual difference between the Nosé and the nosé–hoover thermostats: a critical review of canonical temperature control by molecular dynamics. Phys. Status Solidi, 261(1), 2024, 2300209.
Li, Z., Xiong, S., Sievers, C., Hu, Y., Fan, Z., Wei, N., Ala-Nissila, T., Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J. Chem. Phys., 151(23), 2019.
Nitol, M.S., Echeverria, M.J., Dang, K., Baskes, M.I., Fensin, S.J., New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy. Comput. Mater. Sci., 237, 2024, 112886.
Utt, D., Stukowski, A., Albe, K., Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 186 (2020), 11–19.
Zhang, Y., Ding, K., Stangebye, S., Chen, D., Kacher, J., Pierron, O., Zhu, T., Atomistic modeling of surface and grain boundary dislocation nucleation in FCC metals. Acta Mater., 237, 2022, 118155.
He, M., Wu, C., Shugaev, M.V., Samolyuk, G.D., Zhigilei, L.V., Computational study of short-pulse laser-induced generation of crystal defects in Ni-based single-phase binary solid–solution alloys. J. Phys. Chem. C 123:4 (2019), 2202–2215.
Zhang, S., Xu, Y., Liu, X., Luo, S.N., Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu–graphene nanolayered composites under shear loading. Phys. Chem. Chem. Phys. 20:36 (2018), 23694–23701.
Vu, T.N., Pham, V.T., Fang, T.H., Deformation mechanisms and mechanical properties of nanocrystalline CuxNi100− x alloys during indentation using molecular dynamics. Mater. Today Commun., 33, 2022, 104282.
Vu, T.N., Pham, V.T., Fang, T.H., Maintain sort order of grain boundary to investigate the deformation mechanism of CoCuFeNiPd high–entropy alloys. Curr. Appl. Phys. 59 (2024), 46–59.
Pham, A.V., Fang, T.H., Tran, A.S., Chen, T.H., Structural and mechanical characterization of sputtered CuxNi100-x thin film using molecular dynamics. J. Phys. Chem. Solid., 147, 2020, 109663.
Honeycutt, J.D., Andersen, H.C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91:19 (1987), 4950–4963.
Qi, Y., Xu, H., He, T., Wang, M., Feng, M., Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. Int. J. Refract. Metals Hard Mater., 95, 2021, 105415.
Le, T.D., Noumeir, R., Quach, H.L., Kim, J.H., Kim, J.H., Kim, H.M., Critical temperature prediction for a superconductor: a variational bayesian neural network approach. IEEE Trans. Appl. Supercond. 30:4 (2020), 1–5.
Masson, J.F., Biggins, J.S., Ringe, E., Machine learning for nanoplasmonics. Nat. Nanotechnol. 18:2 (2023), 111–123.
Montgomery, D.C., Peck, E.A., Vining, G.G., Introduction to Linear Regression Analysis. 2021, John Wiley & Sons.
Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J., A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transact. Neural Networks Learn. Syst. 33:12 (2021), 6999–7019.
Yu, Y., Si, X., Hu, C., Zhang, J., A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31:7 (2019), 1235–1270.
Peng, T., Zhang, C., Zhou, J., Nazir, M.S., An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy, 221, 2021, 119887.
Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y., Light gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics in Computational Intelligence 2:2 (2018), 92–102.
Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2, 2009, Springer, New York, 1–758.
Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B., Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116:44 (2019), 22071–22080.
Pham, V.T., Vu, T.N., Fang, T.H., Luu, D.B., Hoang, V.T., Tran, N.H., Tao, Q.B., Effects of microstructure and vibration parameters on mechanical properties of nanoimprinted FeNiCrCoCu high-entropy alloys. Phys. B Condens. Matter, 665, 2023, 415028.
Jiang, J., Sun, W., Luo, N., Molecular dynamics study of microscopic deformation mechanism and tensile properties in AlxCoCrFeNi amorphous high-entropy alloys. Mater. Today Commun., 31, 2022, 103861.
Vu, T.N., Pham, V.T., Fang, T.H., Effects of structure and strain rate on deformation mechanism of twin lamellar Al0. 3CoCrFeNi alloys. J. Alloys Compd., 954, 2023, 170174.
Pham, V.T., Fang, T.H., Understanding porosity and temperature induced variabilities in interface, mechanical characteristics and thermal conductivity of borophene membranes. Sci. Rep., 11(1), 2021, 12123.
Zhou, W., Ren, X., Yang, Y., Tong, Z., Chen, L., Dislocation behavior in nickel and iron during laser shock-induced plastic deformation. Int. J. Adv. Des. Manuf. Technol. 108 (2020), 1073–1083.
Wang, Y., Hu, B., Liu, X., Zhang, H., Zhang, H., Guan, Z., Luo, H., Influence of annealing temperature on both mechanical and damping properties of Nb-alloyed high Mn steel. Acta Metall. Sin. 57:12 (2021), 1588–1594.
Wen, D., Kong, B., Wang, S., Zhang, M., Wang, G., Wang, X., Li, S., Atomic-scale investigation on fretting wear mechanism of γ phase in a cast Ti-45Al alloy. Appl. Surf. Sci., 565, 2021, 150555.
Jiang, J., Sun, W., Luo, N., Atomic insights into effects of temperature and grain diameter on the micro-deformation mechanism, mechanical properties and sluggish diffusion of nanocrystalline high-entropy alloys. Mater. Today Commun., 33, 2022, 104224.
Doan, Dinh-Quan, Fang, Te-Hua, Chen, Tao-Hsing, Effects of grain and twin boundary on friction and contact characteristics of CuZrAl nanocrystallines. Appl. Surf. Sci., 524, 2020, 146458.
Hu, Y., Ding, S., Xu, J., Zhang, Y., Li, J., Wu, W., Xia, R., Revealing the toughening mechanisms in graphene/tungsten nanocomposites with hierarchical nacre-like structures. Compos. Struct., 321, 2023, 117322.
Chen, S., Aitken, Z.H., Wu, Z., Yu, Z., Banerjee, R., Zhang, Y.W., Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys. Mater. Sci. Eng., A, 773, 2020, 138873.
Vu, T.N., Pham, V.T., Fang, T.H., Influences of grain size, temperature, and strain rate on mechanical properties of Al0. 3CoCrFeNi high–entropy alloys. Mater. Sci. Eng., A, 858, 2022, 144158.
Hu, Y., Ding, S., Xu, J., Zhang, Y., Wu, W., Xia, R., Anisotropic orientation dependent shock wave responses of monocrystalline molybdenum. J. Mater. Res. Technol. 25 (2023), 285–296.
Chang, M.P., Lu, Y.S., Fang, T.H., Mechanical mechanism and deformation behavior of polycrystalline and gradient Ni50− xTi50Alx alloys using molecular dynamics. Mater. Today Commun., 28, 2021, 102724.
Nguyen, H.G., Fang, T.H., Machining mechanism and residual stress of AlCuCrFeNi alloy. Int. J. Mech. Sci., 2024, 109429.
Eghtesad, A., Luo, Q., Shang, S.L., Lebensohn, R.A., Knezevic, M., Liu, Z.K., Beese, A.M., Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations. Int. J. Plast., 166, 2023, 103646.