
Deformation mechanisms of AlCoCrCuFeNi: A molecular dynamics and 
machine learning approach

Hoang-Giang Nguyen a,b,c, Sheng-Joue Young b, Thanh-Dung Le d,e, Symeon Chatzinotas d,  
Te-Hua Fang a,f,*

a Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan
b Department of Electronic Engineering, National United University, Miaoli City, Taiwan
c Faculty of Engineering, Kien Giang University, Kien Giang Province, Viet Nam
d Interdisciplinary Centre for Security, Reliability, and Trust (SnT), University of Luxembourg, Luxembourg
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A B S T R A C T

High-entropy alloys (HEAs) distinguish themselves from other multi-component alloys through their unique 
nanostructures and mechanical properties. This study employs molecular dynamics (MD) simulations and ma
chine learning to investigate the deformation mechanisms of AlCoCuCrFeNi HEA under varying temperatures, 
strain rates, and average grain sizes. The modeling results show that interactions between partial dislocations in 
AlCoCrCuFeNi HEA during tension and compression deformation cause various lattice disorders. The effect of 
temperature, strain rates, and grain boundaries on lattice disorder, plastic deformation behavior, dislocation 
density, and von-Mises stress (VMS) is disclosed. This study offers new insights into the atomic-scale deformation 
mechanisms governing the mechanical behavior of AlCoCrCuFeNi HEAs. It also presents a comprehensive 
workflow for predicting the mechanical properties of this HEA using machine learning models. The proposed 
approach provides several advantages, including significantly reduced simulation time and robust model vali
dation. By employing the machine learning model trained in Stage 1, the time needed to simulate mechanical 
properties in Stage 2 is significantly decreased. Additionally, the framework ensures that the machine learning 
model effectively captures and understands the underlying representations of the mechanical properties of HEAs, 
thereby enhancing both the efficiency and accuracy of the predictions.

1. Introduction

The pursuit of materials with superior mechanical properties has 
continually propelled human technological advancement. Discovering 
new metals and alloys has been central to this progress. Traditionally, 
alloys are classified by their dominant elemental component, such as Co- 
, Cr-, or Ni-based systems [1,2]. High-entropy alloys (HEAs) have 
emerged as a groundbreaking class of materials, exhibiting properties 
that transcend conventional multi-component or near-equiatomic alloy 
concepts. Comprising high concentrations of various elements with 
distinct crystal structures, HEAs can form stable single-phase solid so
lutions [3–5]. These multi-element alloys possess elevated configura
tional entropy in their random solution states, which favors the 
formation of simple solid solutions rather than complex multiphase 

microstructures [6,7]. Unlike traditional alloy design focusing on the 
phase diagram’s corners, HEAs offer new pathways to create advanced 
materials with remarkable potential [8]. At elevated temperatures, 
atomic diffusion within high-entropy alloys (HEAs) occurs at a sluggish 
rate, resulting in high activation energy for grain growth and a slower 
phase transition process [9]. Furthermore, HEAs are often characterized 
by substantial lattice distortions [10]. These alloys exhibit a range of 
remarkable properties, including exceptional fracture toughness 
exceeding that of conventional alloys and pure metals, mechanical 
strength comparable to metallic glasses and structural ceramics, super
conductivity, and notable corrosion resistance [11,12]. The micro
structure of materials, such as grain size, twin boundaries, and 
crystallographic orientation, plays a vital role in determining their me
chanical behavior [13,14]. Additionally, the chemical composition of an 
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alloy is a key factor influencing its mechanical performance [15]. 
Therefore, a comprehensive understanding of the interplay between 
alloy composition, microstructure, and HEA behavior is essential for the 
advancement of next-generation structural materials. Mechanical 
properties of materials can be evaluated using various techniques, 
including cyclic loading [16], tensile testing [17], cutting [18], 
imprinting [19], scratching [20], and grinding [21]. Among these, 
indentation tests provide insight into a material’s hardness and elastic 
modulus, enabling the investigation of how intrinsic material charac
teristics affect deformation under loading [22,23]. During scratching, 
where the indenter moves laterally across the surface, the mechanical 
response of the substrate is examined to assess deformation behavior 
[24,25].

The addition of trace elements to alloy systems has been strategically 
used to enhance their mechanical performance by improving heat 
resistance, flexibility, strength, and phase stability [26–28]. The devel
opment of multi-element alloy systems represents a novel approach in 
alloy design, enabling the tailoring of mechanical and chemical prop
erties through compositional control [29–32]. HEAs, typically consisting 
of five or more principal elements in near-equiatomic proportions, often 
exhibit properties that are distinct from those of their individual com
ponents [33,34]. This compositional complexity has given rise to a new 
paradigm in alloy design, shifting focus toward the central region of the 
phase diagram rather than its boundaries [35]. Such an approach ad
dresses fundamental issues in materials science, including phase selec
tion, entropy control, and energy minimization [36,37]. The 
combination of sluggish diffusion and high mixing entropy in HEAs 
promotes the formation of stable solid solutions with diverse crystal 
structures, such as FCC, BCC, and HCP [38–40]. This alloy design 
strategy has inspired the development of other advanced materials, 
including bulk metallic glasses and high-entropy ceramics [41–43]. 
HEAs also demonstrate superior corrosion resistance, thermophysical 
performance, and magnetic properties, alongside excellent thermal 
stability and hardness [44–46]. They retain remarkable mechanical 
properties across a wide temperature range, showing high strength at 
elevated temperatures and impressive fracture toughness and ductility 
at cryogenic conditions [47,48]. These characteristics make HEAs 
promising candidates for applications in cutting tools, 
radiation-resistant materials, and fracture-resistant components [49,
50]. Recent advances highlight how these challenges can be addressed 
through innovative HEA design. For instance, Chew et al. [51] enhanced 
the strength and ductility of CoCrFeNiMn HEA using laser-aided addi
tive manufacturing to form hierarchical microstructures. Similarly, Lee 
et al. [52] employed advanced microscopy and neutron diffraction 
techniques to elucidate the deformation mechanisms in NbTaTiV and 
CrMoNbV HEAs. Among HEAs, the equiatomic AlCoCrCuFeNi alloy is 
particularly noteworthy due to its mechanical strength and structural 
stability [53]. Its plastic deformation behavior has been extensively 
studied.

Recent advances highlight the expanding role of machine learning 
(ML) in accelerating alloy design, particularly in predicting phase sta
bility, microstructure evolution, and thermomechanical behavior. ML- 
based models have been effectively applied to forecast phase trans
formations and identify stable structures in complex alloy systems, such 
as high-entropy alloys (HEAs) and metallic glasses [54,55]. Moreover, 
studies [56,57] demonstrate the power of ML in exploring compositional 
design spaces and predicting phase behavior across diverse alloy com
positions. These developments reveal ML’s potential not only as a pre
dictive tool but also as a means to significantly reduce the experimental 
and computational costs traditionally associated with alloy develop
ment. Building upon this foundation, this study introduces a two-stage 
MD–ML framework to predict stress and dislocation behavior in 
AlCoCrCuFeNi HEA, providing a time-efficient, physics-informed 
approach to understanding its mechanical response. Jiang et al. [58] 
investigated the mechanical responses of face-centered cubic (FCC) 
HEAs across a broad range of strain rates and temperatures, revealing 

transitions in plastic deformation mechanisms under dynamic uniaxial 
tension. Zhang et al. [59] fabricated single-crystalline CoCrFeNi HEA 
micropillars with various crystallographic orientations and performed in 
situ compression tests, elucidating deformation mechanisms at the 
micro/nanoscale. Similarly, Cao et al. [60] combined mechanical testing 
and molecular dynamics simulations to explore dynamic deformation in 
CoCrFeNi HEAs, offering insights for designing alloys with superior 
dynamic performance.

This study presents a detailed workflow for predicting the mechan
ical properties of high-entropy alloys, specifically the AlCoCuCrFeNi 
HEA, using machine learning (ML) models. The workflow is divided into 
two distinct stages, each comprising three phases: molecular dynamics 
simulation, ML training, and prediction.

The workflow begins with multiphysics simulations of the AlCoCr
CuFeNi HEA in Stage 1. The initial atomic and grain configurations of 
the HEA nanomaterial are constructed, followed by molecular dynamics 
(MD) simulations to extract key material parameters, including strain 
(%), temperature (K), grain size (nm), and strain rate (s− 1). These pa
rameters serve as input features for training a neural network model 
designed to predict the material’s stress response (GPa). The resulting 
predictions offer detailed insight into the material’s tensile behavior, 
illustrated through a visual stress distribution.

In Stage 2, transfer learning is employed to improve model perfor
mance. The same HEA undergoes further MD simulations, using the 
previously learned features from Stage 1. The pre-trained model is fine- 
tuned with new data to predict dislocation density (nm− 2), enabling the 
exploration of nanoscale deformation mechanisms. This stage culmi
nates in a dislocation density map, providing a comprehensive depiction 
of the material’s internal structural evolution under mechanical loading.

The proposed workflow offers significant benefits, including reduced 
simulation times and robust model validation. By utilizing the trained 
ML model from Stage 1, the overall simulation time required for 
obtaining mechanical properties in Stage 2 is significantly decreased. 
Moreover, this framework ensures that the ML model effectively cap
tures and learns the hidden representations of mechanical properties in 
HEA materials, enhancing the efficiency and accuracy of property pre
dictions. This methodological approach demonstrates the successful 
integration of molecular dynamics simulations with advanced ML 
techniques to predict and understand the mechanical properties of 
complex materials like high-entropy alloys.

