Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems, 32, 2019.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.
Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages 8821-8831. PMLR, 2021.
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684-10695, 2022.
Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3617-3621. IEEE, 2019.
Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. Advances in Neural Information Processing Systems, 33:17022-17033, 2020.
Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. In Robotics: Science and Systems, 2023.
Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Conference on Robot Learning, pages 2165-2183. PMLR, 2023.
Abby O'Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.
Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation models as effective robot imitators. In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=lFYj0oibGR.
Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213, 2024.
Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. OpenVLA: An open-source vision-language-action model. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=ZMnD6QZAE6.
Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Applications, challenges, and the future. The International Journal of Robotics Research, page 02783649241281508, 2023.
Ricardo Silva Peres, Xiaodong Jia, Jay Lee, Keyi Sun, Armando Walter Colombo, and Jose Barata. Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE access, 8:220121-220139, 2020.
Andrius Dzedzickis, Jurga Subačiūte-Žemaitien. e. Ernestas Šutinys, Urte. Samukaite-Bubnien. e. and Vytautas Bučinskas. Advanced applications of industrial robotics: New trends and possibilities. Applied Sciences, 12(1):135, 2021.
Mitsuo Kawato, Francesca Gandolfo, Hiroaki Gomi, and Yasuhiro Wada. Teaching by showing in kendama based on optimization principle. In International Conference on Artificial Neural Networks, pages 601-606. Springer, 1994.
Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural information processing systems, 21, 2008.
Kai Ploeger, Michael Lutter, and Jan Peters. High acceleration reinforcement learning for real-world juggling with binary rewards. In Conference on Robot Learning, pages 642-653. PMLR, 2021.
Kai Ploeger and Jan Peters. Controlling the cascade: Kinematic planning for n-ball toss juggling. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1139-1144. IEEE, 2022.
Felix von Drigalski, Devwrat Joshi, Takayuki Murooka, Kazutoshi Tanaka, Masashi Hamaya, and Yoshihisa Ijiri. An analytical diabolo model for robotic learning and control. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 4055-4061. IEEE, 2021.
Zulfiqar Zaidi, Daniel Martin, Nathaniel Belles, Viacheslav Zakharov, Arjun Krishna, Kin Man Lee, Peter Wagstaff, Sumedh Naik, Matthew Sklar, Sugju Choi, et al. Athletic mobile manipulator system for robotic wheelchair tennis. IEEE Robotics and Automation Letters, 8(4):2245-2252, 2023.
Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.
Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic approach to robot table tennis. Adaptive Behavior, 19(5):359-376, 2011.
Dieter Büchler, Simon Guist, Roberto Calandra, Vincent Berenz, Bernhard Schölkopf, and Jan Peters. Learning to play table tennis from scratch using muscular robots. IEEE Transactions on Robotics, 2022.
Emilio Cartoni, Francesco Mannella, Vieri Giuliano Santucci, Jochen Triesch, Elmar Rueckert, and Gianluca Baldassarre. Real-2019: Robot open-ended autonomous learning competition. In Hugo Jair Escalante and Raia Hadsell, editors, Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123 of Proceedings of Machine Learning Research, pages 142-152. PMLR, 08-14 Dec 2020. URL https://proceedings.mlr.press/v123/cartoni20a.html.
Seungmoon Song, Łukasz Kidziński, Xue Bin Peng, Carmichael Ong, Jennifer Hicks, Sergey Levine, Christopher G Atkeson, and Scott L Delp. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. Journal of neuroengineering and rehabilitation, 18:1-17, 2021.
Nico Gürtler, Sebastian Blaes, Pavel Kolev, Felix Widmaier, Manuel Wuthrich, Stefan Bauer, Bernhard Schölkopf, and Georg Martius. Benchmarking offline reinforcement learning on real-robot hardware. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=3k5CUGDLNdd.
Niklas Funk, Charles Schaff, Rishabh Madan, Takuma Yoneda, Julen Urain De Jesus, Joe Watson, Ethan K Gordon, Felix Widmaier, Stefan Bauer, Siddhartha S Srinivasa, et al. Benchmarking structured policies and policy optimization for real-world dexterous object manipulation. IEEE Robotics and Automation Letters, 7(1):478-485, 2021.
Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, et al. Train offline, test online: A real robot learning benchmark. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 9197-9203. IEEE, 2023.
Vittorio Caggiano, Guillaume Durandau, Huwawei Wang, Alberto Chiappa, Alexander Mathis, Pablo Tano, Nisheet Patel, Alexandre Pouget, Pierre Schumacher, Georg Martius, et al. Myochallenge 2022: Learning contact-rich manipulation using a musculoskeletal hand. In NeurIPS 2022 Competition Track, pages 233-250. PMLR, 2023.
