[en] For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease-rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.
Disciplines :
Genetics & genetic processes
Author, co-author :
Bender, Aaron; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Ranea-Robles, Pablo ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA ; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Centro de Investigación Biomédica, Universidad de Granada, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
WILLIAMS, Evan ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Gene Expression and Metabolism
Mirzaian, Mina; Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
Heimel, J Alexander; Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
Levelt, Christiaan N; Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
Wanders, Ronald J; Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands ; Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
Aerts, Johannes M; Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
Zhu, Jun; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Auwerx, Johan; Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Houten, Sander M ✱; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Argmann, Carmen A ✱; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism.
National Institute of Diabetes and Digestive and Kidney Diseases European Research Council Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Leona M. and Harry B. Helmsley Charitable Trust
Funding text :
Funding: This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK113172 and R01 DK116873), the European Research Council (ERC-AdG-787702), the Schweizerischer Nationalfonds zur Frderung der Wissenschaftlichen Forschung (31003A-179435), and the Leona M. and Harry B. Helmsley Charitable Trust. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge the help of the shared resource facilities at the Icahn School of Medicine at Mount Sinai (Colony Management, Real Time Polymerase Chain Reaction [qPCR], Mouse Genetics and Gene Targeting, Scientific Computing and the Genomics Core). DNA from SM/J mice was a kind gift from Dr. Weibin Shi (University of Virginia). The authors thank Simone Denis (Laboratory Genetic Metabolic Diseases) for tissue acylcarnitine analysis.This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK113172 and R01 DK116873), the European Research Council (ERC\u2010AdG\u2010787702), the Schweizerischer Nationalfonds zur Frderung der Wissenschaftlichen Forschung (31003A\u2010179435), and the Leona M. and Harry B. Helmsley Charitable Trust. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Funding:
C. A. Argmann, S. M. Houten, J. Zhu, and E. E. Schadt, “A Next Generation Multiscale View of Inborn Errors of Metabolism,” Cell Metabolism 23 (2016): 13–26, https://doi.org/10.1016/j.cmet.2015.11.012.
K. M. Dipple and E. R. McCabe, “Phenotypes of Patients With “Simple” Mendelian Disorders Are Complex Traits: Thresholds, Modifiers, and Systems Dynamics,” American Journal of Human Genetics 66 (2000): 1729–1735, https://doi.org/10.1086/302938.
C. R. Scriver and P. J. Waters, “Monogenic Traits Are Not Simple: Lessons From Phenylketonuria,” Trends in Genetics: TIG 15 (1999): 267–272.
K. M. Dipple and E. R. McCabe, “Modifier Genes Convert “Simple” Mendelian Disorders to Complex Traits,” Molecular Genetics and Metabolism 71 (2000): 43–50, https://doi.org/10.1006/mgme.2000.3052.
P. Surendran, I. D. Stewart, V. P. W. Au Yeung, et al., “Rare and Common Genetic Determinants of Metabolic Individuality and Their Effects on Human Health,” Nature Medicine 28, no. 2321 (2022): 2332, https://doi.org/10.1038/s41591-022-02046-0.
S. Y. Shin, E. B. Fauman, A. K. Petersen, et al., “An Atlas of Genetic Influences on Human Blood Metabolites,” Nature Genetics 46 (2014): 543–550, https://doi.org/10.1038/ng.2982.
N. Scherer, D. Fassler, O. Borisov, et al., “Coupling Metabolomics and Exome Sequencing Reveals Graded Effects of Rare Damaging Heterozygous Variants on Gene Function and Human Traits,” Nature Genetics 57, no. 193 (2025): 205, https://doi.org/10.1038/s41588-024-01965-7.
G. M. Belbin, S. Rutledge, T. Dodatko, et al., “Leveraging Health Systems Data to Characterize a Large Effect Variant Conferring Risk for Liver Disease in Puerto Ricans,” American Journal of Human Genetics 108 (2021): 2099–2111, https://doi.org/10.1016/j.ajhg.2021.09.016.