2. Methodologies and materials

2.1. Molecular simulation

Molecular dynamics is a method employing physical principles to 
approximate the average properties of an atomic system, governed by 
classical Newtonian mechanics, computed over time. This model often 
represents atoms as point masses within a simulated box, resulting in 
rigid spherical shapes. The interaction between neighboring atoms is 
regulated by a force field determined by the user, known as the inter
action potential. Subsequently, partial charges can be estimated using 
quantum methods to describe the distribution of charge within mole
cules. Bonds between atoms are typically depicted as simple harmonic 
oscillations with constraints on angles. Upon commencement of the 
simulation, a velocity range corresponding to the Boltzmann distribu
tion at the appropriate temperature is selected, and these velocities are 
then randomly assigned to each atom. Similar processes are employed to 
provide energy for bonds and angles. Subsequently, the simulation 
proceeds using Newtonian physics, wherein molecules transfer motion 
and energy to one another through atomic interaction forces and elec
trostatic forces. The molecular mechanics energy function used in MD is 
a potential energy function that remains time-invariant and depends 
solely on the spatial coordinates of atoms or molecules. It conserves the 
overall energy of the system over time. Consequently, the total kinetic 
energy (KE) and total potential energy (PE) may fluctuate indepen
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dently. Still, their sum, also called the Hamiltonian (H), always remains 
a conserved quantity, as demonstrated in equation (1) [61]. 

H=Ke + Ue (1) 

The kinetic energy (Ke) is defined by the velocity or linear mo
mentum of each individual atom, as indicated in equation (2). 
Conversely, the potential energy (Ue) is governed by the positional 
vectors of all atoms, as illustrated in equation (3.3). 

Ke=
1
2
∑n

j=1
miv2

i (2) 

Ue=
∑n

i=1
Pi(u) (3) 

In a system comprising N atoms, the variables mi, vi, Pi, and ui represent 
the mass, velocity, potential energy, and position, respectively, of the ith 
atom.

Molecular dynamics simulations involve the iterative computation of 
classical equations of motion, particularly evident in a basic atomic 
system, as outlined below [62–64]: 

Fi=miri
⋅⋅ = miai = −

∂
∂ri

u (4) 

mi
d2pi

dt2 = −
dU(p)

dpi
(5) 

Here, mi and ai denote the mass and acceleration of the ith atom, 
respectively. The U(p) signifies the potential energy associated with the 
interaction. In this segment, it’s imperative to compute the forces, 
denoted as Fi, exerted on atoms, typically stemming from the potential 
energy function U(rN). Here, rN = (r1, r2, …, rN) denotes the entire set of 
integer coordinates from 3N.

In the context of this research, we employed the simulation platform 
introduced by Plimpton et al. [65,66], which entails a large-scale 
atomic/molecular massively parallel simulator known as LAMMPS, to 
conduct evaluations of the mechanical properties of AlCoCrCuFeNi 

HEA. LAMMPS, implemented in C++, represents a highly portable 
classical Molecular Dynamics (MD) code. This platform facilitates the 
simulation of particle behavior across various length and time scales. 
Additionally, LAMMPS can execute calculations on parallel machines 
featuring many processors while maintaining performance levels and 
avoiding undue increments in system size and complexity. Numerous 
variations of the Verlet algorithm exist, each essentially equivalent, such 
as the original method [67,68] and the ’leapfrog’ form [69]. Our 
attention is directed toward the velocity-Verlet algorithm [70]. 

pi

(

t+
1
2

δt
)

= pi(t) +
1
2

δtfi(t) (6) 

ri

(

t+
1
2

δt
)

= ri(t) +
δtpi

(

t + 1
2 δt

)

mi
(7) 

ri

(

t+
1
2

δt
)

= ri(t) +
δtpi

(

t + 1
2 δt

)

mi
(8) 

By equation (7), the process of force evaluation is executed to yield fi 
(t + δt) for step (8). This approach facilitates the progression of co
ordinates and moments by the time increment δt.

An ensemble refers to a set of distinct states of a given system, with 
NVE, NPT, and NVT being fundamental examples. Each ensemble serves 
a specific purpose, where E, N, V, P, and T denote the total energy, 
number of atoms, volume, pressure, and temperature, respectively. The 
NVE ensemble, often termed the microcanonical ensemble, maintains 
fixed N, V, and E, permitting only the velocities and positions of atoms to 
vary, thus enabling the calculation of macroscopic properties such as 
changes in kinetic energy, temperature, and pressure. In contrast, the 
NVT ensemble, known as the canonical ensemble, keeps N, V, and T 
constant, allowing energy and pressure to fluctuate over time. The NPT 
ensemble, or isothermal-isobaric ensemble, facilitates rapid structural 
equilibrium by permitting volume adjustments in response to energy 
changes [71].

As shown in Fig. 1(a), the AlCoCrCuFeNi high-entropy alloy (HEA) 

Fig. 1. The graphical abstract illustrates the transfer learning from stress analysis to predict dislocation properties of AlCoCrCuFeNi.
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specimen was subjected to uniaxial tensile loading to investigate its 
plastic deformation mechanisms and mechanical behavior. The simu
lation model measures 300 × 75 × 75 Å3 (length × width × height) and 
contains approximately 146,117 to 146,315 atoms. The atoms are 
randomly distributed in a three-dimensional face-centered cubic (FCC) 
lattice, with coordinates spanning the x, y, and z directions. The sample 
is oriented along the [100], [010], and [001] crystallographic directions 
corresponding to the X-, Y-, and Z-axes, respectively. The alloy compo
sition is approximately 9 % Co, 2 % Al, 32 % Cr, 12 % Fe, 39 % Cu, and 6 
% Ni [17]. Strain was applied uniaxially along the [100] direction at 
strain rates ranging from 108 to 2 × 1010 s− 1. Temperature conditions 
varied from 300 K to 1000 K. The embedded-atom method (EAM) po
tential, augmented with a Morse term, was used to describe interatomic 
interactions. Periodic boundary conditions were applied in all di
rections. Grain sizes from 6.42 to 12.84 nm were generated and char
acterized using standard Voronoi tessellation. Atomic configurations 
were analyzed for dislocation content, phase transformation, and local 
von Mises stress.

In preparing the specimens for tensile stress, all three orientations 
were subjected to periodic boundary conditions to achieve stable con
figurations. Employing the conjugate gradient algorithm, samples were 
generated with minimized equilibrium energy. Subsequently, the sam
ples underwent thermodynamic equilibration for 100 ps at ambient 
temperature and zero pressure, facilitated by the isothermal-isobaric 
(NPT) ensemble [16,72]. Integration of the motion equation was ach
ieved using the velocity-Verlet approach, utilizing a time step of 2 fs [73,
74]. Pressure and temperature regulation during the tension process was 
facilitated by the Nosé-Hoover thermostat and barostat, as implemented 
in this investigation [75–78]. Selecting a dependable potential measure 
between atoms is paramount in ensuring the accuracy of findings in 
molecular dynamics (MD) simulations. Thus, to delineate and scrutinize 
interatomic interactions between Ni, Co, Cu, Cr, Fe, and Al, the 
Embedded-Atom-Method (EAM) was employed.

The effectiveness of Embedded Atom Method (EAM) potentials has 
been validated through various prior studies employing diverse testing 
methodologies [27]. The total energy Ept is expressed in Refs. [23,79]. 

Ept =
∑n

i=1
Ei =

1
2

∑n

i,j=1

i∕=j

φij
(
rij
)
+

∑n

i=1
Fi(ρi) (9) 

The pair energy φij represents the interaction energy between atoms i 
and j as a function of their separation, while Ei denotes the atomic potential 
energy of atom i. The embedding energy term, defined by rij and Fi(ρi), 
depends on the local electron density ρi, at each atom. The local electron 
density ρi, determined using: 

ρi =
∑n

i,j=1

i∕=j

fij
(
rij
)

(10) 

Here, fij
(
rij
)

represents the electron density contribution from atom j 
to the position of particle i. The EAM alloy potential model specifies the 
pair potentials as follows: 

ϕ(r)=
A exp

[

− α
(

r
re

)

− 1
]

1+
(

r
re
− κ

)20 −

B exp
[

− β
(

r
re

)

− 1
]

1+
(

r
re
− λ

)20 (11) 

The cutoff parameters for the electron density function are repre
sented by κ and λ, alongside adjustable parameters A, B, α, and β. The 
equilibration separation between nearest neighbors is symbolized by re. 
The calculation of the electron density function mirrors the form of the 
attractive term in the pair potential, maintaining identical values for β 
and λ [79]. The electron density is formulated as: 

f(r) =
fe exp

[

− β
(

r
re
− 1

)]

1+
(

r
re
− λ

)20 (12) 

Subsequently, a pair potential is defined for two distinct species, 
denoted as a and b, as follows: 

ϕnm(r)=
1
2

[
fm(r)
fn(r)

ϕnn(r) +
fn(r)
fm(r)

ϕmm(r)
]

(13) 

The following formulas [79] specify the embedding energy functions 
across various electron density ranges. 

F(ρ)=
∑3

i=0
Fni

(
ρ

0.85ρe
− 1

)i

, ρ < 0.85ρe (14) 

F(ρ)=
∑3

i=0
Fi

(
ρ
ρe
− 1

)i

, 0.85ρe ≤ ρ<1.15ρe (15) 

F(ρ)=
∑3

i=0
Fn

[

1 − η ln
(

ρ
ρs

)](
ρ
ρs

)η

, ρ ≥ 1.15ρe (16) 

Here, Fni, Fi, and Fn represent tabulated constants [77,80].
The Morse potential, which dictates the remaining particle in

teractions [22], is expressed as follows: 

Φ
(
uij
)
=D

[
e− 2α(uij − u0) − 2e− α(uij − u0)

]
(17) 

In the interatomic potential model, the reciprocal energy and distance 
constants are represented by D and α, respectively. The equilibrium and 
instantaneous separations between two approaching atoms are repre
sented by u0 and uij, respectively. The determination of the average grain 
size, represented as d, is based on methodologies outlined in [81–83]: 

d=
̅̅̅̅̅̅
6V
N

3

√

(18) 

Where V denotes the polycrystalline’s overall volume of AlCoCrCuFeNi 
HEA, and N denotes the number of grains. The investigation employs 
eight workpieces characterized by average grain sizes ranging from 
12.84 nm to 6.42 nm, with corresponding grain counts of samples 5, 10, 
15, 20, 25, 30, 35, and 40.

