Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep variational information bottleneck. In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.
Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling, L. P. Neural relational inference with fast modular meta-learning. In Advances in Neural Information Processing Systems 32 (NeurIPS), 2019.
Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and Bengio, E. Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.
Birkhoff, G. D. Dynamical systems, volume 9. American Mathematical Soc., 1927.
Brasó, G. and Leal-Taixé, L. Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6247–6257, 2020.
Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z. Freeway performance measurement system: mining loop detector data. Transportation Research Record, 1748(1): 96–102, 2001.
Chen, S., Wang, J., and Li, G. Neural relational inference with efficient message passing mechanisms. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pp. 7055–7063, 2021.
Chu, L.-F., Leng, N., Zhang, J., Hou, Z., Mamott, D., Vereide, D. T., Choi, J., Kendziorski, C., Stewart, R., and Thomson, J. A. Single-cell rna-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome biology, 17:1–20, 2016.
Gu, A. and Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
Ha, S. and Jeong, H. Unraveling hidden interactions in complex systems with deep learning. Scientific Reports, 11(1):1–13, 2021.
Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 30 (NIPS), 2017.
Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.
Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for interacting systems. In Proceedings of the 35th International Conference on Machine Learning (ICML), pp. 2688–2697. PMLR, 2018.
Kwapień, J. and Drożdż, S. Physical approach to complex systems. Physics Reports, 515(3):115–226, 2012.
Li, J., Ma, H., Zhang, Z., Li, J., and Tomizuka, M. Spatio-temporal graph dual-attention network for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(8):10556–10569, 2022.
Löwe, S., Madras, D., Shilling, R. Z., and Welling, M. Amortized causal discovery: Learning to infer causal graphs from time-series data. In Proceedings of the 1st Conference on Causal Learning and Reasoning (CLeaR), pp. 509–525. PMLR, 2022.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32 (NeurIPS), 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-napeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature Methods, 17(2):147–154, 2020.
Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N., et al. Single-cell rna-seq reveals dynamic paracrine control of cellular variation. Nature, 510(7505): 363–369, 2014.
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and Woolrich, M. W. Network modelling methods for FMRI. Neuroimage, 54(2):875–891, 2011a.
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and Woolrich, M. W. Network modelling methods for FMRI. Neuroimage, 54(2):875–891, 2011b.
Song, C., Lin, Y., Guo, S., and Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 34, pp. 914–921, 2020.
Tishby, N., Pereira, F., and Biale, W. The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 368–377. IEEE, 1999.
Tsubaki, M., Tomii, K., and Sese, J. Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35 (2):309–318, 2019.
Varrette, S., Cartiaux, H., Peter, S., Kieffer, E., Valette, T., and Olloh, A. Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0. In Proc. of the 6th ACM High Performance Computing and Cluster Technologies Conf. (HPCCT 2022), Fuzhou, China, July 2022. Association for Computing Machinery (ACM). ISBN 978-1-4503-9664-6.
Wang, A. and Pang, J. Iterative structural inference of directed graphs. In Advances in Neural Information Processing Systems 35 (NeurIPS), 2022.
Wang, A. and Pang, J. Active learning based structural inference. In Proceedings of the 40th International Conference on Machine Learning (ICML), pp. 36224–36245. PMLR, 2023.
Wang, A. and Pang, J. Structural inference of dynamical systems with conjoined state space models. In Advances in Neural Information Processing Systems 37 (NeurIPS), 2024a.
Wang, A. and Pang, J. Structural inference with dynamics encoding and partial correlation coefficients. In Proceedings of the 12th International Conference on Learning Representations (ICLR), 2024b.
Wang, A., Tong, T. P., and Pang, J. Effective and efficient structural inference with reservoir computing. In Proceedings of the 40th International Conference on Machine Learning (ICML), pp. 36391–36410. PMLR, 2023.
Wang, A., Tong, T. P., Mizera, A., and Pang, J. Benchmarking structural inference methods for interacting dynamical systems with synthetic data. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.
Webb, E., Day, B., Andres-Terre, H., and Lió, P. Factorised neural relational inference for multi-interaction systems. arXiv preprints arXiv:1905.08721, 2019.
Wu, H., Liang, Y., Xiong, W., Zhou, Z., Huang, W., Wang, S., and Wang, K. Earthfarsser: Versatile spatio-temporal dynamical systems modeling in one model. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pp. 15906–15914, 2024.