A. R. Barton, M. L. A. Hujoel, R. E. Mukamel, M. A. Sherman, and P. R. Loh, “A Spectrum of Recessiveness Among Mendelian Disease Variants in UK Biobank,” American Journal of Human Genetics 109 (2022): 1298–1307, https://doi.org/10.1016/j.ajhg.2022.05.008.
J. R. Lupski, J. W. Belmont, E. Boerwinkle, and R. A. Gibbs, “Clan Genomics and the Complex Architecture of Human Disease,” Cell 147 (2011): 32–43, https://doi.org/10.1016/j.cell.2011.09.008.
D. R. Blair, C. S. Lyttle, J. M. Mortensen, et al., “A Nondegenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk,” Cell 155 (2013): 70–80, https://doi.org/10.1016/j.cell.2013.08.030.
E. E. Schadt, “Molecular Networks as Sensors and Drivers of Common Human Diseases,” Nature 461 (2009): 218–223, https://doi.org/10.1038/nature08454.
Y. Chen, J. Zhu, P. Y. Lum, et al., “Variations in DNA Elucidate Molecular Networks That Cause Disease,” Nature 452 (2008): 429–435, https://doi.org/10.1038/nature06757.
L. A. Peters, J. Perrigoue, A. Mortha, et al., “A Functional Genomics Predictive Network Model Identifies Regulators of Inflammatory Bowel Disease,” Nature Genetics 49 (2017): 1437–1449, https://doi.org/10.1038/ng.3947.
E. E. Schadt, J. Lamb, X. Yang, et al., “An Integrative Genomics Approach to Infer Causal Associations Between Gene Expression and Disease,” Nature Genetics 37 (2005): 710–717, https://doi.org/10.1038/ng1589.
H. Wang, A. Bender, P. Wang, et al., “Insights Into Beta Cell Regeneration for Diabetes via Integration of Molecular Landscapes in Human Insulinomas,” Nature Communications 8 (2017): 767, https://doi.org/10.1038/s41467-017-00992-9.
C. K. Zhang, P. B. Stein, J. Liu, et al., “Genome-Wide Association Study of N370S Homozygous Gaucher Disease Reveals the Candidacy of CLN8 Gene as a Genetic Modifier Contributing to Extreme Phenotypic Variation,” American Journal of Hematology 87 (2012): 377–383, https://doi.org/10.1002/ajh.23118.
D. G. Ashbrook, D. Arends, P. Prins, et al., “A Platform for Experimental Precision Medicine: The Extended BXD Mouse Family,” Cell Systems 12 (2021): 235–247e239, https://doi.org/10.1016/j.cels.2020.12.002.
J. L. Peirce, L. Lu, J. Gu, L. M. Silver, and R. W. Williams, “A New Set of BXD Recombinant Inbred Lines From Advanced Intercross Populations in Mice,” BMC Genetics 5 (2004): 7, https://doi.org/10.1186/1471-2156-5-7.
E. G. Williams, Y. Wu, P. Jha, et al., “Systems Proteomics of Liver Mitochondria Function,” Science 352 (2016): aad0189, https://doi.org/10.1126/science.aad0189.
Y. Wu, E. G. Williams, S. Dubuis, et al., “Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population,” Cell 158 (2014): 1415–1430, https://doi.org/10.1016/j.cell.2014.07.039.
P. A. Andreux, E. G. Williams, H. Koutnikova, et al., “Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits,” Cell 150 (2012): 1287–1299, https://doi.org/10.1016/j.cell.2012.08.012.
K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, “R/qtl: QTL Mapping in Experimental Crosses,” Bioinformatics 19 (2003): 889–890, https://doi.org/10.1093/bioinformatics/btg112.
B. Zhang and S. Horvath, “A General Framework for Weighted Gene Co-Expression Network Analysis,” Statistical Applications in Genetics and Molecular Biology 4 (2005), https://doi.org/10.2202/1544-6115.1128.