This section utilizes analytical techniques to investigate the 

Table 1 
Statistical exploratory data analysis for stress values prediction dataset (Stage 1).

Strain Temperature (K) Grain number Strain rate (s− 1) Stress (Gpa)

Count 22021 22021 22021 22021 22021
Mean 9.9997 × 10− 2 427.2785 29.09913 2.400064 × 109 3.345523
Std 5.7791 × 10− 2 217.8109 7.012762 4.356896 × 109 0.901617
Min 0 300 5.0 1.000000 × 108 − 0.017224
25 % 5.0000 × 10− 2 300 20.0 1.000000 × 109 3.961448
50 % 1.0000 × 10− 1 300 20.0 1.000000 × 109 3.592606
75 % 1.5000 × 10− 1 500 20.0 2.000000 × 109 3.807873
Max 2.0000 × 10− 1 1000 40.0 2.000000 × 1010 5.746938
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deformation mechanism and structural transformations. The progres
sion of deformation during the tension process is illustrated through the 
von-Mises shear strain [84]. The crystal structure, including stacking 
defects and phase transitions, is analyzed using Honeycutt and Ander
sen’s common neighbor analysis [85]. Dislocation evolution during the 
stress process is examined through dislocation extraction analysis (DXA) 
[86].

2.2. Machine learning

2.2.1. Data
To obtain the data for training and predicting stress values, we 

conducted Molecular Dynamics (MD) simulations for 118 days using a 
system equipped with the following specifications: i) Processor: Intel(R) 
Core (TM) i7-10700 CPU @ 2.90 GHz (16 CPUs), 2.9 GHz, and ii) 
Memory: 16 GB RAM. Then, for each temperature range (200 K, 300 K, 
etc.), we defined a step size for strain as 0.0002 (ranging from 0 to 0.2), 
resulting in 1000 steps. This detailed and high-resolution data collection 
is crucial for capturing the intricate dependencies between input fea
tures and stress values.

Table 1 provides a comprehensive statistical exploratory data anal
ysis of the dataset used for stress values prediction in Stage 1. The table 
includes critical features such as strain, temperature, grain number, 
strain rate, and the resulting stress values. The data consists of 22,021 
samples, providing a robust basis for training the machine learning 
model to predict stress in the AlCoCrCuFeNi HEA material.

In Stage 2, we applied transfer learning to enhance predictions 
further. This stage involves MD simulations with a larger step size of 
0.001 for strain (ranging from 0 to 0.2), resulting in a total MD simu
lation time of 29 days, significantly shorter than the first stage. The same 
input features are used, focusing on predicting dislocation densities. 
This reduction in step size by a factor of five allows for quicker yet ac
curate data collection.

Table 2 provides a statistical exploratory data analysis for the 
dislocation values prediction dataset in Stage 2. This table includes 
strain, grain size, temperature, strain rate, and the resulting dislocation 
values. The dataset consists of 4400 samples, providing a solid founda
tion for training the refined ML model to predict dislocation densities in 
the HEA material.

By utilizing the trained ML model from Stage 1, the overall simula
tion time required for obtaining mechanical properties in Stage 2 is 
significantly decreased. This framework ensures that the ML model 
effectively captures and learns the hidden representations of mechanical 
properties in HEA materials, enhancing the efficiency and accuracy of 
property predictions. This methodological approach demonstrates the 
successful integration of multiphysics simulations with advanced ML 
techniques to predict and understand the mechanical characteristics of 
complex materials like high-entropy alloys.

2.2.2. Data experimental setup
Our study was conducted on high-performance GPUs available 

through Google Colab’s cloud service. Model implementation utilized 
the scikit-learn library and the Keras framework in a Python environ
ment. For each experiment, the dataset was split into 70 % for training 

and 30 % for evaluation to assess model performance.
Building on previous research in neural network optimization, we 

employed strategies to enhance our model’s performance and stability. 
This approach incorporated dropout with a probability of 0.25 to miti
gate overfitting by omitting random units during training. We selected 
the GlorotNormal initializer to maintain proportional variance between 
output and input, optimizing weight initialization. Additionally, batch 
normalization was applied to accelerate training and improve perfor
mance by normalizing layer inputs. These hyperparameters were 
meticulously selected and fine-tuned to maximize model performance.

2.2.3. Machine learning predictive models
Machine learning (ML) enhances the analysis of large datasets by 

developing trained models that support tasks such as classifying obser
vations, detecting critical features influencing performance metrics, and 
forecasting outcomes in new experiments. Furthermore, ML aids re
searchers in data-intensive disciplines by optimizing experimental 
design to improve performance or streamline hypothesis testing. ML 
transforms data collection, analysis, and interpretation across diverse 
domains, including nano-optoelectronics, catalysis, and bio-nano in
terfaces. These approaches are anticipated to become discipline-specific 
benchmarks, reinforcing the importance of statistical methods in sci
entific inquiry. Additionally, nanoscience has the potential to advance 
ML by developing electronic or photonic hardware that enables more 
efficient algorithm execution compared to conventional computing ar
chitectures. Fostering this synergy promises significant advantages for 
both scientific communities.

This study will apply ML techniques to predict stress values from MD 
simulation data. The application of ML in materials science has grown 
due to its advantages. For instance, conducting real experiments with 
superconducting materials is very costly and challenging [87]. In 
particular, deep learning proves to be more advanced and robust for 
material applications [88]. The study will focus on various ML tech
niques for regression models, ranging from conventional methods to 
deep learning models. The performance of each model will be assessed 
by comparing evaluation metrics, model complexity, and computational 
resource requirements, including. 

1. Linear Regression (LR): Linear Regression [89] presupposes a linear 
relationship between input features x = (x1, x2, x3, x4) and the output 
y. The model estimates y through the linear function:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε                                        (19)

Here, β0 represents the intercept, β1, …, β4 denotes the coefficients, 
and ε signifies the error term. 

2. Support Vector Regression (SVR): SVR [90] seeks to identify a 
function f(x) that deviates from y by at most ε for each training point 
while maintaining maximal flatness. Mathematically:

f (x) = w ⋅ x + b                                                                          (20)

Here, w represents the weight vector, and b denotes the bias. Flatness is 
ensured by minimizing |w|, subject to the constraint |yi − f (xi)| ≤ ε, or 

Table 2 
Statistical exploratory data analysis for dislocation density values prediction dataset (Stage 2).

Strain Temperature (K) Grain number Strain rate (s− 1) Dislocation density (nm− 2)

Count 4400 4400 4400 4400 4400
Mean 0.1005226 427.3017 8.226849 2.400318 × 109 0.19924
Std 0.05777293 217.8438 1.230335 4.357648 × 109 0.072885
Min 0.001 300 6.42 1 × 108 0.05984
25 % 0.051 300 8.09 1 × 109 0.15005
50 % 0.101 300 8.09 1 × 109 0.18587
75 % 0.151 500 8.09 1 × 109 0.23523
Max 0.200 1000 12.84 2 × 1010 0.5312
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by incorporating slack variables ξi or ξ*i when required. 

3. Gradient Boosting Regression (GBR): GBR [91] constructs a 
sequential model by minimizing a differentiable loss function. In 
each iteration, a regression tree hm(x) is trained to approximate the 
negative gradient of the loss function L(y, F (x)):

Fm(x) = Fm− 1(x) + γmhm(x)                                                          (21)

Here Fm(x) represents the model at the m-th iteration, while γm denotes 
the step size. 

4. Feedforward Neural Network (FFNN): An FFNN is a feedforward 
artificial neural network comprising at least three layers-input, 
hidden, and output-where each node (excluding the input layer) 
employs a nonlinear activation function. The output y is expressed 
as:

y = f (W2f (W1x + b1) + b2)                                                         (22)

Here W1 and W2 represent the weights, b1 and b2 denote the biases, and f 
is the activation function. Deep learning models [92] such as Convolu
tional Neural Networks (CNNs), Long Short-Term Memory (LSTM), 
Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit 
(GRU), and Recurrent Neural Network (RNN) networks will also be 
explored. 

5. Convolutional Neural Network (CNN): While predominantly applied 
to image data, CNNs [93] are also effective for sequential data. The 
convolutional layers detect local dependencies, and the fully con
nected layers generate the output prediction. For a configuration 
with a single convolutional layer followed by a fully connected layer:

y = Wf ⋅ (flatten (ReLU (Wc * x + bc))) + bf                                   (23)

where * denotes convolution, Wc and bc are convolutional layer pa
rameters, and Wf and bf are fully connected layer parameters. 

6. Long Short-Term Memory (LSTM): An LSTM [94] is a variant of a 
recurrent neural network (RNN) designed to capture order de
pendencies in sequence prediction tasks. For a single LSTM cell, the 
output kt at time t is given by:

kt = ot ⊙ tanh(ct)                                                                         (24)

Here ot represents the output gate, ct denotes the cell state, and ⊙ in
dicates element-wise multiplication. The cell state is updated through 
gates that regulate the flow of information: 

kt = ot ⊙ tanh(ct)                                                                         (25)

Here, ot represents the output gate, ct denotes the cell state, and ⊙
indicates element-wise multiplication. The cell state is modified via a 
sequence of gates that regulate information flow: 

ft = σ (Wf ⋅ [kt− 1, xt] + bf)                                                           (26)

it = σ(Wi⋅ [kt− 1, xt] + bi)                                                             (27)

c̃t = tanh(Wc ⋅ [kt− 1, xt] +bc) (28) 

ct= ft ⊙ ct− 1 + it ⊙ c̃t (29) 

ot= σ(Wo ⋅ [kt− 1, xt] + bo) (30) 

In this context, ft is the forget gate, it denotes the input gate, c̃t is the 
candidate cell state, σ indicates the sigmoid function, and W and b are 
the weights and biases associated with each gate. 

