Article (Scientific journals)
Unveiling Privacy Risks in the Long Tail: Membership Inference in Class Skewness
Hu, Hailong; PANG, Jun; Li, Yantao et al.
2025In IEEE Transactions on Information Forensics and Security, 20, p. 9507-9522
Peer Reviewed verified by ORBi
 

Files


Full Text
TIFS25.pdf
Author postprint (1.24 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
Hu, Hailong ;  National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
PANG, Jun  ;  University of Luxembourg
Li, Yantao ;  College of Computer Science, Chongqing University, Chongqing, China
Qin, Huafeng ;  National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
External co-authors :
yes
Language :
English
Title :
Unveiling Privacy Risks in the Long Tail: Membership Inference in Class Skewness
Publication date :
2025
Journal title :
IEEE Transactions on Information Forensics and Security
ISSN :
1556-6013
eISSN :
1556-6021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
Volume :
20
Pages :
9507-9522
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 18 September 2025

Statistics


Number of views
9 (0 by Unilu)
Number of downloads
25 (1 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu