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High-entropy alloys (HEAs) distinguish themselves from other multi-component alloys through their unique
nanostructures and mechanical properties. This study employs molecular dynamics (MD) simulations and ma-
chine learning to investigate the deformation mechanisms of AlCoCuCrFeNi HEA under varying temperatures,
strain rates, and average grain sizes. The modeling results show that interactions between partial dislocations in
AlCoCrCuFeNi HEA during tension and compression deformation cause various lattice disorders. The effect of
temperature, strain rates, and grain boundaries on lattice disorder, plastic deformation behavior, dislocation
density, and von-Mises stress (VMS) is disclosed. This study offers new insights into the atomic-scale deformation
mechanisms governing the mechanical behavior of AlCoCrCuFeNi HEAs. It also presents a comprehensive
workflow for predicting the mechanical properties of this HEA using machine learning models. The proposed
approach provides several advantages, including significantly reduced simulation time and robust model vali-
dation. By employing the machine learning model trained in Stage 1, the time needed to simulate mechanical
properties in Stage 2 is significantly decreased. Additionally, the framework ensures that the machine learning
model effectively captures and understands the underlying representations of the mechanical properties of HEAs,
thereby enhancing both the efficiency and accuracy of the predictions.

microstructures [6,7]. Unlike traditional alloy design focusing on the
phase diagram’s corners, HEAs offer new pathways to create advanced

1. Introduction

The pursuit of materials with superior mechanical properties has
continually propelled human technological advancement. Discovering
new metals and alloys has been central to this progress. Traditionally,
alloys are classified by their dominant elemental component, such as Co-
, Cr-, or Ni-based systems [1,2]. High-entropy alloys (HEAs) have
emerged as a groundbreaking class of materials, exhibiting properties
that transcend conventional multi-component or near-equiatomic alloy
concepts. Comprising high concentrations of various elements with
distinct crystal structures, HEAs can form stable single-phase solid so-
lutions [3-5]. These multi-element alloys possess elevated configura-
tional entropy in their random solution states, which favors the
formation of simple solid solutions rather than complex multiphase

materials with remarkable potential [8]. At elevated temperatures,
atomic diffusion within high-entropy alloys (HEAs) occurs at a sluggish
rate, resulting in high activation energy for grain growth and a slower
phase transition process [9]. Furthermore, HEAs are often characterized
by substantial lattice distortions [10]. These alloys exhibit a range of
remarkable properties, including exceptional fracture toughness
exceeding that of conventional alloys and pure metals, mechanical
strength comparable to metallic glasses and structural ceramics, super-
conductivity, and notable corrosion resistance [11,12]. The micro-
structure of materials, such as grain size, twin boundaries, and
crystallographic orientation, plays a vital role in determining their me-
chanical behavior [13,14]. Additionally, the chemical composition of an
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alloy is a key factor influencing its mechanical performance [15].
Therefore, a comprehensive understanding of the interplay between
alloy composition, microstructure, and HEA behavior is essential for the
advancement of next-generation structural materials. Mechanical
properties of materials can be evaluated using various techniques,
including cyclic loading [16], tensile testing [17], cutting [18],
imprinting [19], scratching [20], and grinding [21]. Among these,
indentation tests provide insight into a material’s hardness and elastic
modulus, enabling the investigation of how intrinsic material charac-
teristics affect deformation under loading [22,23]. During scratching,
where the indenter moves laterally across the surface, the mechanical
response of the substrate is examined to assess deformation behavior
[24,25].

The addition of trace elements to alloy systems has been strategically
used to enhance their mechanical performance by improving heat
resistance, flexibility, strength, and phase stability [26-28]. The devel-
opment of multi-element alloy systems represents a novel approach in
alloy design, enabling the tailoring of mechanical and chemical prop-
erties through compositional control [29-32]. HEAs, typically consisting
of five or more principal elements in near-equiatomic proportions, often
exhibit properties that are distinct from those of their individual com-
ponents [33,34]. This compositional complexity has given rise to a new
paradigm in alloy design, shifting focus toward the central region of the
phase diagram rather than its boundaries [35]. Such an approach ad-
dresses fundamental issues in materials science, including phase selec-
tion, entropy control, and energy minimization [36,37]. The
combination of sluggish diffusion and high mixing entropy in HEAs
promotes the formation of stable solid solutions with diverse crystal
structures, such as FCC, BCC, and HCP [38-40]. This alloy design
strategy has inspired the development of other advanced materials,
including bulk metallic glasses and high-entropy ceramics [41-43].
HEAs also demonstrate superior corrosion resistance, thermophysical
performance, and magnetic properties, alongside excellent thermal
stability and hardness [44-46]. They retain remarkable mechanical
properties across a wide temperature range, showing high strength at
elevated temperatures and impressive fracture toughness and ductility
at cryogenic conditions [47,48]. These characteristics make HEAs
promising candidates for applications in cutting tools,
radiation-resistant materials, and fracture-resistant components [49,
50]. Recent advances highlight how these challenges can be addressed
through innovative HEA design. For instance, Chew et al. [51] enhanced
the strength and ductility of CoCrFeNiMn HEA using laser-aided addi-
tive manufacturing to form hierarchical microstructures. Similarly, Lee
et al. [52] employed advanced microscopy and neutron diffraction
techniques to elucidate the deformation mechanisms in NbTaTiV and
CrMoNbV HEAs. Among HEAs, the equiatomic AlCoCrCuFeNi alloy is
particularly noteworthy due to its mechanical strength and structural
stability [53]. Its plastic deformation behavior has been extensively
studied.

Recent advances highlight the expanding role of machine learning
(ML) in accelerating alloy design, particularly in predicting phase sta-
bility, microstructure evolution, and thermomechanical behavior. ML-
based models have been effectively applied to forecast phase trans-
formations and identify stable structures in complex alloy systems, such
as high-entropy alloys (HEAs) and metallic glasses [54,55]. Moreover,
studies [56,57] demonstrate the power of ML in exploring compositional
design spaces and predicting phase behavior across diverse alloy com-
positions. These developments reveal ML’s potential not only as a pre-
dictive tool but also as a means to significantly reduce the experimental
and computational costs traditionally associated with alloy develop-
ment. Building upon this foundation, this study introduces a two-stage
MD-ML framework to predict stress and dislocation behavior in
AlCoCrCuFeNi HEA, providing a time-efficient, physics-informed
approach to understanding its mechanical response. Jiang et al. [58]
investigated the mechanical responses of face-centered cubic (FCC)
HEAs across a broad range of strain rates and temperatures, revealing
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transitions in plastic deformation mechanisms under dynamic uniaxial
tension. Zhang et al. [59] fabricated single-crystalline CoCrFeNi HEA
micropillars with various crystallographic orientations and performed in
situ compression tests, elucidating deformation mechanisms at the
micro/nanoscale. Similarly, Cao et al. [60] combined mechanical testing
and molecular dynamics simulations to explore dynamic deformation in
CoCrFeNi HEAs, offering insights for designing alloys with superior
dynamic performance.

This study presents a detailed workflow for predicting the mechan-
ical properties of high-entropy alloys, specifically the AlCoCuCrFeNi
HEA, using machine learning (ML) models. The workflow is divided into
two distinct stages, each comprising three phases: molecular dynamics
simulation, ML training, and prediction.

The workflow begins with multiphysics simulations of the AlCoCr-
CuFeNi HEA in Stage 1. The initial atomic and grain configurations of
the HEA nanomaterial are constructed, followed by molecular dynamics
(MD) simulations to extract key material parameters, including strain
(%), temperature (K), grain size (nm), and strain rate (s’l). These pa-
rameters serve as input features for training a neural network model
designed to predict the material’s stress response (GPa). The resulting
predictions offer detailed insight into the material’s tensile behavior,
illustrated through a visual stress distribution.

In Stage 2, transfer learning is employed to improve model perfor-
mance. The same HEA undergoes further MD simulations, using the
previously learned features from Stage 1. The pre-trained model is fine-
tuned with new data to predict dislocation density (nm~?2), enabling the
exploration of nanoscale deformation mechanisms. This stage culmi-
nates in a dislocation density map, providing a comprehensive depiction
of the material’s internal structural evolution under mechanical loading.

The proposed workflow offers significant benefits, including reduced
simulation times and robust model validation. By utilizing the trained
ML model from Stage 1, the overall simulation time required for
obtaining mechanical properties in Stage 2 is significantly decreased.
Moreover, this framework ensures that the ML model effectively cap-
tures and learns the hidden representations of mechanical properties in
HEA materials, enhancing the efficiency and accuracy of property pre-
dictions. This methodological approach demonstrates the successful
integration of molecular dynamics simulations with advanced ML
techniques to predict and understand the mechanical properties of
complex materials like high-entropy alloys.

2. Methodologies and materials
2.1. Molecular simulation

Molecular dynamics is a method employing physical principles to
approximate the average properties of an atomic system, governed by
classical Newtonian mechanics, computed over time. This model often
represents atoms as point masses within a simulated box, resulting in
rigid spherical shapes. The interaction between neighboring atoms is
regulated by a force field determined by the user, known as the inter-
action potential. Subsequently, partial charges can be estimated using
quantum methods to describe the distribution of charge within mole-
cules. Bonds between atoms are typically depicted as simple harmonic
oscillations with constraints on angles. Upon commencement of the
simulation, a velocity range corresponding to the Boltzmann distribu-
tion at the appropriate temperature is selected, and these velocities are
then randomly assigned to each atom. Similar processes are employed to
provide energy for bonds and angles. Subsequently, the simulation
proceeds using Newtonian physics, wherein molecules transfer motion
and energy to one another through atomic interaction forces and elec-
trostatic forces. The molecular mechanics energy function used in MD is
a potential energy function that remains time-invariant and depends
solely on the spatial coordinates of atoms or molecules. It conserves the
overall energy of the system over time. Consequently, the total kinetic
energy (KE) and total potential energy (PE) may fluctuate indepen-
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Fig. 1. The graphical abstract illustrates the transfer learning from stress analysis to predict dislocation properties of AlCoCrCuFeNi.

dently. Still, their sum, also called the Hamiltonian (H), always remains
a conserved quantity, as demonstrated in equation (1) [61].