7. Bidirectional Long Short-Term Memory (BiLSTM): BiLSTM [95] ex
tends the LSTM framework, enhancing model performance by 

processing data in both forward and backward directions. For a given 

sequence, the forward kt
→

and backward kt
←

hidden states are 
concatenated to form the final output:

kt
→
=
[
kt
→
, kt
←]

(31) 

where kt
→

is computed from start to end, and kt
←

from end to start. 

8. Gated Recurrent Unit (GRU): GRU [96] is a type of RNN that sim
plifies the LSTM architecture by combining the forget and input gates 
into a single update gate. The hidden state ht at time t is calculated 
as:

kt =(1 − zt)⊙ kt− 1 + zt ⊙ k̃t (32) 

Where zt is the update gate and ̃ kt is the candidate hidden state. The 
update gate zt and reset gate rt are defined as: 

zt= σ(Wz ⋅ [kt− 1, xt] + bz ) (33) 

rt= σ(Wr ⋅ [kt− 1, xt] +br ) (34) 

k̃t = tanh(W ⋅ [rt⊙ kt− 1, xt]+b) (35) 

9. Recurrent Neural Network (RNN): RNN [97] is a type of neural 
network designed for sequence data. The model retains a hidden 
state ht that encapsulates information from prior time steps. The 
hidden state and output yt at time t are expressed as:

kt = tanh (Wk ⋅ [kt− 1, xt] + bk)                                                     (36)

yt = Wy ⋅ kt + by                                                                          (37)

Where Wk and bk are the weights and biases for the hidden state, and Wy 
and by are the weights and biases for the output. By comparing these 
models, we aim to determine the most effective approach for predicting 
stress values from MD simulation data, considering evaluation metrics, 
model complexity, and computational resources.

2.2.4. Evaluation metrics
When developing a regression model, it is essential to assess its 

performance using a variety of evaluation metrics. These metrics pro
vide insight into the model’s learning and predictive accuracy. Below 
are descriptions and mathematical expressions for key metrics:

Mean Absolute Error (MAE): MAE measures the average magnitude 
of errors between paired observations, reflecting the same phenomenon. 
It is calculated by taking the mean of the absolute differences between 
predicted values and actual values: 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒yi − ypred,i

⃒
⃒
⃒ (38) 

Root Mean Squared Error (RMSE): RMSE is a quadratic scoring rule 
that represents the average magnitude of the error. It is the square root 
of the mean of the squared differences between predicted and actual 
values: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − ypred,i

)2
√

(39) 

R-squared (R2): Also known as the coefficient of determination, R2 
indicates how well the data fit the regression model. It represents the 
proportion of the variance in the dependent variable that is predictable 
from the independent variables: 
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R2=1 −

∑n
i=1

(
yi − ypred,i

)2

∑n
i=1(yi − y)2

(40) 

Where yi represents the actual value, ypred, i denotes the predicted value, 
y is the mean of the actual values, and n is the number of observations.

2.2.5. Model interpretability with partial dependence plots
Partial dependence plots (PDP) are valuable tools for visualizing and 

analyzing the interaction between the predicted response and input 
features, thereby enhancing the interpretability of machine learning 
models [98,99]. These plots demonstrate how the predicted response 
depends on one or more input features of interest while averaging the 
effects of other features (referred to as ’complement’ features). In 
essence, partial dependence can be interpreted as the expected model 
prediction as a function of the input features of interest.

Given the limits of human perception, the set of input features of 
interest is usually small (typically one or two) and is chosen among the 
most essential features. One-way PDPs provide insights into the inter
action between the predicted response and a single feature of interest, 
revealing whether the relationship is linear, non-linear, or more com
plex. By using PDPs, we can capture and understand the relationship 
between the input features and the prediction output, thereby improving 
the interpretability of the machine learning model and providing clearer 
insights into how the model makes its predictions.

Let XS be the set of input features of interest and XC be its comple
ment. The partial dependence of the response f at a point xS is defined as: 

pdXS (xS) =
def ЕXC [f(xS,XC)]=

∫

f(xS, xC)p(xC)d(xC), (41) 

where f (xS, xC) is the response function for a given sample with values 
defined by xS for the features in XS, and by xC for the features in XC. One 
can generate a PDP plot by computing this integral for various values of 
xS.

3. Results and discussion

A. Results of MD simulation

3.1. Impact of strain rate

Various strain rates have been selected to probe the impact of strain 
rate on the deformation characteristics of AlCoCrCuFeNi high-entropy 
alloy specimens. In line with the methodology used in the previous 
section, a specimen featuring a grain size of d = 8.09 nm and an ambient 
temperature of 300 K is used to look at the impact of strain rate on the 
mechanical attributes of the HEA sample.

Fig. 2 (a) illustrates the stress-strain curves of the HEA specimen 
during tensile testing at various strain rates. The results show that these 
diagrams are relatively close to each other at the linear elastic stage. It 
emphasizes that the yield strength increases with an increasing strain 
rate [100,101], demonstrating a dependence on strain rates, as seen in 
Fig. 2(a). At elevated strain rates, atoms lack sufficient mobility for bond 
rearrangement, impeding their response to external forces and thus 
compromising the replenishment of energy expended in countering 
applied stresses, leading to diminished yield strength and plastic 
deformation. This phenomenon aligns with the findings by Ref. [102], 
who observed a comparable trend in the Al0.3CoCrFeNi HEAs alloy. 

Fig. 2. Stress-strain curves of AlCoCrCuFeNi HEA at various strain rates with a grain size of d = 8.09 nm (a). Evolution of total dislocation density in AlCoCrCuFeNi 
HEA during tensile deformation at different strain rates (b). Stress-strain-dislocation density (nm− 2) diagram for a strain rate of 2 × 1010 s− 1 at 300K with d = 8.09 
nm (c). Evolution of atomic composition in AlCoCrCuFeNi HEA under tensile loading at a strain rate of 5 × 109 s− 1 with the grain size of 8.09 nm and 700K (d).
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Fig. 2(a) illustrates the variation of Young’s modulus in the AlCoCrCu
FeNi HEAs specimen concerning strain rate. Young’s modulus gradually 
increases within the 108–109 s− 1 range, with a notable augmentation 
observed mainly in 1010 - 2 × 1010 s− 1. These results align with the 
findings of prior investigations conducted by Refs. [103,104]. Fig. 2(b) 
provides a comprehensive depiction of the impact of strain rates on 
dislocation evolution. During tension loading, there is a discernible 
trend of escalating dislocation duration. The continuum of dislocation 
length spans from the initial phase to the point of yield. Subsequently, 
there is notable variability in dislocation length during subsequent 
stages. While there is a modest augmentation in total dislocation length 
at lower strain rates (ranging from 108 to 109 s− 1), a pronounced in
crease is observed at higher rates (5 × 109–1010 s− 1). In broad terms, a 
positive correlation emerges between strain rate and total dislocation 
length. Consequently, it can be inferred that strain rates exert a signif
icant influence on the mechanical properties and deformation mecha
nisms of the AlCoCrCuFeNi HEAs alloy during tensile testing. 
Nevertheless, the influence of strain rate is comparatively lower than 
that of other factors such as temperature and grain size. Fig. 2(c) illus
trates the stress-strain-dislocation density diagram and highlights the 
complex deformation behavior of the AlCoCrCuFeNi HEA under extreme 
conditions. The initial high strength reflects the intrinsic resistance of 
the HEA’s multi-elemental structure to deformation, a hallmark of HEAs 
due to their lattice distortion and solid-solution strengthening. The 
subsequent softening and high dislocation density indicate that plastic 
deformation is accommodated by defect generation and possibly 

localized structural changes, such as amorphization or phase transitions, 
which are explored further in Fig. 2(d). The nanoscale grain size in
tensifies these effects, as grain boundaries act as barriers to dislocation 
motion and serve as sites for defect accumulation. Fig. 2(d) illustrates 
the dynamic structural evolution of the AlCoCrCuFeNi HEA under ten
sile loading. The marked decline in the FCC phase suggests that, 
although initially dominant, this structure is susceptible to destabiliza
tion under high strain rates and elevated temperatures. This transition is 
accompanied by a corresponding increase in the amorphous fraction, 
likely driven by defect accumulation and thermal activation at 700 K. In 
contrast, the relative stability of the BCC and HCP phases implies greater 
resistance to transformation, potentially due to their higher stacking 
fault energies or reduced sensitivity to shear-induced disorder. The 
slight increase in the HCP phase may be attributed to deformation 
twinning or stacking fault formation within the FCC phase mechanisms 
commonly observed in HEAs during tensile deformation. Fig. 2 (c-d)
Provide a comprehensive view of the AlCoCrCuFeNi HEA behavior 
under extreme tensile loading conditions. Fig. 2(c) highlights the me
chanical response and defect evolution, showing that the material un
dergoes significant plastic deformation with a high dislocation density, 
leading to strain softening after an initial peak stress. Fig. 2 (d) further 
illustrates the structural transformations associated with the observed 
deformation, notably the destabilization of the FCC phase and the 
increased formation of amorphous regions. The high strain rates (2 ×
1010 s− 1 in Figs. 2(c) and 5× 109 s− 1 in Fig. 2(d)) combined with a grain 
size of 8.09 nm intensify these effects, accelerating defect generation 

Fig. 3. The CNA of AlCoCrCuFeNi HEA with various strain rate values under tension deformation process.
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and promoting structural disorder. Additionally, the temperature dif
ference of 300 K in Fig. 2(c) versus 700 K in Fig. 2(d) plays a critical role, 
with the elevated temperature in Fig. 2(d) enhancing phase trans
formation and amorphization processes.

Fig. 3 illustrates the phase transformations occurring in AlCoCrCu
FeNi HEA specimens with a grain size of d = 8.09 nm across various 
strain rates. As stress reaches its peak in Fig. 3(a1-a7), several face- 
centered cubic structures undergo a transition into hexagonal close- 
packed and body-centered cubic structures. Notably, the proportion of 
FCC structures shifting in HEA samples becomes more pronounced with 
increasing strain rates, evidenced by the significant emergence of HCP 
and BCC structures in Fig. 3(a4, b4). Furthermore, Fig. 3(a1-b1) depicts 
the phase transition corresponding to a strain value of ε = 0.20. During 
this phase, various structures, such as BCC and HCP, were uniformly 
observed across all tissues analyzed. This observation underscores the 
pronounced influence of strain rates on the composition of amorphous 
and HCP structures, with their proportions notably escalating under 
heightened strain rates. Such augmentation can be attributed to the 
accumulation of internal stress within the specimen when subjected to 
elevated strain rates. Consequently, a discernible propensity towards 
phase transition becomes increasingly apparent with escalating strain 
rates.

Fig. 4 delineates the progression of dislocation in the AlCoCrCuFeNi 
HEA model with a lattice parameter of d = 8.09 nm under tensile testing 
conducted at various strain rates. At low strain levels (ε1 = 0.025), 
partial dislocations (green, Shockley) dominate the microstructure, 
especially in grain interiors, indicating that dislocation nucleation and 
propagation are the primary carriers of plasticity. As strain increases to 
ε2 = 0.2, dislocation density rises significantly, and more complex in
teractions such as the formation of stair-rod dislocations (purple) and 

perfect dislocations (dark blue) become evident. At lower strain rates at 
108 s− 1, dislocation activity remains localized, and dislocation lines are 
more distinct and separated. However, as the strain rate increases to 2 ×
1010 s− 1, a more disordered structure emerges, with overlapping dislo
cation networks and enhanced interaction between dislocations. This 
transition indicates a shift from isolated dislocations to collective motion 
and entanglement, leading to localized stress concentrations. The sub
figures A, B, and C further highlight diverse dislocation types. For 
instance, the coexistence of Shockley, perfect, and Hirth dislocations 
(green, dark blue, yellow) in confined regions suggests a high degree of 
dislocation interaction and transformation, reflecting the complex na
ture of plastic deformation in HEAs. Notably, stair-rod dislocations 
indicate junction formation during dislocation reactions, while Frank 
dislocations (cyan) imply vacancy clustering or void nucleation. Overall, 
the figure demonstrates that dislocation mechanisms in AlCoCrCuFeNi 
HEA are highly strain-rate and strain-level dependent. Low strain rates 
facilitate dislocation nucleation and glide, while high strain rates pro
mote dislocation multiplication, interaction, and structural disorder. 
This behavior underscores the need to tailor strain rate conditions to 
achieve desirable mechanical performance in HEAs. As anticipated, 
there is a notable escalation in the proportion of dislocations with rising 
strain rates, as depicted in Fig. 4(a1-a7). The findings also show that the 
Shockley dislocation is dominant in the evolution of dislocations. The 
grain interior looked denser at strain rates of 5 × 109 and 1010 s− 1. Thus, 
the strain rate significantly impacts the development and progression of 
dislocations [105,106].

Fig. 5 illustrates the distribution of atomic shear strain in AlCoCr
CuFeNi models with a diameter of 8.09 nm under stress testing at 300 K 
and various strain rates. The findings indicate that elevated Von Mises 
shear stress values tend to concentrate more prominently at grain 

Fig. 4. The dislocation system in the AlCoCrCuFeNi HEA under different strain rates in the tension deformation process.
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boundaries (GB) at the onset of yielding, as evidenced in Fig. 5(a1–a7). 
The onset of early deformation appears to initiate at grain boundaries 
(GBs), characterized by their lower atom density. As strain increases, 
Von Mises shear stress (VMSS) within grain interiors rises, indicating the 
initiation of phase transformations in Fig. 3 (b1–b7). Additionally, Fig. 2
(b) shows that local VMSS decreases with higher strain rates. VMSS 
reflects atomic mobility under loading; thus, limited relaxation time at 
elevated strain rates results in reduced VMSS. Moreover, higher strain 
rates enhance yield strength and dislocation density while restricting 
atomic mobility, which limits bond rearrangement and plastic defor
mation. These findings underscore the potential of designing strain-rate- 
sensitive HEAs for high-speed impact and aerospace applications.

3.2. Impact of grain size and temperature

This subsection delves into the influence of grain sizes and temper
ature variations on the mechanical properties and deformation mecha
nisms of AlCoCrCuFeNi HEA. Tension tests were conducted on samples 
with varying grain sizes and temperatures with a strain rate of 109 s− 1.

As depicted in Fig. 6(a), a stress-strain curve exhibits both elastic and 
plastic phases. Initially, in the elastic regime (stage I), the stress rises 
linearly until reaching the yield strength value at strain levels ranging 
from 0.035 to 0.05, depending on the grain size. During the subsequent 
plastic deformation stage (stage II), the stress consistently diminishes for 
all grain sizes. Beyond a strain of 0.075, the tensile stress stabilizes, 
becoming less reliant on strain, indicative of flow stress. Flow stress was 
determined as the average stress within the strain range of 0.075–0.2. 

Prior investigations have emphasized the significant influence of grain 
size d on flow stress in the plastic domain, highlighting the role of grain 
boundaries (GB) motion and dislocation propagation [107–109]. Fig. 6
(c) presents a stress-strain-dislocation density (nm− 2) diagram for the 
AlCoCrCuFeNi high-entropy alloy (HEA) under a strain rate of 109 s− 1 at 
300 K, with a grain size of 7.07 nm. The contour plot illustrates the 
relationship between stress (0–4 GPa), strain (0–0.2), and dislocation 
density (0.1109–0.2635 nm− 2), revealing peak stress of approximately 
4 GPa at a strain of 0.05, followed by a gradual decline to about 2 GPa, 
indicative of strain softening. Concurrently, the dislocation density in
creases from 0.1109 nm− 2 at low strains to a maximum of 0.2635 nm− 2 

at higher strains, reflecting significant defect accumulation driven by the 
high strain rate and nanoscale grain size, which limits recovery mech
anisms. In contrast, Fig. 6(d) depicts the evolution of atomic composi
tion in the same HEA under tensile loading at a strain rate of 109 s− 1, a 
temperature of 300 K, and a slightly larger grain size of 10.19 nm. The 
plot tracks the fractions of BCC, FCC, HCP, and amorphous phases, 
showing a marked decrease in the FCC phase from approximately 45 % 
to about 15 % with increasing strain. In contrast, the amorphous phase 
increases from approximately 5 %–10 %, while the BCC and HCP phases 
remain relatively stable at around 10 % and 5 %, respectively. This in
dicates that the FCC structure undergoes deformation-induced 
amorphization, likely driven by high strain rates and limited thermal 
activation at 300 K, highlighting the alloy’s structural instability under 
such conditions.

The graphical representation in Fig. 7 delineates the transformation 
of the face-centered cubic crystalline structure into hexagonal close- 

Fig. 5. The shear strain distribution of AlCoCuCrFeNi HEA with different strain rates under the tensile process.
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packed, body-centered cubic, and amorphous configurations during the 
tensile process. Concurrently, elastic energy accumulation within the 
material is progressive as strain levels escalate. Beyond the yield point, 
observations indicate a discernible transition within the polycrystalline 
specimen from the predominant FCC arrangement to a combination of 
HCP, BCC, and amorphous phases, attributable to the substantial dissi
pation of stored elastic energy across all samples. This empirical 
observation aligns with the findings elucidated in a prior investigation 
by Ref. [110], which examined the evolution of microstructures in both 
pure tungsten and graphite-tungsten composite samples. Fig. 7(a) elu
cidates the fundamental deformation characteristics within the inverse 
H-P region. The captured figure reveals that Shockley partial disloca
tions dominate the dislocation structure, particularly within grain in
teriors. This suggests that partial dislocation activity is the primary 
mechanism driving plastic deformation under the given conditions. This 
is especially notable considering the small grain diameter of 6.42 nm, 
which contrasts sharply with the significantly larger diameter of 12.48 
nm.

Fig. 8 depicts the rotation of specific grains under increasing strain, 
highlighted by black ellipses labeled a1–a4. Concurrently, grain 
boundary (GB) migration is observed with elevated strain levels, indi
cated by black rectangles b1–b4. These phenomena suggest that, in the 
inverse Hall–Petch regime, plastic deformation is primarily driven by 
the synergistic mechanisms of grain rotation and GB migration, in 
agreement with previous studies by Chen et al. [111] and Vu et al. [112]. 
Grain rotation and GB migration were identified through the sequential 
analysis of atomic configurations, where noticeable grain reorientation 
(a1–a4) and boundary displacement (b1–b4) were evident as strain 

progressed.
The dislocation distribution within the AlCoCrCuFeNi high-entropy 

alloys model with grain sizes ranging from 6.42 nm to 12.84 nm 
under tension testing conditions at 300 K, specifically at strain levels of 
0.05 and 0.20. Subfigures (a1-a8) within Fig. 8 depict the dislocation 
patterns observed in the AlCoCrCuFeNi HEA specimens at a strain level 
of 0.05. Notably, due to the polycrystalline nature of the material, dis
locations are primarily confined to grain boundaries (GBs) before the 
initiation of tensile simulation. This occurrence can be attributed to the 
distinct crystal orientations within each grain, leading to atomic rear
rangements and orientation shifts at the interfaces of these grain 
boundaries. Consequently, lattice discontinuities arise, facilitating the 
entrapment of dislocations at these interfaces.

As depicted in Fig. 6(b), the dislocation density is not initiated at zero 
upon the commencement of the tension test. After the strain reaches ε =
0.2, Fig. 9 (b1-b8) illustrates the distribution of dislocations. With 
increasing grain size, there is a notable augmentation in dislocation 
formation along the grain boundary and their subsequent propagation 
within the grain interior, accompanied by a pronounced phase transi
tion. When subjected to tension loading, dislocations extend and engage 
with the grain boundaries, resulting in their deterioration, mutual re
action, the genesis of new dislocations, or absorption by adjacent grain 
boundaries. Empirical observations indicate that dislocation density 
within the grain interior is notably higher in specimens with larger grain 
sizes than in those with smaller ones. Moreover, these precipitate dis
persions exhibit extended durations, encompassing broader scopes, and 
demonstrate increased particulate dimensions. The Shockley partial 
dislocation emerges as the prevailing configuration across all instances 

Fig. 6. Stress-strain curves for polycrystalline AlCoCrCuFeNi HEA at various grain sizes with a strain rate of 109 s− 1 (a). Evolution of total dislocation density in 
AlCoCrCuFeNi HEA during tensile deformation at various grain sizes (b). Stress-strain-dislocation density (nm− 2) diagram for a strain rate of 109 s− 1 at 300K with d 
= 7.07 nm (c). Evolution of atomic composition in AlCoCrCuFeNi HEA under tensile loading at a strain rate of 109 s− 1 with grain size at 10.19 nm and 300K (d).

H.-G. Nguyen et al.                                                                                                                                                                                                                             Materials Today Nano 31 (2025) 100662 

11 



[113]. Fig. 6(b) presents the dislocation density characterization of 
AlCoCrCuFeNi HEA within series d, providing insight into dislocation 
evolution. Initially (Stage I), dislocations predominantly localize at 
grain boundaries (GB), resulting in higher dislocation densities in 
smaller grain sizes due to elevated GB densities, as observed in Fig. 8
(a1-a8). Subsequently, during plastic deformation (Stage II), dislocation 
density experiences a rapid escalation within the Hall-Petch (H-P) re
gion associated with grain size while exhibiting near-constant levels 
across the spectrum from d = 6.42 nm–10.19 nm, with a marginal in
crease observed for d = 12.84 nm towards the latter stages. In materials 
characterized by small grain sizes, the absence of phase transitions stems 
from grain rotation and grain boundary (GB) motion, collectively 
contributing to a consistent dislocation density. Conversely, in inverse 
Hall-Petch (H-P) relationships, grain boundary (GB) migration and grain 
rotation emerge as the principal deformation mechanisms. In contrast, 
conventional H-P relationships are characterized by dislocation activity 
as the primary deformation feature. Concurrently, stacking faults (SF) 
and precipitate dispersions (PD) are continually generated and assimi
lated by the GB, thereby fostering an augmentation in dislocation den
sity during the tensile process, particularly evident in instances featuring 
larger grain sizes.

The evaluation of pivotal deformation mechanisms within the Hall- 
Petch (H-P) and inverse H-P regimes necessitates the calculation of 
local von Mises shear strain (VMSS), as outlined in Ref. [114]. Fig. 9

delineates the gradual deformation progression under varied strain 
conditions for diverse grain sizes, with grain sizes spanning from d =
6.42 nm to d = 12.84 nm as indicative of the inverse H-P and H-P re
gimes, respectively. Remarkably, the visual representation employs 
color differentiation for atoms contingent upon their corresponding 
local VMSS values, with red indicating elevated VMSS values. Fig. 9
(a2-b2) illustrates the localized Von Mises stress at the yield point, 
revealing a notably high initial VMSS value concentrated at the grain 
boundary (GB). This observation implicates the GB predominantly in the 
initial deformation process of the AlCoCrCuFeNi HEA specimen. How
ever, it is discerned that the extent of the GB’s influence varies between 
the two specimens under scrutiny. Notably, in the case of the specimen 
featuring a grain size of d = 6.42 nm in Fig. 9(a7-b7), the heightened 
VMSS is primarily localized at the GBs. The progression of strain is 
accompanied by the detection of GB migration and grain rotation, as 
evidenced by the sequential evolution from black ellipse a1 to a8 and 
rectangle b1 to b8 in Fig. 7. This observation strongly suggests that the 
primary mechanism governing deformation involves grain rotation and 
GB migration. As the grain size (d) reaches 12.84 nm, a substantial Von 
Mises stress is prominently evident both at the grain boundary (GB) and 
along the glide plane within the grain interior, correlating with 
increasing strain levels. These phenomena explain the evolution and 
transition of phases and dislocations observed in Fig. 7, particularly in 
configurations associated with larger grain sizes (d). Consequently, the 

Fig. 7. The CNA of polycrystalline of AlCoCrCuFeNi HEA with different grain size values under tension process.
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progressive phase transitions contribute to the elevation of VMSS within 
the grain interior concurrent with the augmentation of grain size [115]. 
The transition from Hall-Petch to inverse Hall-Petch behavior was 
identified. While finer grains enhance strength due to grain boundary 
strengthening, they suppress dislocation activity; in contrast, coarser 
grains facilitate dislocation propagation. These findings offer valuable 
guidance for optimizing grain size in nanostructured HEAs to balance 
strength and ductility.

Fig. 10(a) illustrates a stress-strain-dislocation density (nm− 2) dia
gram for the AlCoCrCuFeNi HEA under a strain rate of 109 s− 1 at 700 K, 
with a grain size of 7.07 nm. The contour plot reveals the interplay 
between stress (0–3 GPa), strain ԑ = (0–0.2), and dislocation density 
(0.0900–0.2435 nm− 2), showing peak stress of approximately 3 GPa at a 
strain ԑ = 0.05, followed by a gradual decline to 1.5 GPa, indicative of 
strain softening likely due to dynamic recrystallization or phase trans
formations at the elevated temperature. The dislocation density in
creases from 0.0900 nm− 2 at low strains to a maximum of 0.2435 nm− 2 

at higher strains, reflecting significant defect accumulation driven by the 
high strain rate and nanoscale grain size, which restricts recovery 
mechanisms despite the higher temperature. Complementing this, 
Fig. 10(b) depicts the evolution of dislocation density (nm− 2) under 
tensile loading across various temperatures (300 K–1000 K) for 
AlCoCrCuFeNi HEA. The plot shows multiple curves, each representing a 
different temperature, with dislocation density generally peaking 

between 0.15 and 0.25 nm− 2 at strains ԑ = (0.05–0.10), followed by 
fluctuations that suggest dynamic interactions between dislocation 
generation and annihilation. Notably, higher temperatures exhibit 
slightly lower peak dislocation densities and more pronounced fluctu
ations, likely due to enhanced thermal activation facilitating recovery 
processes such as dislocation climb and annihilation, providing insight 
into the temperature-dependent deformation behavior of the AlCoCr
CuFeNi HEA. In addition, the evolution of dislocation density within 
AlCoCrCuFeNi high-entropy alloy specimens characterized by diverse 
grain dimensions facilitates a comprehensive examination of sample 
advancement. In an earlier study [116], dislocation density was deter
mined by quantifying the cumulative length of dislocations per unit 
volume. The dislocation density curves exhibit a notable surge across all 
samples until the material attains its yield point. The density of dislo
cations gradually increases with significant fluctuations throughout the 
remainder of the stress period.

Fig. 11. Presents the von Mises shear strain distribution across 
AlCoCrCuFeNi high-entropy alloy specimens at various temperatures 
during stress testing conducted at a strain rate of 109 s− 1 and with a 
grain size (d) of 8.09 nm. Atom coloring corresponds to VMSS values, 
with red indicating the highest von Mises shear strain. The initial 
snapshot depicts the specimen’s yield point. Subsequent snapshots in 
Fig. 11(a1-a8) illustrate that an increase in strain rate corresponds to a 
concurrent rise in yield strain. The local shear strain begins to nucleate 

Fig. 8. The dislocation distribution of AlCoCrCuFeNi HEA with various grain sizes under the tension process.
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at the TB zone and spreads across the grain until it is blocked by 
neighboring TBs, resulting in shear bands. The second snapshot depicts 
the deformation at a strain of 0.2, as seen in Fig. 11(b1-b8). The shear 
strain reduces as the strain rate increases. It can be explained that atoms 
do not have enough time to cause bond rearrangement at high strain 

rates. Hence, the atoms with high shear strain values decrease as strain 
rates increase. Elevated temperatures result in material softening, 
decreased yield strength, and increased amorphization, underscoring 
the importance of thermal stability in maintaining mechanical perfor
mance under high-temperature conditions.

Fig. 9. The shear strain distribution of AlCoCuCrFeNi HEA with different grain sizes under tension process.

Fig. 10. Stress-strain-dislocation density diagram for a strain rate of 109 s− 1 at 700K with grain size d = 7.07 nm (a). The dislocation density under the tension 
process with various temperatures of AlCoCrCuFeNi HEA (b).
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The observed phenomenon can be attributed to a notable augmen
tation in phase transformation from the FCC phase to an alternative 
structure after stress peaks, thereby leading to a delayed expansion of 
dislocation density. Furthermore, the data indicate a positive correlation 
between dislocation density and temperature, aligning with the dynamic 
response exhibited by the samples. 

B. Results of machine learning

Table 3 presents a detailed comparison of hyperparameters across six 
deep learning models: Feed Forward Neural Network (FFNN), Con
volutional Neural Network (CNN), Long Short-Term Memory (LSTM), 

Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit 
(GRU), and Recurrent Neural Network (RNN). The FFNN is configured 
with three hidden layers of 400 neurons each, a batch size of 32, a 
dropout rate of 0.25, and a learning rate of 10-− 4, optimized by Adam, 
resulting in 323,201 parameters (1.23 MB). The CNN model includes 
four hidden layers with 356 neurons, a batch size of 32, a dropout rate of 
0.25, and a learning rate of 10− 4, optimized by Adam, totaling 
3,206,801 parameters (12.23 MB). The BiLSTM model, equipped with 
bidirectional layers, consists of 3 hidden layers with 400 neurons each, a 
batch size of 20, a dropout rate of 0.25, a learning rate of 10− 4, and 
utilizes the Adam optimizer. It has the highest parameter count among 
models, totaling 8,973,601 (34.23 MB), indicating the greatest model 

Fig. 11. The shear strain distribution of AlCoCuCrFeNi HEA with different temperatures under the deformation process.