E. E. Schadt, C. Molony, E. Chudin, et al., “Mapping the Genetic Architecture of Gene Expression in Human Liver,” PLoS Biology 6 (2008): e107, https://doi.org/10.1371/journal.pbio.0060107.
J. Zhu, P. Y. Lum, J. Lamb, et al., “An Integrative Genomics Approach to the Reconstruction of Gene Networks in Segregating Populations,” Cytogenetic and Genome Research 105 (2004): 363–374, https://doi.org/10.1159/000078209.
B. Zhang and J. Zhu, The World Congress on Engineering, ed. S. I. Ao, L. Gelman, D. W. L. Hukins, A. Hunter, and A. M. Korsunsky (Newswood Limited, 2013), 1309–1312.
R. Janky, A. Verfaillie, H. Imrichova, et al., “iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections,” PLoS Computational Biology 10 (2014): e1003731, https://doi.org/10.1371/journal.pcbi.1003731.
J. Leandro, S. Violante, C. A. Argmann, et al., “Mild Inborn Errors of Metabolism in Commonly Used Inbred Mouse Strains,” Molecular Genetics and Metabolism 126 (2019): 388–396, https://doi.org/10.1016/j.ymgme.2019.01.021.
A. Ghazalpour, B. J. Bennett, D. Shih, et al., “Genetic Regulation of Mouse Liver Metabolite Levels,” Molecular Systems Biology 10 (2014): 730, https://doi.org/10.15252/msb.20135004.
G. S. Salomons, C. Jakobs, L. L. Pope, et al., “Clinical, Enzymatic and Molecular Characterization of Nine New Patients With Malonyl-Coenzyme A Decarboxylase Deficiency,” Journal of Inherited Metabolic Disease 30 (2007): 23–28, https://doi.org/10.1007/s10545-006-0514-6.
X. Y. Sun, Z. Y. Chen, Y. Hayashi, et al., “Insertion of an Intracisternal A Particle Retrotransposon Element in Plasma Membrane Calcium ATPase 2 Gene Attenuates Its Expression and Produces an Ataxic Phenotype in Joggle Mutant Mice,” Gene 411 (2008): 94–102, https://doi.org/10.1016/j.gene.2008.01.013.
J. A. Mietz, Z. Grossman, K. K. Lueders, and E. L. Kuff, “Nucleotide Sequence of a Complete Mouse Intracisternal A-Particle Genome: Relationship to Known Aspects of Particle Assembly and Function,” Journal of Virology 61 (1987): 3020–3029.
J. P. Fabisiak, M. Medvedovic, D. C. Alexander, et al., “Integrative Metabolome and Transcriptome Profiling Reveals Discordant Energetic Stress Between Mouse Strains With Differential Sensitivity to Acrolein-Induced Acute Lung Injury,” Molecular Nutrition & Food Research 55 (2011): 1423–1434, https://doi.org/10.1002/mnfr.201100291.
P. M. Petkov, J. H. Graber, G. A. Churchill, et al., “Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes,” PLoS Genetics 1 (2005): e33, https://doi.org/10.1371/journal.pgen.0010033.
M. R. Soeters, M. J. Serlie, H. P. Sauerwein, et al., “Characterization of D-3-Hydroxybutyrylcarnitine (Ketocarnitine): An Identified Ketosis-Induced Metabolite,” Metabolism 61 (2012): 966–973, https://doi.org/10.1016/j.metabol.2011.11.009.
J. D. McGarry, G. P. Mannaerts, and D. W. Foster, “A Possible Role for Malonyl-CoA in the Regulation of Hepatic Fatty Acid Oxidation and Ketogenesis,” Journal of Clinical Investigation 60 (1977): 265–270, https://doi.org/10.1172/JCI108764.
L. Drynan, P. A. Quant, and V. A. Zammit, “Flux Control Exerted by Mitochondrial Outer Membrane Carnitine Palmitoyltransferase Over Beta-Oxidation, Ketogenesis and Tricarboxylic Acid Cycle Activity in Hepatocytes Isolated From Rats in Different Metabolic States,” Biochemical Journal 317, no. Pt 3 (1996): 791–795.