H=K, + U, (@D)]

The kinetic energy (K.) is defined by the velocity or linear mo-
mentum of each individual atom, as indicated in equation (2).
Conversely, the potential energy (Ue) is governed by the positional
vectors of all atoms, as illustrated in equation (3.3).

Ko=1 > ma? (@)
245
U= Pi(u) ©)
i=1

In a system comprising N atoms, the variables m;, v; P;, and u; represent
the mass, velocity, potential energy, and position, respectively, of the ith
atom.

Molecular dynamics simulations involve the iterative computation of
classical equations of motion, particularly evident in a basic atomic
system, as outlined below [62-64]:

Fi=mr" =ma; = —%U (C))
dzpi _ dU(p)
Mg =~ &y %)

Here, m; and q; denote the mass and acceleration of the ith atom,
respectively. The U(p) signifies the potential energy associated with the
interaction. In this segment, it’s imperative to compute the forces,
denoted as F;, exerted on atoms, typically stemming from the potential
energy function U(i ™). Here, N = (r1, ro, ..., ry) denotes the entire set of
integer coordinates from 3N.

In the context of this research, we employed the simulation platform
introduced by Plimpton et al. [65,66], which entails a large-scale
atomic/molecular massively parallel simulator known as LAMMPS, to
conduct evaluations of the mechanical properties of AlCoCrCuFeNi

HEA. LAMMPS, implemented in C++, represents a highly portable
classical Molecular Dynamics (MD) code. This platform facilitates the
simulation of particle behavior across various length and time scales.
Additionally, LAMMPS can execute calculations on parallel machines
featuring many processors while maintaining performance levels and
avoiding undue increments in system size and complexity. Numerous
variations of the Verlet algorithm exist, each essentially equivalent, such
as the original method [67,68] and the ’leapfrog’ form [69]. Our
attention is directed toward the velocity-Verlet algorithm [70].

1 1

pi (t+§6t) =pi(t) +56tfi(0) (6)
1 5tp; (t +%5t)

ri (f+§5t) :ri(t) +T (7)
1 Stp; (t +§5t)

Ti (f+§5t) :Ti(t) +T (8)

By equation (7), the process of force evaluation is executed to yield f;
(t + &) for step (8). This approach facilitates the progression of co-
ordinates and moments by the time increment 6t.

An ensemble refers to a set of distinct states of a given system, with
NVE, NPT, and NVT being fundamental examples. Each ensemble serves
a specific purpose, where E, N, V, P, and T denote the total energy,
number of atoms, volume, pressure, and temperature, respectively. The
NVE ensemble, often termed the microcanonical ensemble, maintains
fixed N, V, and E, permitting only the velocities and positions of atoms to
vary, thus enabling the calculation of macroscopic properties such as
changes in kinetic energy, temperature, and pressure. In contrast, the
NVT ensemble, known as the canonical ensemble, keeps N, V, and T
constant, allowing energy and pressure to fluctuate over time. The NPT
ensemble, or isothermal-isobaric ensemble, facilitates rapid structural
equilibrium by permitting volume adjustments in response to energy
changes [71].

As shown in Fig. 1(a), the AlCoCrCuFeNi high-entropy alloy (HEA)
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specimen was subjected to uniaxial tensile loading to investigate its
plastic deformation mechanisms and mechanical behavior. The simu-
lation model measures 300 x 75 x 75 A3 (length x width x height) and
contains approximately 146,117 to 146,315 atoms. The atoms are
randomly distributed in a three-dimensional face-centered cubic (FCC)
lattice, with coordinates spanning the x, y, and z directions. The sample
is oriented along the [100], [010], and [001] crystallographic directions
corresponding to the X-, Y-, and Z-axes, respectively. The alloy compo-
sition is approximately 9 % Co, 2 % Al, 32 % Cr, 12 % Fe, 39 % Cu, and 6
% Ni [17]. Strain was applied uniaxially along the [100] direction at
strain rates ranging from 10° to 2 x 10'" s™. Temperature conditions
varied from 300 K to 1000 K. The embedded-atom method (EAM) po-
tential, augmented with a Morse term, was used to describe interatomic
interactions. Periodic boundary conditions were applied in all di-
rections. Grain sizes from 6.42 to 12.84 nm were generated and char-
acterized using standard Voronoi tessellation. Atomic configurations
were analyzed for dislocation content, phase transformation, and local
von Mises stress.

In preparing the specimens for tensile stress, all three orientations
were subjected to periodic boundary conditions to achieve stable con-
figurations. Employing the conjugate gradient algorithm, samples were
generated with minimized equilibrium energy. Subsequently, the sam-
ples underwent thermodynamic equilibration for 100 ps at ambient
temperature and zero pressure, facilitated by the isothermal-isobaric
(NPT) ensemble [16,72]. Integration of the motion equation was ach-
ieved using the velocity-Verlet approach, utilizing a time step of 2 fs [73,
74]. Pressure and temperature regulation during the tension process was
facilitated by the Nosé-Hoover thermostat and barostat, as implemented
in this investigation [75-78]. Selecting a dependable potential measure
between atoms is paramount in ensuring the accuracy of findings in
molecular dynamics (MD) simulations. Thus, to delineate and scrutinize
interatomic interactions between Ni, Co, Cu, Cr, Fe, and Al, the
Embedded-Atom-Method (EAM) was employed.

The effectiveness of Embedded Atom Method (EAM) potentials has
been validated through various prior studies employing diverse testing
methodologies [27]. The total energy Epy is expressed in Refs. [23,79].

n 1 & n
Ep= ;E =52 o) + ;Fi(ﬂi) ©)

ij=1
i#

The pair energy ¢;; represents the interaction energy between atoms i
and j as a function of their separation, while E; denotes the atomic potential
energy of atom i. The embedding energy term, defined by r;; and Fi(py),
depends on the local electron density p;, at each atom. The local electron
density p;, determined using:

Pi= Zfij (rs)

ij=1

(10)

ij

Here, f;(rj) represents the electron density contribution from atom j
to the position of particle i. The EAM alloy potential model specifies the
pair potentials as follows:

Table 1
Statistical exploratory data analysis for stress values prediction dataset (Stage 1).
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renfoo) 1] o]
N

The cutoff parameters for the electron density function are repre-
sented by x and 2, alongside adjustable parameters A, B, a, and p. The
equilibration separation between nearest neighbors is symbolized by r.
The calculation of the electron density function mirrors the form of the
attractive term in the pair potential, maintaining identical values for
and A [79]. The electron density is formulated as:

fiymr s o(; - )
()

Subsequently, a pair potential is defined for two distinct species,
denoted as a and b, as follows:

00 = Lm0+ )|

The following formulas [79] specify the embedding energy functions
across various electron density ranges.

¢(r)= (11D

12

13)

3 i
- (P _

F(p)= 2 Fui (0-85pe 1) P < 0.85p, 14
3 p i

F(p)= ZFi(;—l) ,0.85p, <p<1.15p, (15)
i=0 e
° AYZAN

Fp)=Y F, {1 7171n6>} Q) ,p>1.15p, 16)
i=0 s s

Here, F,;, F;, and F, represent tabulated constants [77,80].

The Morse potential, which dictates the remaining particle in-
teractions [22], is expressed as follows:
® () =D[e 2(4w0) _ 2 ()] an
In the interatomic potential model, the reciprocal energy and distance
constants are represented by D and «, respectively. The equilibrium and
instantaneous separations between two approaching atoms are repre-
sented by up and uy;, respectively. The determination of the average grain
size, represented as d, is based on methodologies outlined in [81-83]:

\%4
d=y/~
N
Where V denotes the polycrystalline’s overall volume of AlCoCrCuFeNi
HEA, and N denotes the number of grains. The investigation employs
eight workpieces characterized by average grain sizes ranging from
12.84 nm to 6.42 nm, with corresponding grain counts of samples 5, 10,

15, 20, 25, 30, 35, and 40.
This section utilizes analytical techniques to investigate the

18

Strain Temperature (K) Grain number Strain rate (s~ 1) Stress (Gpa)

Count 22021 22021 22021 22021 22021

Mean 9.9997 x 1072 427.2785 29.09913 2.400064 x 10° 3.345523
std 5.7791 x 1072 217.8109 7.012762 4.356896 x 10° 0.901617
Min 0 300 5.0 1.000000 x 108 —0.017224
25 % 5.0000 x 1072 300 20.0 1.000000 x 10° 3.961448
50 % 1.0000 x 107! 300 20.0 1.000000 x 10° 3.592606
75 % 1.5000 x 10! 500 20.0 2.000000 x 10° 3.807873
Max 2.0000 x 107! 1000 40.0 2.000000 x 10*° 5.746938
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Table 2
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Statistical exploratory data analysis for dislocation density values prediction dataset (Stage 2).