Table 3 
Hyperparameters and model configurations.

Hyperparameters RNN CNN BiLSTM LSTM FFNN GRU

Hidden layers 3 4 3 3 3 3
Neurons number 400 356 400 400 400 400
Batch size 20 32 20 32 32 20
Dropout 0.25 0.25 0.25 0.25 0.25 0.25
Learning rate 10− 4 10− 4 10− 4 10− 4 10− 4 10− 4

Optimizer Adam Adam Adam Adam Adam Adam
Total parameters 802001 (3.06 MB) 128161 (500.63BKB) 8973601 (34.23 MB) 3206801 (12.23BM) 323201 (1.23 MB) 2408801 (9.19 MB)
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complexity. In comparison, the GRU model also has 3 hidden layers with 
400 neurons, a batch size of 20, a dropout rate of 0.25, a learning rate of 
1e-4, and the Adam optimizer, with a total of 2,408,801 parameters 
(9.19 MB). The RNN model, with similar settings, holds 802,001 pa
rameters (3.06 MB), marking it as the least complex. This comparison 
underscores the BiLSTM model’s greater complexity due to its parameter 
volume, with the RNN as the simplest by this metric. Among the eval
uated models, the GRU architecture achieved the highest predictive 
accuracy, with an R2 of 0.995, MAE of 0.047, and RMSE of 0.063, 
demonstrating its robustness in learning complex relationships from MD 
data.

3.3. Experimental results

Table 4 presents the performance comparison of various machine 
learning models for stress value prediction during Stage 1. The GRU 
model demonstrates the best performance, with the lowest Mean Ab
solute Error (MAE) of 0.047 and Root Mean Square Error (RMSE) of 
0.063. Additionally, it achieves the highest R-squared (R2) value of 
0.995, indicating excellent predictive accuracy and minimal error. This 
highlights the superior performance of the GRU model compared to 
other models, including LR, SVR, GBR, FFNN, CNN, LSTM, BiLSTM, and 
RNN, in predicting stress values.

Additionally, Fig. 12(a–b) above highlights the GRU model’s 

Table 4 
Comparative analysis of machine learning predictive models for stress values (stage 1).

Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN

MAE 0.422 0.202 0.91 0.092 0.178 0.072 0.055 0.047 0.048
RMSE 0.615 0.298 1.25 0.12 0.267 0.095 0.073 0.063 0.063
R2 0.1 0.85 0.98 0.98 0.9 0.99 0.99 0.995 0.995

Fig. 12. The significance of features in tensile deformation during the training process (a) and validation (b). The stress prediction from the GRU model (c) and the 
variance of the GRU model prediction for stress values compared to actual observation (d).
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superior performance in predicting the HEA material’s stress values. 
Fig. 12(a) illustrates a scatter plot of predicted and actual stress values, 
showing the GRU model’s performance. The red crosses represent the 
predicted values by the GRU model, while the blue line indicates the 
perfect prediction line where predicted values equal actual values. The 
close alignment of the red crosses along the blue line demonstrates the 
high accuracy of the GRU model in predicting stress values with minimal 
deviation from the actual values. Fig. 12(b) displays the GRU model’s 
prediction of stress values over a large dataset. The plot shows the 
predicted dislocation density versus the number of validated data points. 
Blue stars represent the GRU model’s predictions, while red crosses 
indicate the observed values. The GRU model’s predictions closely 
follow the observed values, showcasing its ability to accurately capture 
the variance and trends within the data. The model maintains high 
predictive accuracy across the entire range of data points, further 
emphasizing its robustness and effectiveness in handling complex me
chanical property predictions for HEA materials. These figures under
score the GRU model’s superior performance in accurately predicting 
stress values, demonstrating its capability to learn and generalize well 
from the provided data.

Fig. 12(c–d) above shows the importance of permutation on multi
collinear features concerning stress values for the training set (c) and the 
test set (d). In this analysis, the most important feature for predicting 
stress is identified as strain, indicated by the most significant decrease in 
accuracy score when this feature is permuted. Conversely, grain size is 

the least important feature, exhibiting the most minor decrease in ac
curacy score upon permutation. The other features, strain rate and 
temperature, are of intermediate importance. The feature importance 
ranking remains consistent across the training and test sets. Strain 
consistently emerges as the most critical feature, followed by strain rate, 
temperature, and grain size. This consistency signifies that the model 
effectively understands the hidden representations of the features, 
capturing the relationship between the input features and the output 
(stress) reliably. Such robustness in maintaining feature importance 
across different datasets underscores the model’s capability to gener
alize and produce accurate predictions.

Fig. 13 presents partial dependence plots (PDPs) that illustrate the 
relationships between the input features (strain, temperature, grain size, 
and strain rate) and the predicted stress values, helping to discern 
whether these correlations are linear or non-linear. The plot for strain 
shows a steep initial increase in stress values up to about 0.2 strain, 
followed by a more gradual rise, indicating a non-linear relationship 
where the stress response is more sensitive at lower strain levels. The 
temperature plot reveals a nearly linear negative correlation, with stress 
values decreasing consistently as temperature increases. Grain size ex
hibits a non-linear negative relationship with stress, where stress de
creases sharply at smaller grain sizes and tapers off at larger sizes. The 
strain rate plot also indicates a non-linear relationship, with a sharp 
initial increase in stress that becomes more gradual at higher strain 
rates. These PDPs highlight the complex interplay of factors affecting 

Fig. 13. The partial dependence between the stress values and a set of features of interest.
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stress predictions, with strain and strain rate showing strong non-linear 
relationships, temperature displaying a linear correlation, and grain size 
having a diminishing negative effect. This detailed understanding en
hances the interpretability of the model’s predictions.

Table 5 presents the performance comparison of various machine 
learning models when directly trained to predict dislocation values from 
Stage 2. The CNN model stands out with the best performance, achieving 
the lowest Mean Absolute Error (MAE) of 0.02, the lowest Root Mean 
Square Error (RMSE) of 0.028, and a high R-squared (R2) value of 0.81, 
indicating effective predictive accuracy. In contrast, all other models 
exhibited poor performance. For instance, LR, SVR, GBR, FFNN, LSTM, 
BiLSTM, GRU, and RNN models failed to achieve similarly low MAE and 
RMSE values, with the LR model even showing a negative R2 value of 
− 0.11, indicating a model worse than a simple mean prediction. Except 
for CNN, this poor performance across models highlights the challenges 
machine learning algorithms face in learning data representation with 
limited data, resulting in inadequate predictions. This underscores the 
difficulty of training models directly on the dislocation dataset from 
Stage 2, where limited data impacts most algorithms’ learning and 
predictive capabilities.

Table 6 demonstrates the significant benefits of using transfer 
learning for predicting dislocation values by fine-tuning pre-trained 
models from Stage 1 on the limited dataset of Stage 2. This approach 
markedly improves the performance of all models compared to training 
directly on the limited data. The FFNN model shows improvement with 
an MAE of 0.399, RMSE of 0.073, and an R2 value of 0.92. The CNN 

model demonstrates significant enhancement with an MAE of 0.11, 
RMSE of 0.0196, and an R2 value of 0.82. The LSTM model also im
proves, achieving an MAE of 0.397, an RMSE of 0.074, and an R2 value 
of 0.92. The BiLSTM model performs better with an MAE of 0.075, RMSE 
of 0.101, and an R2 value of 0.93. The GRU model shows the best per
formance, with an MAE of 0.009, RMSE of 0.011, and an R2 value of 
0.973, indicating excellent predictive accuracy. The RNN model also 
benefits from transfer learning, with an MAE of 0.069, RMSE of 0.0129, 
and an R2 value of 0.93. The LR, SVR, and GBR models did not apply in 
this scenario. This table highlights the effectiveness of transfer learning, 
where leveraging pre-trained models from Stage 1 and fine-tuning them 
on the Stage 2 dataset leads to significant performance improvements. 
Notably, the GRU model performs best, demonstrating the most sub
stantial gains in predictive accuracy and minimal error rates. This 
approach effectively addresses training limitations with limited data by 
utilizing learned representations from earlier stages, enhancing model 
performance across all tested architectures.

Furthermore, as shown in Fig. 14, the R2 comparison between direct 
training and transfer learning for all models demonstrates significant 
performance improvements when applying transfer learning with pre- 
trained models from Stage 1. The FFNN model’s R2 value improved 
from approximately 0.23 with direct training to about 0.92 with transfer 
learning. Similarly, the.

CNN model saw an improvement from around 0.81 to 0.82. The 
LSTM model’s R2 increased from about 0.74 to 0.92, while the BiLSTM 
model’s R2 value rose from roughly 0.47 to 0.93. The GRU model 

Table 5 
Performance comparison for machine learning predictive models trained directly.

Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN

MAE 0.041 0.04 0.074 0.042 0.02 0.027 0.03 0.036 0.02
RMSE 0.053 0.048 0.1 0.053 0.028 0.329 0.399 0.0453 0.0256
R2 − 0.11 0.22 0.94 0.229 0.81 0.743 0.47 0.28 0.873

Table 6 
Evaluation of machine learning predictive models using a pre-trained model.

Evaluation LR SVR GBR FFNN CNN LSTM BiLSTM GRU RNN

MAE – – – 0.399 0.11 0.397 0.075 0.009 0.069
RMSE – – – 0.073 0.0196 0.074 0.101 0.011 0.0129
R2 – – – 0.92 0.82 0.92 0.93 0.973 0.93

Fig. 14. The R2 comparison between two approaches, direct training and using the pre-trained model to predict dislocation values.
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exhibited the most significant enhancement, with its R2 value soaring 
from about 0.28 to 0.973, marking the best performance among all 
models. The RNN model also showed improvement, with its R2 value 
increasing from around 0.87 to 0.93. These results underscore the 
effectiveness of transfer learning in enhancing model performance by 
leveraging pre-trained models from Stage 1, especially when dealing 
with limited data in Stage 2.