Sriram Yenamandra, Arun Ramachandran, Mukul Khanna, Karmesh Yadav, Devendra Singh Chap-lot, Gunjan Chhablani, Alexander Clegg, Theophile Gervet, Vidhi Jain, Ruslan Partsey, Ram Ramrakhya, Andrew Szot, Tsung-Yen Yang, Aaron Edsinger, Charlie Kemp, Binit Shah, Zsolt Kira, Dhruv Batra, Roozbeh Mottaghi, Yonatan Bisk, and Chris Paxton. The homerobot open vocab mobile manipulation challenge. In Thirty-seventh Conference on Neural Information Processing Systems: Competition Track, 2023. URL https://aihabitat.org/challenge/2023_homerobot_ovmm/.
Bradley E Bishop and Mark W Spong. Vision based control of an air hockey playing robot. IEEE Control Systems Magazine, 19(3), 1999.
Darrin C Bentivegna, Christopher G Atkeson, and Gordon Cheng. Learning tasks from observation and practice. Robotics and Autonomous Systems, 47(2-3):163-169, 2004a.
Darrin C Bentivegna, Christopher G Atkeson, ALEŠ UDE, and Gordon Cheng. Learning to act from observation and practice. International Journal of Humanoid Robotics, 1(04):585-611, 2004b.
Akio Namiki, Sakyo Matsushita, Takahiro Ozeki, and Kenzo Nonami. Hierarchical processing architecture for an air-hockey robot system. In 2013 IEEE International Conference on Robotics and Automation, pages 1187-1192. IEEE, 2013.
Kazuki Igeta and Akio Namiki. Algorithm for optimizing attack motions for air-hockey robot by two-step look ahead prediction. In IEEE/SICE International Symposium on System Integration, pages 465-470, 2017. ISBN 9781509033294. doi: 10.1109/SII.2016.7844042.
Puze Liu, Davide Tateo, Haitham Bou-Ammar, and Jan Peters. Efficient and reactive planning for high speed robot air hockey. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 586-593. IEEE, 2021.
Koichiro Tadokoro, Shotaro Fukuda, and Akio Namiki. Development of air hockey robot with high-speed vision and high-speed wrist. Journal of Robotics and Mechatronics, 34(5):956-964, 2022.
Kazuki Igeta and Akio Namiki. A decision-making algorithm for an air-hockey robot that decides actions depending on its opponent player's motions. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 1840-1845. IEEE, 2015.
Ahmad AlAttar, Louis Rouillard, and Petar Kormushev. Autonomous air-hockey playing cobot using optimal control and vision-based bayesian tracking. In International Conference Towards Autonomous Robotic Systems (TAROS), 2019. ISBN 9783030253318. doi: 10.1007/978-3-030-25332-5_31.
Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot reinforcement learning on the constraint manifold. In Conference on Robot Learning, pages 1357-1366. PMLR, 2022.
Annie Xie, Dylan P. Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representations to influence multi-agent interaction. In Conference on Robot Learning (CoRL), 2020.
Piotr Kicki, Puze Liu, Davide Tateo, Haitham Bou-Ammar, Krzysztof Walas, Piotr Skrzypczyński, and Jan Peters. Fast kinodynamic planning on the constraint manifold with deep neural networks. IEEE Transactions on Robotics, 2023.
Puze Liu, Haitham Bou-Ammar, Jan Peters, and Davide Tateo. Safe reinforcement learning on the constraint manifold: Theory and applications. arXiv preprint arXiv:2404.09080, 2024.
Caleb Chuck, Carl Qi, Michael J Munje, Shuozhe Li, Max Rudolph, Chang Shi, Siddhant Agarwal, Harshit Sikchi, Abhinav Peri, Sarthak Dayal, et al. Robot air hockey: A manipulation testbed for robot learning with reinforcement learning. arXiv preprint arXiv:2405.03113, 2024.
Julius Jankowski, Lara Brudermüller, Nick Hawes, and Sylvain Calinon. Vp-sto: Via-point-based stochastic trajectory optimization for reactive robot behavior. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 10125-10131, 2023. doi: 10.1109/ICRA48891.2023.10160214.
Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.
Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmidhuber. Policy gradients with parameter-based exploration for control. In Artificial Neural NetworksICANN 2008: 18th International Conference, Prague, Czech Republic, September 3-6, 2008, Proceedings, Part I 18, pages 387-396. Springer, 2008.
Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. Robotics and Autonomous Systems, 131: 103568, 2020. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2020.103568. URL https://www.sciencedirect.com/science/article/pii/S0921889020304085.
Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In Proceedings of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages 158-168, 2022.
R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1):35-45, 03 1960. Nikolaus Hansen. The cma evolution strategy: A tutorial, 2023.
Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.
Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone. Curriculum learning for reinforcement learning domains: A framework and survey. CoRR, abs/2003.04960, 2020. URL https://arxiv.org/abs/2003.04960.