Strain Temperature (K) Grain number Strain rate (s~!) Dislocation density (nm~2)
Count 4400 4400 4400 4400 4400
Mean 0.1005226 427.3017 8.226849 2.400318 x 10° 0.19924
Std 0.05777293 217.8438 1.230335 4.357648 x 10° 0.072885
Min 0.001 300 6.42 1 x 108 0.05984
25 % 0.051 300 8.09 1 x 10° 0.15005
50 % 0.101 300 8.09 1 x 10° 0.18587
75 % 0.151 500 8.09 1 x 10° 0.23523
Max 0.200 1000 12.84 2 % 10% 0.5312

deformation mechanism and structural transformations. The progres-
sion of deformation during the tension process is illustrated through the
von-Mises shear strain [84]. The crystal structure, including stacking
defects and phase transitions, is analyzed using Honeycutt and Ander-
sen’s common neighbor analysis [85]. Dislocation evolution during the
stress process is examined through dislocation extraction analysis (DXA)
[861.

2.2. Machine learning

2.2.1. Data

To obtain the data for training and predicting stress values, we
conducted Molecular Dynamics (MD) simulations for 118 days using a
system equipped with the following specifications: i) Processor: Intel(R)
Core (TM) i7-10700 CPU @ 2.90 GHz (16 CPUs), 2.9 GHz, and ii)
Memory: 16 GB RAM. Then, for each temperature range (200 K, 300 K,
etc.), we defined a step size for strain as 0.0002 (ranging from 0 to 0.2),
resulting in 1000 steps. This detailed and high-resolution data collection
is crucial for capturing the intricate dependencies between input fea-
tures and stress values.

Table 1 provides a comprehensive statistical exploratory data anal-
ysis of the dataset used for stress values prediction in Stage 1. The table
includes critical features such as strain, temperature, grain number,
strain rate, and the resulting stress values. The data consists of 22,021
samples, providing a robust basis for training the machine learning
model to predict stress in the AlICoCrCuFeNi HEA material.

In Stage 2, we applied transfer learning to enhance predictions
further. This stage involves MD simulations with a larger step size of
0.001 for strain (ranging from O to 0.2), resulting in a total MD simu-
lation time of 29 days, significantly shorter than the first stage. The same
input features are used, focusing on predicting dislocation densities.
This reduction in step size by a factor of five allows for quicker yet ac-
curate data collection.

Table 2 provides a statistical exploratory data analysis for the
dislocation values prediction dataset in Stage 2. This table includes
strain, grain size, temperature, strain rate, and the resulting dislocation
values. The dataset consists of 4400 samples, providing a solid founda-
tion for training the refined ML model to predict dislocation densities in
the HEA material.

By utilizing the trained ML model from Stage 1, the overall simula-
tion time required for obtaining mechanical properties in Stage 2 is
significantly decreased. This framework ensures that the ML model
effectively captures and learns the hidden representations of mechanical
properties in HEA materials, enhancing the efficiency and accuracy of
property predictions. This methodological approach demonstrates the
successful integration of multiphysics simulations with advanced ML
techniques to predict and understand the mechanical characteristics of
complex materials like high-entropy alloys.

2.2.2. Data experimental setup

Our study was conducted on high-performance GPUs available
through Google Colab’s cloud service. Model implementation utilized
the scikit-learn library and the Keras framework in a Python environ-
ment. For each experiment, the dataset was split into 70 % for training

and 30 % for evaluation to assess model performance.

Building on previous research in neural network optimization, we
employed strategies to enhance our model’s performance and stability.
This approach incorporated dropout with a probability of 0.25 to miti-
gate overfitting by omitting random units during training. We selected
the GlorotNormal initializer to maintain proportional variance between
output and input, optimizing weight initialization. Additionally, batch
normalization was applied to accelerate training and improve perfor-
mance by normalizing layer inputs. These hyperparameters were
meticulously selected and fine-tuned to maximize model performance.

2.2.3. Machine learning predictive models

Machine learning (ML) enhances the analysis of large datasets by
developing trained models that support tasks such as classifying obser-
vations, detecting critical features influencing performance metrics, and
forecasting outcomes in new experiments. Furthermore, ML aids re-
searchers in data-intensive disciplines by optimizing experimental
design to improve performance or streamline hypothesis testing. ML
transforms data collection, analysis, and interpretation across diverse
domains, including nano-optoelectronics, catalysis, and bio-nano in-
terfaces. These approaches are anticipated to become discipline-specific
benchmarks, reinforcing the importance of statistical methods in sci-
entific inquiry. Additionally, nanoscience has the potential to advance
ML by developing electronic or photonic hardware that enables more
efficient algorithm execution compared to conventional computing ar-
chitectures. Fostering this synergy promises significant advantages for
both scientific communities.

This study will apply ML techniques to predict stress values from MD
simulation data. The application of ML in materials science has grown
due to its advantages. For instance, conducting real experiments with
superconducting materials is very costly and challenging [87]. In
particular, deep learning proves to be more advanced and robust for
material applications [88]. The study will focus on various ML tech-
niques for regression models, ranging from conventional methods to
deep learning models. The performance of each model will be assessed
by comparing evaluation metrics, model complexity, and computational
resource requirements, including.

1. Linear Regression (LR): Linear Regression [89] presupposes a linear
relationship between input features x = (x3, X, x3, x4) and the output
y. The model estimates y through the linear function:

y = Po + B1X1 + Poxa + P3X3 + Paxs + € (19)

Here, o represents the intercept, B, ..., B4 denotes the coefficients,
and ¢ signifies the error term.

2. Support Vector Regression (SVR): SVR [90] seeks to identify a
function f(x) that deviates from y by at most ¢ for each training point

while maintaining maximal flatness. Mathematically:
fG)=w-x+b (20)

Here, w represents the weight vector, and b denotes the bias. Flatness is
ensured by minimizing |w|, subject to the constraint |y; — f (x))| < ¢, or
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by incorporating slack variables &; or £*; when required.

3. Gradient Boosting Regression (GBR): GBR [91] constructs a
sequential model by minimizing a differentiable loss function. In
each iteration, a regression tree hy,(x) is trained to approximate the
negative gradient of the loss function L(y, F (x)):

Fin(x) = Fn—100 + ymhm(x) (21)

Here F,,(x) represents the model at the m-th iteration, while y, denotes
the step size.

4. Feedforward Neural Network (FFNN): An FFNN is a feedforward
artificial neural network comprising at least three layers-input,
hidden, and output-where each node (excluding the input layer)
employs a nonlinear activation function. The output y is expressed
as:

¥y =f (Waf (Wix + by) + b2) (22)

Here W; and W, represent the weights, b; and b, denote the biases, and f
is the activation function. Deep learning models [92] such as Convolu-
tional Neural Networks (CNNs), Long Short-Term Memory (LSTM),
Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit
(GRU), and Recurrent Neural Network (RNN) networks will also be
explored.

5. Convolutional Neural Network (CNN): While predominantly applied
to image data, CNNs [93] are also effective for sequential data. The
convolutional layers detect local dependencies, and the fully con-
nected layers generate the output prediction. For a configuration
with a single convolutional layer followed by a fully connected layer:

¥ = Wy (flatten (RLU (W, * x + bo))) + by 23)

where * denotes convolution, W, and b, are convolutional layer pa-
rameters, and Wy and by are fully connected layer parameters.

6. Long Short-Term Memory (LSTM): An LSTM [94] is a variant of a
recurrent neural network (RNN) designed to capture order de-
pendencies in sequence prediction tasks. For a single LSTM cell, the
output k; at time ¢ is given by:

k¢ = o¢ ® tanh(cy) (24)

Here o, represents the output gate, c; denotes the cell state, and © in-
dicates element-wise multiplication. The cell state is updated through
gates that regulate the flow of information:

ke = oy ® tanh(cy) (25)

Here, o, represents the output gate, c; denotes the cell state, and ®
indicates element-wise multiplication. The cell state is modified via a
sequence of gates that regulate information flow:

fi =0 (Wg - [ke—1, Xe] + bp) (26)
it = 6(Wj- [ke—1, Xc] + by) 27)
¢, =tanh(W, - [Ke1,%]+be) (28)
a=fioc 1+ 0C (29)
0, =6(W, - [ke1,%X] +bo) (30)

In this context, f; is the forget gate, i, denotes the input gate, ¢, is the
candidate cell state, ¢ indicates the sigmoid function, and W and b are
the weights and biases associated with each gate.

7. Bidirectional Long Short-Term Memory (BiLSTM): BiLSTM [95] ex-
tends the LSTM framework, enhancing model performance by
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processing data in both forward and backward directions. For a given

— —
sequence, the forward k, and backward k; hidden states are
concatenated to form the final output:

k= [Z IZ] (31

— —
where k; is computed from start to end, and k; from end to start.

8. Gated Recurrent Unit (GRU): GRU [96] is a type of RNN that sim-
plifies the LSTM architecture by combining the forget and input gates
into a single update gate. The hidden state ht at time t is calculated
as:

k=1 —2) 0k 1 +2z 0k (32)

Where z; is the update gate and “k; is the candidate hidden state. The
update gate z; and reset gate r, are defined as:

2 =6(W, - [ke1,%]+b,) (33)
Te :G(Wr : [kt—l-,xt] +b; ) 34)
"k =tanh(W - [r, ©k_1,%]+b) (35)

9. Recurrent Neural Network (RNN): RNN [97] is a type of neural
network designed for sequence data. The model retains a hidden
state h; that encapsulates information from prior time steps. The
hidden state and output y; at time t are expressed as:

k¢ = tanh (Wy - [k¢_1, X¢] + by) (36)
Y =Wy - ke + by 37)

Where Wy and by, are the weights and biases for the hidden state, and W),
and by are the weights and biases for the output. By comparing these
models, we aim to determine the most effective approach for predicting
stress values from MD simulation data, considering evaluation metrics,
model complexity, and computational resources.