Fig. 15 compares dislocation density predictions using the GRU 
model trained directly (top) and the pre-trained GRU model (bottom). 
The top plot illustrates that the GRU model trained directly on the 
limited dataset failed to accurately predict the dislocation density, as 

indicated by the significant deviations between the observations (red) 
and the predictions (blue). In contrast, the bottom plot demonstrates the 
superior performance of the pre-trained GRU model. The pre-trained 
model, fine-tuned with the limited data, closely matches the observed 
dislocation densities, showcasing its enhanced predictive accuracy and 
ability to generalize better from the pre-trained weights.

Fig. 16(a–b) illustrates the variance in the GRU model’s prediction of 
dislocation values compared to actual observations when trained 
directly (a) and using a pre-trained model (b). Fig. 16 (a) plot shows that 
the GRU model trained directly on the limited dataset fails to predict 
dislocation densities accurately, as evidenced by the significant 

Fig. 15. The dislocation prediction from the GRU model by direct training (a) and transfer learning (b).
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deviation from the actual values along the vertical axis, indicating poor 
correlation. In contrast, the right plot demonstrates the superior per
formance of the pre-trained GRU model, where the predicted values 
closely follow the actual values along the diagonal line. This close 
alignment signifies a strong correlation and accurate prediction of 
dislocation densities, highlighting the effectiveness of using a pre- 
trained model to improve prediction accuracy. Consequently, Figs. 15 
and 16(a–b), along with the R2 comparison chart Fig. 14, highlight the 
significant benefits of transfer learning using a pre-trained model over 
direct training, particularly for the GRU model. This comprehensive 
analysis underscores the effectiveness of transfer learning in enhancing 
model performance, mainly when data is limited. The GRU model stands 
out, demonstrating the most substantial improvement and superior 
performance, making it the most effective model for predicting dislo
cation densities in this study.

Fig. 16(c–d) presents the permutation importance of multicollinear 
features with the dislocation density for the training set (c) and the test 
set (d). The analysis identifies the most and least important features for 
predicting dislocation density. The most important feature is grain size, 
which shows the highest decrease in accuracy score when permuted, 

indicating its significant impact on the model’s predictions. The least 
important feature is temperature, as it exhibits the smallest decrease in 
accuracy score, suggesting a minimal effect on the prediction of dislo
cation density. The consistency of feature importance between the 
training and validation sets highlights the robustness of the model. Both 
sets show similar importance rankings for the features, reinforcing the 
model’s ability to understand and capture the relationship between each 
input feature and the output dislocation density. This consistency sug
gests that the model generalizes well from training to validation, 
maintaining reliable performance and interpretability across different 
data sets.

Fig. 17 presents the partial dependence plots of dislocation values for 
different input features: strain, temperature, grain size, and strain rate. 
These plots provide detailed insights into the relationship between each 
feature and the predicted dislocation values, indicating whether these 
relationships are linear or non-linear. The top-left plot shows the partial 
dependence of dislocation values on strain. The relationship is non- 
linear, with dislocation values increasing with strain up to approxi
mately 0.4, after which the values plateau and slightly decrease. This 
indicates that strain significantly impacts dislocation values up to a 

Fig. 16. The variance of the GRU model prediction for dislocation values compared to actual observation by direct training (a) and transfer learning (b). The feature 
importance regarding dislocation density during training (c) and validation (d).
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certain point, beyond which its effect stabilizes. The top-right plot de
picts the partial dependence on temperature. This relationship is pre
dominantly linear, with dislocation values decreasing steadily as 
temperature increases. This suggests higher temperatures are associated 
with lower dislocation densities, indicating a linear inverse correlation. 
The bottom-left plot illustrates the partial dependence on grain size, 
showing a solid nonlinear relationship. Dislocation values increase 
sharply with grain size initially and continue to rise steadily, indicating 
that larger grain sizes are associated with higher dislocation densities. 
This strong positive correlation highlights the significant impact of grain 
size on dislocation values. The bottom-right plot shows the partial 

dependence on strain rate. The relationship is non-linear, with a steep 
initial decline in dislocation values as the strain rate increases, followed 
by a more gradual decrease. This indicates that higher strain rates 
initially lead to lower dislocation densities, but the effect diminishes at 
higher strain rates. These partial dependence plots reveal that the re
lationships between input features and dislocation values are a mix of 
linear and non-linear correlations. Strain and strain rate exhibit non- 
linear relationships, while temperature shows a linear inverse correla
tion. Grain size has a solid non-linear positive correlation with dislo
cation values. These detailed insights help us understand how each input 
feature influences the output, highlighting the complex nature of the 

Fig. 17. The partial dependence between the dislocation values and a set of features of interest.

Table 7 
A comparative analysis of the findings from this study and previous research.

Materials Strain rate (s− 1) Temperature 
(K)

Strain (%) Strain (Gpa) Predictive model Method Reference

AlCoCrCuFeNi 108 - 2 × 1010 300–1000 0.2 3.12–5.75 LR, SVR, GRB, FFNN, CNN, LSTM, BiLSTM, GRU, 
RNN

MD and ML This study

HEA – – – – ANN, SVM, GA MD Durodola et al. 
[30]

FeCoNiCrCu – 300–1273 – – GMM, MCMC ML Rao et al. [32]
HEA – 1500–2300 – 0.32–1.62 NN, ANN, SVM, GP, GAN, CART MD, ML Liu et al. [37]
AlCoCrCuFeNi 10− 3 300–1473 0.27 1.482–1.795 – Exp Deng et al. [45]
CuFeNiCrCo 107–109 300–3000 0.1–0.24 7.66–15.14 DNN, SVM, KELM, ELM MD, ML Zhang et al. [46]
CoCrFeNi 5 × 10− 5 – 6.5 ×

103
200–1473 0.33 – – MD and 

Exp
Cao et al. [60]
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interactions in the model.
Research on these alloy systems has demonstrated a range of me

chanical behavior under tension testing, influenced by variables such as 
grain size, temperature, and strain rate, facilitated by machine learning 
techniques. This study offers an in-depth analysis of high-entropy alloys, 
distinguishing itself by incorporating tensile deformation models to 
predict stress and dislocation density through a novel combination of 
molecular dynamics simulation and machine learning. The tensile 
strength results corroborate those reported by Li et al. [14], and while 
temperature and strain rate measurements exceed those documented by 
Deng et al. [55], they are consistent with Zhang et al. [57]. The com
parison of mechanical behavior across various studies, summarized in 
Table 7, supports the study’s conclusions and reinforces its alignment 
with existing research. These findings are anticipated to provide valu
able insights for future studies on AlCoCrCuFeNi high-entropy alloys.

4. Conclusions

The mechanical behavior and deformation mechanism of AlCoCr
CuFeNi high-entropy alloy samples are explored by integrating molec
ular dynamics simulations and machine learning assistance. This 
investigation scrutinizes the impact of temperature variations, tension 
strain rates, and grain size on the mechanical properties. Elevated 
temperatures induce softening in the AlCoCrCuFeNi HEA sample, lead
ing to a decrease in interatomic connectivity. Consequently, Young’s 
modulus, average flow stress, and ultimate stress exhibit reductions. 
Moreover, the increase in temperature expands the amorphization zone, 
shortening the overall dislocation density. The proposed ML framework, 
particularly the GRU-based model enhanced through transfer learning, 
not only demonstrates high predictive accuracy for stress and disloca
tion density in AlCoCrCuFeNi HEAs but also establishes a generalizable 
pipeline for accelerating mechanical property prediction in complex 
alloys. Given the same set of input features derived from mechanical 
characteristics, the ML model effectively learns underlying correlations, 
and transfer learning further enhances its adaptability to predict new 
target properties without requiring retraining from scratch. Conse
quently, by significantly reducing simulation time, the framework en
ables rapid screening of candidate compositions and processing 
conditions in materials discovery workflows. Compared to prior studies 
that rely solely on physics-based modeling or empirical fits, our 
approach integrates molecular dynamics and deep learning to capture 
nonlinear, multivariate dependencies with high fidelity. Furthermore, 
while previous research [17,57,87,88] has applied ML to similar prob
lems, our dual-stage, transfer-learning-enhanced model uniquely 
bridges atomic-level simulations and predictive analytics, offering a 
scalable solution for high-throughput computational materials design.

This study presents a comprehensive workflow that leverages 
transfer learning by utilizing pre-trained models from stress prediction 
(Stage 1) to enhance the prediction of dislocation densities (Stage 2). 
The workflow begins with obtaining detailed MD simulation data to 
train models for stress prediction. The pre-trained models are then fine- 
tuned with additional data to predict dislocation densities, effectively 
reducing the total simulation time.

The benefits of this workflow are evident in the significant 
improvement of evaluation metrics for all machine learning models. The 
comparison of direct training and transfer learning shows a substantial 
enhancement in R2 values, underscoring the effectiveness of transfer 
learning in capturing the complex relationships in the data. This 
approach improves predictive accuracy and ensures robust model per
formance with limited data.

Among all the machine learning models evaluated, the GRU model 
stands out as the best performer in both stages, demonstrating superior 
predictive capabilities for stress and dislocation densities. The GRU 
model consistently achieved the highest R2 values and lowest errors, 
making it the most effective model in this study.

Furthermore, the study provides a detailed understanding of the 

importance of features and relationships between input features and 
outputs (stress and dislocation). Using the importance of permutation 
features, we identified grain size as the most critical feature and tem
perature as the least important. Partial dependence analysis further 
revealed the nature of these relationships, highlighting both linear and 
non-linear correlations between the features and the outputs.

In summary, this study significantly improves dislocation prediction 
by reducing MD simulation time by fourfold (from 118 days to 29 days), 
thus saving time and cost. It demonstrates the robustness of the GRU 
model for accurate predictions and enhances interpretability through 
detailed feature analysis. This approach offers a promising framework 
for efficiently predicting mechanical properties in high-entropy alloys 
and other complex materials.
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