2.2.4. Evaluation metrics

When developing a regression model, it is essential to assess its
performance using a variety of evaluation metrics. These metrics pro-
vide insight into the model’s learning and predictive accuracy. Below
are descriptions and mathematical expressions for key metrics:

Mean Absolute Error (MAE): MAE measures the average magnitude
of errors between paired observations, reflecting the same phenomenon.
It is calculated by taking the mean of the absolute differences between
predicted values and actual values:

n

1
MAE:HZ

i=1

yi _ypred.i (38)

Root Mean Squared Error (RMSE): RMSE is a quadratic scoring rule
that represents the average magnitude of the error. It is the square root
of the mean of the squared differences between predicted and actual
values:

n 2
RMSE= [T 3™ (i~ ) 39)
i=1
R-squared (R?): Also known as the coefficient of determination, R2
indicates how well the data fit the regression model. It represents the
proportion of the variance in the dependent variable that is predictable
from the independent variables:
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Fig. 2. Stress-strain curves of AICoCrCuFeNi HEA at various strain rates with a grain size of d = 8.09 nm (a). Evolution of total dislocation density in AlCoCrCuFeNi
HEA during tensile deformation at different strain rates (b). Stress-strain-dislocation density (nm™2) diagram for a strain rate of 2 x 10'° 5! at 300K with d = 8.09
nm (c). Evolution of atomic composition in AlCoCrCuFeNi HEA under tensile loading at a strain rate of 5 x 10° s ! with the grain size of 8.09 nm and 700K (d).

Y ()’ i — .ypred,i) ’
Z;lzl ()'i - y)z

Where y; represents the actual value, ypreq,  denotes the predicted value,
y is the mean of the actual values, and n is the number of observations.

RZ=1- (40)

2.2.5. Model interpretability with partial dependence plots

Partial dependence plots (PDP) are valuable tools for visualizing and
analyzing the interaction between the predicted response and input
features, thereby enhancing the interpretability of machine learning
models [98,99]. These plots demonstrate how the predicted response
depends on one or more input features of interest while averaging the
effects of other features (referred to as 'complement’ features). In
essence, partial dependence can be interpreted as the expected model
prediction as a function of the input features of interest.

Given the limits of human perception, the set of input features of
interest is usually small (typically one or two) and is chosen among the
most essential features. One-way PDPs provide insights into the inter-
action between the predicted response and a single feature of interest,
revealing whether the relationship is linear, non-linear, or more com-
plex. By using PDPs, we can capture and understand the relationship
between the input features and the prediction output, thereby improving
the interpretability of the machine learning model and providing clearer
insights into how the model makes its predictions.

Let X5 be the set of input features of interest and X be its comple-
ment. The partial dependence of the response f at a point xg is defined as:

Ppdx; (xs) dgEXc [f (x5, Xc)] = /f(x&XC)P(XC)d(XCL (41)

where f (xs, x¢) is the response function for a given sample with values
defined by xg for the features in Xg, and by x¢ for the features in X¢. One
can generate a PDP plot by computing this integral for various values of
Xs.

3. Results and discussion

A. Results of MD simulation

3.1. Impact of strain rate

Various strain rates have been selected to probe the impact of strain
rate on the deformation characteristics of AlICoCrCuFeNi high-entropy
alloy specimens. In line with the methodology used in the previous
section, a specimen featuring a grain size of d = 8.09 nm and an ambient
temperature of 300 K is used to look at the impact of strain rate on the
mechanical attributes of the HEA sample.

Fig. 2 (a) illustrates the stress-strain curves of the HEA specimen
during tensile testing at various strain rates. The results show that these
diagrams are relatively close to each other at the linear elastic stage. It
emphasizes that the yield strength increases with an increasing strain
rate [100,101], demonstrating a dependence on strain rates, as seen in
Fig. 2(a). At elevated strain rates, atoms lack sufficient mobility for bond
rearrangement, impeding their response to external forces and thus
compromising the replenishment of energy expended in countering
applied stresses, leading to diminished yield strength and plastic
deformation. This phenomenon aligns with the findings by Ref. [102],
who observed a comparable trend in the Al0.3CoCrFeNi HEAs alloy.
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Fig. 2(a) illustrates the variation of Young’s modulus in the AlCoCrCu-
FeNi HEAs specimen concerning strain rate. Young’s modulus gradually
increases within the 108-10° s™! range, with a notable augmentation
observed mainly in 10° - 2 x 10'° s71. These results align with the
findings of prior investigations conducted by Refs. [103,104]. Fig. 2(b)
provides a comprehensive depiction of the impact of strain rates on
dislocation evolution. During tension loading, there is a discernible
trend of escalating dislocation duration. The continuum of dislocation
length spans from the initial phase to the point of yield. Subsequently,
there is notable variability in dislocation length during subsequent
stages. While there is a modest augmentation in total dislocation length
at lower strain rates (ranging from 108 to 10° s71), a pronounced in-
crease is observed at higher rates (5 x 10°-10'° s71). In broad terms, a
positive correlation emerges between strain rate and total dislocation
length. Consequently, it can be inferred that strain rates exert a signif-
icant influence on the mechanical properties and deformation mecha-
nisms of the AlCoCrCuFeNi HEAs alloy during tensile testing.
Nevertheless, the influence of strain rate is comparatively lower than
that of other factors such as temperature and grain size. Fig. 2(c) illus-
trates the stress-strain-dislocation density diagram and highlights the
complex deformation behavior of the AlCoCrCuFeNi HEA under extreme
conditions. The initial high strength reflects the intrinsic resistance of
the HEA’s multi-elemental structure to deformation, a hallmark of HEAs
due to their lattice distortion and solid-solution strengthening. The
subsequent softening and high dislocation density indicate that plastic
deformation is accommodated by defect generation and possibly

B C
Twin boundary - ESF - ISF

Fig. 3. The CNA of AlCoCrCuFeNi HEA with various strain rate values under tension deformation process.

localized structural changes, such as amorphization or phase transitions,
which are explored further in Fig. 2(d). The nanoscale grain size in-
tensifies these effects, as grain boundaries act as barriers to dislocation
motion and serve as sites for defect accumulation. Fig. 2(d) illustrates
the dynamic structural evolution of the AlICoCrCuFeNi HEA under ten-
sile loading. The marked decline in the FCC phase suggests that,
although initially dominant, this structure is susceptible to destabiliza-
tion under high strain rates and elevated temperatures. This transition is
accompanied by a corresponding increase in the amorphous fraction,
likely driven by defect accumulation and thermal activation at 700 K. In
contrast, the relative stability of the BCC and HCP phases implies greater
resistance to transformation, potentially due to their higher stacking
fault energies or reduced sensitivity to shear-induced disorder. The
slight increase in the HCP phase may be attributed to deformation
twinning or stacking fault formation within the FCC phase mechanisms
commonly observed in HEAs during tensile deformation. Fig. 2 (c-d)
Provide a comprehensive view of the AlCoCrCuFeNi HEA behavior
under extreme tensile loading conditions. Fig. 2(c) highlights the me-
chanical response and defect evolution, showing that the material un-
dergoes significant plastic deformation with a high dislocation density,
leading to strain softening after an initial peak stress. Fig. 2 (d) further
illustrates the structural transformations associated with the observed
deformation, notably the destabilization of the FCC phase and the
increased formation of amorphous regions. The high strain rates (2 x
10%s71in Figs. 2(c) and 5 x 10°s7lin Fig. 2(d)) combined with a grain
size of 8.09 nm intensify these effects, accelerating defect generation



H.-G. Nguyen et al.

(a) €= 0.025

108§
2x10% S
5x10% s

2x10° 8™ 3
5%x10° St

10" 8!

2x10" g

B 1/2<110> (Perfect)

B 1/3<111> (Frank)

[ 1/3<100> (Hirth)

B 1/6<112> (Shockley)

Materials Today Nano 31 (2025) 100662

B 1/6<110> (Stair-rod)

B Disoder

Fig. 4. The dislocation system in the AlICoCrCuFeNi HEA under different strain rates in the tension deformation process.

and promoting structural disorder. Additionally, the temperature dif-
ference of 300 K in Fig. 2(c) versus 700 K in Fig. 2(d) plays a critical role,
with the elevated temperature in Fig. 2(d) enhancing phase trans-
formation and amorphization processes.

Fig. 3 illustrates the phase transformations occurring in AlICoCrCu-
FeNi HEA specimens with a grain size of d = 8.09 nm across various
strain rates. As stress reaches its peak in Fig. 3(al-a7), several face-
centered cubic structures undergo a transition into hexagonal close-
packed and body-centered cubic structures. Notably, the proportion of
FCC structures shifting in HEA samples becomes more pronounced with
increasing strain rates, evidenced by the significant emergence of HCP
and BCC structures in Fig. 3(a4, b4). Furthermore, Fig. 3(al-bl) depicts
the phase transition corresponding to a strain value of ¢ = 0.20. During
this phase, various structures, such as BCC and HCP, were uniformly
observed across all tissues analyzed. This observation underscores the
pronounced influence of strain rates on the composition of amorphous
and HCP structures, with their proportions notably escalating under
heightened strain rates. Such augmentation can be attributed to the
accumulation of internal stress within the specimen when subjected to
elevated strain rates. Consequently, a discernible propensity towards
phase transition becomes increasingly apparent with escalating strain
rates.

Fig. 4 delineates the progression of dislocation in the AICoCrCuFeNi
HEA model with a lattice parameter of d = 8.09 nm under tensile testing
conducted at various strain rates. At low strain levels (e; = 0.025),
partial dislocations (green, Shockley) dominate the microstructure,
especially in grain interiors, indicating that dislocation nucleation and
propagation are the primary carriers of plasticity. As strain increases to
g9 = 0.2, dislocation density rises significantly, and more complex in-
teractions such as the formation of stair-rod dislocations (purple) and

perfect dislocations (dark blue) become evident. At lower strain rates at
108 s, dislocation activity remains localized, and dislocation lines are
more distinct and separated. However, as the strain rate increases to 2 x
10%% 571, a more disordered structure emerges, with overlapping dislo-
cation networks and enhanced interaction between dislocations. This
transition indicates a shift from isolated dislocations to collective motion
and entanglement, leading to localized stress concentrations. The sub-
figures A, B, and C further highlight diverse dislocation types. For
instance, the coexistence of Shockley, perfect, and Hirth dislocations
(green, dark blue, yellow) in confined regions suggests a high degree of
dislocation interaction and transformation, reflecting the complex na-
ture of plastic deformation in HEAs. Notably, stair-rod dislocations
indicate junction formation during dislocation reactions, while Frank
dislocations (cyan) imply vacancy clustering or void nucleation. Overall,
the figure demonstrates that dislocation mechanisms in AICoCrCuFeNi
HEA are highly strain-rate and strain-level dependent. Low strain rates
facilitate dislocation nucleation and glide, while high strain rates pro-
mote dislocation multiplication, interaction, and structural disorder.
This behavior underscores the need to tailor strain rate conditions to
achieve desirable mechanical performance in HEAs. As anticipated,
there is a notable escalation in the proportion of dislocations with rising
strain rates, as depicted in Fig. 4(al-a7). The findings also show that the
Shockley dislocation is dominant in the evolution of dislocations. The
grain interior looked denser at strain rates of 5 x 10° and 10° s~ . Thus,
the strain rate significantly impacts the development and progression of
dislocations [105,106].

Fig. 5 illustrates the distribution of atomic shear strain in AlCoCr-
CuFeNi models with a diameter of 8.09 nm under stress testing at 300 K
and various strain rates. The findings indicate that elevated Von Mises
shear stress values tend to concentrate more prominently at grain
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Fig. 5. The shear strain distribution of AlICoCuCrFeNi HEA with different strain rates under the tensile process.

boundaries (GB) at the onset of yielding, as evidenced in Fig. 5(al-a7).
The onset of early deformation appears to initiate at grain boundaries
(GBs), characterized by their lower atom density. As strain increases,
Von Mises shear stress (VMSS) within grain interiors rises, indicating the
initiation of phase transformations in Fig. 3 (b1-b7). Additionally, Fig. 2
(b) shows that local VMSS decreases with higher strain rates. VMSS
reflects atomic mobility under loading; thus, limited relaxation time at
elevated strain rates results in reduced VMSS. Moreover, higher strain
rates enhance yield strength and dislocation density while restricting
atomic mobility, which limits bond rearrangement and plastic defor-
mation. These findings underscore the potential of designing strain-rate-
sensitive HEAs for high-speed impact and aerospace applications.

3.2. Impact of grain size and temperature

This subsection delves into the influence of grain sizes and temper-
ature variations on the mechanical properties and deformation mecha-
nisms of AlICoCrCuFeNi HEA. Tension tests were conducted on samples
with varying grain sizes and temperatures with a strain rate of 10° s .

As depicted in Fig. 6(a), a stress-strain curve exhibits both elastic and
plastic phases. Initially, in the elastic regime (stage I), the stress rises
linearly until reaching the yield strength value at strain levels ranging
from 0.035 to 0.05, depending on the grain size. During the subsequent
plastic deformation stage (stage II), the stress consistently diminishes for
all grain sizes. Beyond a strain of 0.075, the tensile stress stabilizes,
becoming less reliant on strain, indicative of flow stress. Flow stress was
determined as the average stress within the strain range of 0.075-0.2.

Prior investigations have emphasized the significant influence of grain
size d on flow stress in the plastic domain, highlighting the role of grain
boundaries (GB) motion and dislocation propagation [107-109]. Fig. 6
(c) presents a stress-strain-dislocation density (nm~2) diagram for the
AlCoCrCuFeNi high-entropy alloy (HEA) under a strain rate of 10° s ! at
300 K, with a grain size of 7.07 nm. The contour plot illustrates the
relationship between stress (0-4 GPa), strain (0-0.2), and dislocation
density (0.1109-0.2635 nm™2), revealing peak stress of approximately
4 GPa at a strain of 0.05, followed by a gradual decline to about 2 GPa,
indicative of strain softening. Concurrently, the dislocation density in-
creases from 0.1109 nm ™2 at low strains to a maximum of 0.2635 nm 2
at higher strains, reflecting significant defect accumulation driven by the
high strain rate and nanoscale grain size, which limits recovery mech-
anisms. In contrast, Fig. 6(d) depicts the evolution of atomic composi-
tion in the same HEA under tensile loading at a strain rate of 10°s™}, a
temperature of 300 K, and a slightly larger grain size of 10.19 nm. The
plot tracks the fractions of BCC, FCC, HCP, and amorphous phases,
showing a marked decrease in the FCC phase from approximately 45 %
to about 15 % with increasing strain. In contrast, the amorphous phase
increases from approximately 5 %-10 %, while the BCC and HCP phases
remain relatively stable at around 10 % and 5 %, respectively. This in-
dicates that the FCC structure undergoes deformation-induced
amorphization, likely driven by high strain rates and limited thermal
activation at 300 K, highlighting the alloy’s structural instability under
such conditions.

The graphical representation in Fig. 7 delineates the transformation
of the face-centered cubic crystalline structure into hexagonal close-
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Fig. 6. Stress-strain curves for polycrystalline AlCoCrCuFeNi HEA at various grain sizes with a strain rate of 10° s™! (a). Evolution of total dislocation density in
AlCoCrCuFeNi HEA during tensile deformation at various grain sizes (b). Stress-strain-dislocation density (nm~?) diagram for a strain rate of 10° s~! at 300K with d
= 7.07 nm (c). Evolution of atomic composition in AICoCrCuFeNi HEA under tensile loading at a strain rate of 10° s~ ! with grain size at 10.19 nm and 300K (d).

packed, body-centered cubic, and amorphous configurations during the
tensile process. Concurrently, elastic energy accumulation within the
material is progressive as strain levels escalate. Beyond the yield point,
observations indicate a discernible transition within the polycrystalline
specimen from the predominant FCC arrangement to a combination of
HCP, BCC, and amorphous phases, attributable to the substantial dissi-
pation of stored elastic energy across all samples. This empirical
observation aligns with the findings elucidated in a prior investigation
by Ref. [110], which examined the evolution of microstructures in both
pure tungsten and graphite-tungsten composite samples. Fig. 7(a) elu-
cidates the fundamental deformation characteristics within the inverse
H-P region. The captured figure reveals that Shockley partial disloca-
tions dominate the dislocation structure, particularly within grain in-
teriors. This suggests that partial dislocation activity is the primary
mechanism driving plastic deformation under the given conditions. This
is especially notable considering the small grain diameter of 6.42 nm,
which contrasts sharply with the significantly larger diameter of 12.48
nm.

Fig. 8 depicts the rotation of specific grains under increasing strain,
highlighted by black ellipses labeled al-a4. Concurrently, grain
boundary (GB) migration is observed with elevated strain levels, indi-
cated by black rectangles b1-b4. These phenomena suggest that, in the
inverse Hall-Petch regime, plastic deformation is primarily driven by
the synergistic mechanisms of grain rotation and GB migration, in
agreement with previous studies by Chenetal. [111] and Vuetal. [112].
Grain rotation and GB migration were identified through the sequential
analysis of atomic configurations, where noticeable grain reorientation
(al-a4) and boundary displacement (bl1-b4) were evident as strain
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progressed.

The dislocation distribution within the AlCoCrCuFeNi high-entropy
alloys model with grain sizes ranging from 6.42 nm to 12.84 nm
under tension testing conditions at 300 K, specifically at strain levels of
0.05 and 0.20. Subfigures (al-a8) within Fig. 8 depict the dislocation
patterns observed in the AICoCrCuFeNi HEA specimens at a strain level
of 0.05. Notably, due to the polycrystalline nature of the material, dis-
locations are primarily confined to grain boundaries (GBs) before the
initiation of tensile simulation. This occurrence can be attributed to the
distinct crystal orientations within each grain, leading to atomic rear-
rangements and orientation shifts at the interfaces of these grain
boundaries. Consequently, lattice discontinuities arise, facilitating the
entrapment of dislocations at these interfaces.

As depicted in Fig. 6(b), the dislocation density is not initiated at zero
upon the commencement of the tension test. After the strain reaches € =
0.2, Fig. 9 (b1-b8) illustrates the distribution of dislocations. With
increasing grain size, there is a notable augmentation in dislocation
formation along the grain boundary and their subsequent propagation
within the grain interior, accompanied by a pronounced phase transi-
tion. When subjected to tension loading, dislocations extend and engage
with the grain boundaries, resulting in their deterioration, mutual re-
action, the genesis of new dislocations, or absorption by adjacent grain
boundaries. Empirical observations indicate that dislocation density
within the grain interior is notably higher in specimens with larger grain
sizes than in those with smaller ones. Moreover, these precipitate dis-
persions exhibit extended durations, encompassing broader scopes, and
demonstrate increased particulate dimensions. The Shockley partial
dislocation emerges as the prevailing configuration across all instances



H.-G. Nguyen et al.

(a) €= 0.05

d=12.84 nm

Materials Today Nano 31 (2025) 100662

(b) € = 0.2

B scc

Fig. 7. The CNA of polycrystalline of AICoCrCuFeNi HEA with different grain size values under tension process.

[_ Amorphous

[113]. Fig. 6(b) presents the dislocation density characterization of
AlCoCrCuFeNi HEA within series d, providing insight into dislocation
evolution. Initially (Stage I), dislocations predominantly localize at
grain boundaries (GB), resulting in higher dislocation densities in
smaller grain sizes due to elevated GB densities, as observed in Fig. 8
(al-a8). Subsequently, during plastic deformation (Stage II), dislocation
density experiences a rapid escalation within the Hall-Petch (H-P) re-
gion associated with grain size while exhibiting near-constant levels
across the spectrum from d = 6.42 nm-10.19 nm, with a marginal in-
crease observed for d = 12.84 nm towards the latter stages. In materials
characterized by small grain sizes, the absence of phase transitions stems
from grain rotation and grain boundary (GB) motion, collectively
contributing to a consistent dislocation density. Conversely, in inverse
Hall-Petch (H-P) relationships, grain boundary (GB) migration and grain
rotation emerge as the principal deformation mechanisms. In contrast,
conventional H-P relationships are characterized by dislocation activity
as the primary deformation feature. Concurrently, stacking faults (SF)
and precipitate dispersions (PD) are continually generated and assimi-
lated by the GB, thereby fostering an augmentation in dislocation den-
sity during the tensile process, particularly evident in instances featuring
larger grain sizes.

The evaluation of pivotal deformation mechanisms within the Hall-
Petch (H-P) and inverse H-P regimes necessitates the calculation of
local von Mises shear strain (VMSS), as outlined in Ref. [114]. Fig. 9
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delineates the gradual deformation progression under varied strain
conditions for diverse grain sizes, with grain sizes spanning from d =
6.42 nm to d = 12.84 nm as indicative of the inverse H-P and H-P re-
gimes, respectively. Remarkably, the visual representation employs
color differentiation for atoms contingent upon their corresponding
local VMSS values, with red indicating elevated VMSS values. Fig. 9
(a2-b2) illustrates the localized Von Mises stress at the yield point,
revealing a notably high initial VMSS value concentrated at the grain
boundary (GB). This observation implicates the GB predominantly in the
initial deformation process of the AlCoCrCuFeNi HEA specimen. How-
ever, it is discerned that the extent of the GB’s influence varies between
the two specimens under scrutiny. Notably, in the case of the specimen
featuring a grain size of d = 6.42 nm in Fig. 9(a7-b7), the heightened
VMSS is primarily localized at the GBs. The progression of strain is
accompanied by the detection of GB migration and grain rotation, as
evidenced by the sequential evolution from black ellipse al to a8 and
rectangle bl to b8 in Fig. 7. This observation strongly suggests that the
primary mechanism governing deformation involves grain rotation and
GB migration. As the grain size (d) reaches 12.84 nm, a substantial Von
Mises stress is prominently evident both at the grain boundary (GB) and
along the glide plane within the grain interior, correlating with
increasing strain levels. These phenomena explain the evolution and
transition of phases and dislocations observed in Fig. 7, particularly in
configurations associated with larger grain sizes (d). Consequently, the
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Fig. 8. The dislocation distribution of AICoCrCuFeNi HEA with various grain sizes under the tension process.

progressive phase transitions contribute to the elevation of VMSS within
the grain interior concurrent with the augmentation of grain size [115].
The transition from Hall-Petch to inverse Hall-Petch behavior was
identified. While finer grains enhance strength due to grain boundary
strengthening, they suppress dislocation activity; in contrast, coarser
grains facilitate dislocation propagation. These findings offer valuable
guidance for optimizing grain size in nanostructured HEAs to balance
strength and ductility.

Fig. 10(a) illustrates a stress-strain-dislocation density (nm~?) dia-
gram for the AlCoCrCuFeNi HEA under a strain rate of 10° s ! at 700 K,
with a grain size of 7.07 nm. The contour plot reveals the interplay
between stress (0-3 GPa), strain € = (0-0.2), and dislocation density
(0.0900-0.2435 nm~2), showing peak stress of approximately 3 GPa at a
strain € = 0.05, followed by a gradual decline to 1.5 GPa, indicative of
strain softening likely due to dynamic recrystallization or phase trans-
formations at the elevated temperature. The dislocation density in-
creases from 0.0900 nm~2 at low strains to a maximum of 0.2435 nm 2
at higher strains, reflecting significant defect accumulation driven by the
high strain rate and nanoscale grain size, which restricts recovery
mechanisms despite the higher temperature. Complementing this,
Fig. 10(b) depicts the evolution of dislocation density (nm~2) under
tensile loading across various temperatures (300 K-1000 K) for
AlCoCrCuFeNi HEA. The plot shows multiple curves, each representing a
different temperature, with dislocation density generally peaking
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between 0.15 and 0.25 nm ™2 at strains € = (0.05-0.10), followed by
fluctuations that suggest dynamic interactions between dislocation
generation and annihilation. Notably, higher temperatures exhibit
slightly lower peak dislocation densities and more pronounced fluctu-
ations, likely due to enhanced thermal activation facilitating recovery
processes such as dislocation climb and annihilation, providing insight
into the temperature-dependent deformation behavior of the AlCoCr-
CuFeNi HEA. In addition, the evolution of dislocation density within
AlCoCrCuFeNi high-entropy alloy specimens characterized by diverse
grain dimensions facilitates a comprehensive examination of sample
advancement. In an earlier study [116], dislocation density was deter-
mined by quantifying the cumulative length of dislocations per unit
volume. The dislocation density curves exhibit a notable surge across all
samples until the material attains its yield point. The density of dislo-
cations gradually increases with significant fluctuations throughout the
remainder of the stress period.

Fig. 11. Presents the von Mises shear strain distribution across
AlCoCrCuFeNi high-entropy alloy specimens at various temperatures
during stress testing conducted at a strain rate of 10° s~ and with a
grain size (d) of 8.09 nm. Atom coloring corresponds to VMSS values,
with red indicating the highest von Mises shear strain. The initial
snapshot depicts the specimen’s yield point. Subsequent snapshots in
Fig. 11(al-a8) illustrate that an increase in strain rate corresponds to a
concurrent rise in yield strain. The local shear strain begins to nucleate
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Fig. 9. The shear strain distribution of AlCoCuCrFeNi HEA with different grain sizes under tension process.

0.10
Strain (%o)

Fig. 10. Stress-strain-dislocation density diagram for a strain rate of 10° s™! at 700K with grain size d = 7.07 nm (a). The dislocation density under the tension

process with various temperatures of AlICoCrCuFeNi HEA (b).

at the TB zone and spreads across the grain until it is blocked by
neighboring TBs, resulting in shear bands. The second snapshot depicts
the deformation at a strain of 0.2, as seen in Fig. 11(b1-b8). The shear
strain reduces as the strain rate increases. It can be explained that atoms
do not have enough time to cause bond rearrangement at high strain
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rates. Hence, the atoms with high shear strain values decrease as strain
rates increase. Elevated temperatures result in material softening,
decreased yield strength, and increased amorphization, underscoring
the importance of thermal stability in maintaining mechanical perfor-
mance under high-temperature conditions.
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Fig. 11. The shear strain distribution of AlCoCuCrFeNi HEA with different temperatures under the deformation process.

Table 3

Hyperparameters and model configurations.
Hyperparameters RNN CNN BiLSTM LSTM FFNN GRU
Hidden layers 3 4 3 3 3 3
Neurons number 400 356 400 400 400 400
Batch size 20 32 20 32 32 20
Dropout 0.25 0.25 0.25 0.25 0.25 0.25
Learning rate 107 107 107 107 107 107
Optimizer Adam Adam Adam Adam Adam Adam

Total parameters 802001 (3.06 MB) 128161 (500.63BKB)

8973601 (34.23 MB)

3206801 (12.23BM) 323201 (1.23 MB) 2408801 (9.19 MB)

The observed phenomenon can be attributed to a notable augmen-
tation in phase transformation from the FCC phase to an alternative
structure after stress peaks, thereby leading to a delayed expansion of
dislocation density. Furthermore, the data indicate a positive correlation
between dislocation density and temperature, aligning with the dynamic
response exhibited by the samples.

B. Results of machine learning
Table 3 presents a detailed comparison of hyperparameters across six

deep learning models: Feed Forward Neural Network (FFNN), Con-
volutional Neural Network (CNN), Long Short-Term Memory (LSTM),

—_

Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit
(GRU), and Recurrent Neural Network (RNN). The FFNN is configured
with three hidden layers of 400 neurons each, a batch size of 32, a
dropout rate of 0.25, and a learning rate of 10"~*, optimized by Adam,
resulting in 323,201 parameters (1.23 MB). The CNN model includes
four hidden layers with 356 neurons, a batch size of 32, a dropout rate of
0.25, and a learning rate of 107% optimized by Adam, totaling
3,206,801 parameters (12.23 MB). The BiLSTM model, equipped with
bidirectional layers, consists of 3 hidden layers with 400 neurons each, a
batch size of 20, a dropout rate of 0.25, a learning rate of 107%, and
utilizes the Adam optimizer. It has the highest parameter count among
models, totaling 8,973,601 (34.23 MB), indicating the greatest model
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Table 4
Comparative analysis of machine learning predictive models for stress values (stage 1).
Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN
MAE 0.422 0.202 0.91 0.092 0.178 0.072 0.055 0.047 0.048
RMSE 0.615 0.298 1.25 0.12 0.267 0.095 0.073 0.063 0.063
R? 0.1 0.85 0.98 0.98 0.9 0.99 0.99 0.995 0.995
s Stress (GPa)
+ GRU model
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Fig. 12. The significance of features in tensile deformation during the training process (a) and validation (b). The stress prediction from the GRU model (c) and the
variance of the GRU model prediction for stress values compared to actual observation (d).

complexity. In comparison, the GRU model also has 3 hidden layers with
400 neurons, a batch size of 20, a dropout rate of 0.25, a learning rate of
le-4, and the Adam optimizer, with a total of 2,408,801 parameters
(9.19 MB). The RNN model, with similar settings, holds 802,001 pa-
rameters (3.06 MB), marking it as the least complex. This comparison
underscores the BiLSTM model’s greater complexity due to its parameter
volume, with the RNN as the simplest by this metric. Among the eval-
uated models, the GRU architecture achieved the highest predictive
accuracy, with an R? of 0.995, MAE of 0.047, and RMSE of 0.063,
demonstrating its robustness in learning complex relationships from MD
data.

3.3. Experimental results

Table 4 presents the performance comparison of various machine
learning models for stress value prediction during Stage 1. The GRU
model demonstrates the best performance, with the lowest Mean Ab-
solute Error (MAE) of 0.047 and Root Mean Square Error (RMSE) of
0.063. Additionally, it achieves the highest R-squared (R?) value of
0.995, indicating excellent predictive accuracy and minimal error. This
highlights the superior performance of the GRU model compared to
other models, including LR, SVR, GBR, FFNN, CNN, LSTM, BiLSTM, and
RNN, in predicting stress values.

Additionally, Fig. 12(a-b) above highlights the GRU model’s
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Fig. 13. The partial dependence between the stress values and a set of features of interest.

superior performance in predicting the HEA material’s stress values.
Fig. 12(a) illustrates a scatter plot of predicted and actual stress values,
showing the GRU model’s performance. The red crosses represent the
predicted values by the GRU model, while the blue line indicates the
perfect prediction line where predicted values equal actual values. The
close alignment of the red crosses along the blue line demonstrates the
high accuracy of the GRU model in predicting stress values with minimal
deviation from the actual values. Fig. 12(b) displays the GRU model’s
prediction of stress values over a large dataset. The plot shows the
predicted dislocation density versus the number of validated data points.
Blue stars represent the GRU model’s predictions, while red crosses
indicate the observed values. The GRU model’s predictions closely
follow the observed values, showcasing its ability to accurately capture
the variance and trends within the data. The model maintains high
predictive accuracy across the entire range of data points, further
emphasizing its robustness and effectiveness in handling complex me-
chanical property predictions for HEA materials. These figures under-
score the GRU model’s superior performance in accurately predicting
stress values, demonstrating its capability to learn and generalize well
from the provided data.

Fig. 12(c~d) above shows the importance of permutation on multi-
collinear features concerning stress values for the training set (c) and the
test set (d). In this analysis, the most important feature for predicting
stress is identified as strain, indicated by the most significant decrease in
accuracy score when this feature is permuted. Conversely, grain size is
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the least important feature, exhibiting the most minor decrease in ac-
curacy score upon permutation. The other features, strain rate and
temperature, are of intermediate importance. The feature importance
ranking remains consistent across the training and test sets. Strain
consistently emerges as the most critical feature, followed by strain rate,
temperature, and grain size. This consistency signifies that the model
effectively understands the hidden representations of the features,
capturing the relationship between the input features and the output
(stress) reliably. Such robustness in maintaining feature importance
across different datasets underscores the model’s capability to gener-
alize and produce accurate predictions.

Fig. 13 presents partial dependence plots (PDPs) that illustrate the
relationships between the input features (strain, temperature, grain size,
and strain rate) and the predicted stress values, helping to discern
whether these correlations are linear or non-linear. The plot for strain
shows a steep initial increase in stress values up to about 0.2 strain,
followed by a more gradual rise, indicating a non-linear relationship
where the stress response is more sensitive at lower strain levels. The
temperature plot reveals a nearly linear negative correlation, with stress
values decreasing consistently as temperature increases. Grain size ex-
hibits a non-linear negative relationship with stress, where stress de-
creases sharply at smaller grain sizes and tapers off at larger sizes. The
strain rate plot also indicates a non-linear relationship, with a sharp
initial increase in stress that becomes more gradual at higher strain
rates. These PDPs highlight the complex interplay of factors affecting
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Table 5
Performance comparison for machine learning predictive models trained directly.
Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN
MAE 0.041 0.04 0.074 0.042 0.02 0.027 0.03 0.036 0.02
RMSE 0.053 0.048 0.1 0.053 0.028 0.329 0.399 0.0453 0.0256
R? -0.11 0.22 0.94 0.229 0.81 0.743 0.47 0.28 0.873
Table 6
Evaluation of machine learning predictive models using a pre-trained model.
Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN
MAE - - - 0.399 0.11 0.397 0.075 0.009 0.069
RMSE - - - 0.073 0.0196 0.074 0.101 0.011 0.0129
R? - - - 0.92 0.82 0.92 0.93 0.973 0.93
R? Comparison between two training approaches
1
0.8
0.6
0.4
0.2
0
FFNN CNN LSTM BiLSTM GRU RNN
M Direct M Pretraining

Fig. 14. The R? comparison between two approaches, direct training and using the pre-trained model to predict dislocation values.

stress predictions, with strain and strain rate showing strong non-linear
relationships, temperature displaying a linear correlation, and grain size
having a diminishing negative effect. This detailed understanding en-
hances the interpretability of the model’s predictions.

Table 5 presents the performance comparison of various machine
learning models when directly trained to predict dislocation values from
Stage 2. The CNN model stands out with the best performance, achieving
the lowest Mean Absolute Error (MAE) of 0.02, the lowest Root Mean
Square Error (RMSE) of 0.028, and a high R-squared (R?) value of 0.81,
indicating effective predictive accuracy. In contrast, all other models
exhibited poor performance. For instance, LR, SVR, GBR, FFNN, LSTM,
BiLSTM, GRU, and RNN models failed to achieve similarly low MAE and
RMSE values, with the LR model even showing a negative R? value of
—0.11, indicating a model worse than a simple mean prediction. Except
for CNN, this poor performance across models highlights the challenges
machine learning algorithms face in learning data representation with
limited data, resulting in inadequate predictions. This underscores the
difficulty of training models directly on the dislocation dataset from
Stage 2, where limited data impacts most algorithms’ learning and
predictive capabilities.

Table 6 demonstrates the significant benefits of using transfer
learning for predicting dislocation values by fine-tuning pre-trained
models from Stage 1 on the limited dataset of Stage 2. This approach
markedly improves the performance of all models compared to training
directly on the limited data. The FFNN model shows improvement with
an MAE of 0.399, RMSE of 0.073, and an R? value of 0.92. The CNN
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model demonstrates significant enhancement with an MAE of 0.11,
RMSE of 0.0196, and an R? value of 0.82. The LSTM model also im-
proves, achieving an MAE of 0.397, an RMSE of 0.074, and an R? value
of 0.92. The BiLSTM model performs better with an MAE of 0.075, RMSE
of 0.101, and an R? value of 0.93. The GRU model shows the best per-
formance, with an MAE of 0.009, RMSE of 0.011, and an R? value of
0.973, indicating excellent predictive accuracy. The RNN model also
benefits from transfer learning, with an MAE of 0.069, RMSE of 0.0129,
and an R? value of 0.93. The LR, SVR, and GBR models did not apply in
this scenario. This table highlights the effectiveness of transfer learning,
where leveraging pre-trained models from Stage 1 and fine-tuning them
on the Stage 2 dataset leads to significant performance improvements.
Notably, the GRU model performs best, demonstrating the most sub-
stantial gains in predictive accuracy and minimal error rates. This
approach effectively addresses training limitations with limited data by
utilizing learned representations from earlier stages, enhancing model
performance across all tested architectures.

Furthermore, as shown in Fig. 14, the R? comparison between direct
training and transfer learning for all models demonstrates significant
performance improvements when applying transfer learning with pre-
trained models from Stage 1. The FENN model’'s R? value improved
from approximately 0.23 with direct training to about 0.92 with transfer
learning. Similarly, the.

CNN model saw an improvement from around 0.81 to 0.82. The
LSTM model’s R? increased from about 0.74 to 0.92, while the BiLSTM
model’s R? value rose from roughly 0.47 to 0.93. The GRU model
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Fig. 15. The dislocation prediction from the GRU model by direct training (a) and transfer learning (b).

exhibited the most significant enhancement, with its R? value soaring
from about 0.28 to 0.973, marking the best performance among all
models. The RNN model also showed improvement, with its R? value
increasing from around 0.87 to 0.93. These results underscore the
effectiveness of transfer learning in enhancing model performance by
leveraging pre-trained models from Stage 1, especially when dealing
with limited data in Stage 2.

Fig. 15 compares dislocation density predictions using the GRU
model trained directly (top) and the pre-trained GRU model (bottom).
The top plot illustrates that the GRU model trained directly on the
limited dataset failed to accurately predict the dislocation density, as
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indicated by the significant deviations between the observations (red)
and the predictions (blue). In contrast, the bottom plot demonstrates the
superior performance of the pre-trained GRU model. The pre-trained
model, fine-tuned with the limited data, closely matches the observed
dislocation densities, showcasing its enhanced predictive accuracy and
ability to generalize better from the pre-trained weights.

Fig. 16(a-b) illustrates the variance in the GRU model’s prediction of
dislocation values compared to actual observations when trained
directly (a) and using a pre-trained model (b). Fig. 16 (a) plot shows that
the GRU model trained directly on the limited dataset fails to predict
dislocation densities accurately, as evidenced by the significant
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Fig. 16. The variance of the GRU model prediction for dislocation values compared to actual observation by direct training (a) and transfer learning (b). The feature

importance regarding dislocation density during training (c) and validation (d).

deviation from the actual values along the vertical axis, indicating poor
correlation. In contrast, the right plot demonstrates the superior per-
formance of the pre-trained GRU model, where the predicted values
closely follow the actual values along the diagonal line. This close
alignment signifies a strong correlation and accurate prediction of
dislocation densities, highlighting the effectiveness of using a pre-
trained model to improve prediction accuracy. Consequently, Figs. 15
and 16(a-b), along with the R? comparison chart Fig. 14, highlight the
significant benefits of transfer learning using a pre-trained model over
direct training, particularly for the GRU model. This comprehensive
analysis underscores the effectiveness of transfer learning in enhancing
model performance, mainly when data is limited. The GRU model stands
out, demonstrating the most substantial improvement and superior
performance, making it the most effective model for predicting dislo-
cation densities in this study.

Fig. 16(c~d) presents the permutation importance of multicollinear
features with the dislocation density for the training set (c) and the test
set (d). The analysis identifies the most and least important features for
predicting dislocation density. The most important feature is grain size,
which shows the highest decrease in accuracy score when permuted,
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indicating its significant impact on the model’s predictions. The least
important feature is temperature, as it exhibits the smallest decrease in
accuracy score, suggesting a minimal effect on the prediction of dislo-
cation density. The consistency of feature importance between the
training and validation sets highlights the robustness of the model. Both
sets show similar importance rankings for the features, reinforcing the
model’s ability to understand and capture the relationship between each
input feature and the output dislocation density. This consistency sug-
gests that the model generalizes well from training to validation,
maintaining reliable performance and interpretability across different
data sets.

Fig. 17 presents the partial dependence plots of dislocation values for
different input features: strain, temperature, grain size, and strain rate.
These plots provide detailed insights into the relationship between each
feature and the predicted dislocation values, indicating whether these
relationships are linear or non-linear. The top-left plot shows the partial
dependence of dislocation values on strain. The relationship is non-
linear, with dislocation values increasing with strain up to approxi-
mately 0.4, after which the values plateau and slightly decrease. This
indicates that strain significantly impacts dislocation values up to a
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Fig. 17. The partial dependence between the dislocation values and a set of features of interest.

certain point, beyond which its effect stabilizes. The top-right plot de-
picts the partial dependence on temperature. This relationship is pre-
dominantly linear, with dislocation values decreasing steadily as
temperature increases. This suggests higher temperatures are associated
with lower dislocation densities, indicating a linear inverse correlation.
The bottom-left plot illustrates the partial dependence on grain size,
showing a solid nonlinear relationship. Dislocation values increase
sharply with grain size initially and continue to rise steadily, indicating
that larger grain sizes are associated with higher dislocation densities.
This strong positive correlation highlights the significant impact of grain
size on dislocation values. The bottom-right plot shows the partial

dependence on strain rate. The relationship is non-linear, with a steep
initial decline in dislocation values as the strain rate increases, followed
by a more gradual decrease. This indicates that higher strain rates
initially lead to lower dislocation densities, but the effect diminishes at
higher strain rates. These partial dependence plots reveal that the re-
lationships between input features and dislocation values are a mix of
linear and non-linear correlations. Strain and strain rate exhibit non-
linear relationships, while temperature shows a linear inverse correla-
tion. Grain size has a solid non-linear positive correlation with dislo-
cation values. These detailed insights help us understand how each input
feature influences the output, highlighting the complex nature of the

Table 7

A comparative analysis of the findings from this study and previous research.
Materials Strain rate (s™') Temperature Strain (%)  Strain (Gpa)  Predictive model Method Reference

X
AlCoCrCuFeNi  10%-2 x 10%° 300-1000 0.2 3.12-5.75 LR, SVR, GRB, FFNN, CNN, LSTM, BiLSTM, GRU, ~ MD and ML This study
RNN
HEA - - - - ANN, SVM, GA MD Durodola et al.
[30]
FeCoNiCrCu - 300-1273 - - GMM, MCMC ML Rao et al. [32]
HEA - 1500-2300 - 0.32-1.62 NN, ANN, SVM, GP, GAN, CART MD, ML Liu et al. [37]
AlCoCrCuFeNi 1072 300-1473 0.27 1.482-1.795 - Exp Deng et al. [45]
CuFeNiCrCo 107-10° 300-3000 0.1-0.24 7.66-15.14 DNN, SVM, KELM, ELM MD, ML Zhang et al. [46]
CoCrFeNi 5x107°-6.5 x 200-1473 0.33 - - MD and Cao et al. [60]
10° Exp
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interactions in the model.

Research on these alloy systems has demonstrated a range of me-
chanical behavior under tension testing, influenced by variables such as
grain size, temperature, and strain rate, facilitated by machine learning
techniques. This study offers an in-depth analysis of high-entropy alloys,
distinguishing itself by incorporating tensile deformation models to
predict stress and dislocation density through a novel combination of
molecular dynamics simulation and machine learning. The tensile
strength results corroborate those reported by Li et al. [14], and while
temperature and strain rate measurements exceed those documented by
Deng et al. [55], they are consistent with Zhang et al. [57]. The com-
parison of mechanical behavior across various studies, summarized in
Table 7, supports the study’s conclusions and reinforces its alignment
with existing research. These findings are anticipated to provide valu-
able insights for future studies on AlICoCrCuFeNi high-entropy alloys.

4. Conclusions

The mechanical behavior and deformation mechanism of AlCoCr-
CuFeNi high-entropy alloy samples are explored by integrating molec-
ular dynamics simulations and machine learning assistance. This
investigation scrutinizes the impact of temperature variations, tension
strain rates, and grain size on the mechanical properties. Elevated
temperatures induce softening in the AlICoCrCuFeNi HEA sample, lead-
ing to a decrease in interatomic connectivity. Consequently, Young’s
modulus, average flow stress, and ultimate stress exhibit reductions.
Moreover, the increase in temperature expands the amorphization zone,
shortening the overall dislocation density. The proposed ML framework,
particularly the GRU-based model enhanced through transfer learning,
not only demonstrates high predictive accuracy for stress and disloca-
tion density in AICoCrCuFeNi HEAs but also establishes a generalizable
pipeline for accelerating mechanical property prediction in complex
alloys. Given the same set of input features derived from mechanical
characteristics, the ML model effectively learns underlying correlations,
and transfer learning further enhances its adaptability to predict new
target properties without requiring retraining from scratch. Conse-
quently, by significantly reducing simulation time, the framework en-
ables rapid screening of candidate compositions and processing
conditions in materials discovery workflows. Compared to prior studies
that rely solely on physics-based modeling or empirical fits, our
approach integrates molecular dynamics and deep learning to capture
nonlinear, multivariate dependencies with high fidelity. Furthermore,
while previous research [17,57,87,88] has applied ML to similar prob-
lems, our dual-stage, transfer-learning-enhanced model uniquely
bridges atomic-level simulations and predictive analytics, offering a
scalable solution for high-throughput computational materials design.

This study presents a comprehensive workflow that leverages
transfer learning by utilizing pre-trained models from stress prediction
(Stage 1) to enhance the prediction of dislocation densities (Stage 2).
The workflow begins with obtaining detailed MD simulation data to
train models for stress prediction. The pre-trained models are then fine-
tuned with additional data to predict dislocation densities, effectively
reducing the total simulation time.

The benefits of this workflow are evident in the significant
improvement of evaluation metrics for all machine learning models. The
comparison of direct training and transfer learning shows a substantial
enhancement in R? values, underscoring the effectiveness of transfer
learning in capturing the complex relationships in the data. This
approach improves predictive accuracy and ensures robust model per-
formance with limited data.

Among all the machine learning models evaluated, the GRU model
stands out as the best performer in both stages, demonstrating superior
predictive capabilities for stress and dislocation densities. The GRU
model consistently achieved the highest R? values and lowest errors,
making it the most effective model in this study.

Furthermore, the study provides a detailed understanding of the
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importance of features and relationships between input features and
outputs (stress and dislocation). Using the importance of permutation
features, we identified grain size as the most critical feature and tem-
perature as the least important. Partial dependence analysis further
revealed the nature of these relationships, highlighting both linear and
non-linear correlations between the features and the outputs.

In summary, this study significantly improves dislocation prediction
by reducing MD simulation time by fourfold (from 118 days to 29 days),
thus saving time and cost. It demonstrates the robustness of the GRU
model for accurate predictions and enhances interpretability through
detailed feature analysis. This approach offers a promising framework
for efficiently predicting mechanical properties in high-entropy alloys
and other complex materials.
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