P. Ranea-Robles, N. N. Pavlova, A. Bender, et al., “A Mitochondrial Long-Chain Fatty Acid Oxidation Defect Leads to tRNA Uncharging and Activation of the Integrated Stress Response in the Mouse Heart,” Cardiovascular Research 118, no. 3198 (2022): 3210, https://doi.org/10.1093/cvr/cvac050.
D. M. Kurtz, P. Rinaldo, W. J. Rhead, et al., “Targeted Disruption of Mouse Long-Chain Acyl-CoA Dehydrogenase Gene Reveals Crucial Roles for Fatty Acid Oxidation,” Proceedings of the National Academy of Sciences of the United States of America 95 (1998): 15592–15597.
S. M. Houten, H. Herrema, H. te Brinke, et al., “Impaired Amino Acid Metabolism Contributes to Fasting-Induced Hypoglycemia in Fatty Acid Oxidation Defects,” Human Molecular Genetics 22 (2013): 5249–5261, https://doi.org/10.1093/hmg/ddt382.
A. J. Bakermans, T. R. Geraedts, M. van Weeghel, et al., “Fasting-Induced Myocardial Lipid Accumulation in Long-Chain Acyl-CoA Dehydrogenase Knock-Out Mice Is Accompanied by Impaired Left Ventricular Function,” Circulation. Cardiovascular Imaging 4 (2011): 558–565, https://doi.org/10.1161/CIRCIMAGING.111.963751.
A. N. Vallejo, H. J. Mroczkowski, J. J. Michel, et al., “Pervasive Inflammatory Activation in Patients With Deficiency in Very-Long-Chain Acyl-coA Dehydrogenase (VLCADD),” Clinical & Translational Immunology 10 (2021): e1304, https://doi.org/10.1002/cti2.1304.
C. S. McCoin, M. B. Gillingham, T. A. Knotts, et al., “Blood Cytokine Patterns Suggest a Modest Inflammation Phenotype in Subjects With Long-Chain Fatty Acid Oxidation Disorders,” Physiological Reports 7 (2019): e14037, https://doi.org/10.14814/phy2.14037.
E. F. Diekman, M. van Weeghel, R. J. Wanders, G. Visser, and S. M. Houten, “Food Withdrawal Lowers Energy Expenditure and Induces Inactivity in Long-Chain Fatty Acid Oxidation-Deficient Mouse Models,” FASEB Journal 28 (2014): 2891–2900, https://doi.org/10.1096/fj.14-250241.
GTEx Consortium and Human genomics, “The Genotype-Tissue Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Humans,” Science 348 (2015): 648–660, https://doi.org/10.1126/science.1262110.
T. Kuo, M. J. Lew, O. Mayba, et al., “Genome-Wide Analysis of Glucocorticoid Receptor-Binding Sites in Myotubes Identifies Gene Networks Modulating Insulin Signaling,” Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 11160–11165, https://doi.org/10.1073/pnas.1111334109.
L. Fan, D. R. Sweet, D. A. Prosdocimo, et al., “Muscle Kruppel-Like Factor 15 Regulates Lipid Flux and Systemic Metabolic Homeostasis,” Journal of Clinical Investigation 131 (2021): e139496, https://doi.org/10.1172/JCI139496.
S. K. Sasse, C. M. Mailloux, A. J. Barczak, et al., “The Glucocorticoid Receptor and KLF15 Regulate Gene Expression Dynamics and Integrate Signals Through Feed-Forward Circuitry,” Molecular and Cellular Biology 33 (2013): 2104–2115, https://doi.org/10.1128/MCB.01474-12.
D. Jeyaraj, F. A. Scheer, J. A. Ripperger, et al., “Klf15 Orchestrates Circadian Nitrogen Homeostasis,” Cell Metabolism 15 (2012): 311–323, https://doi.org/10.1016/j.cmet.2012.01.020.
S. Gray, B. Wang, Y. Orihuela, et al., “Regulation of Gluconeogenesis by Kruppel-Like Factor 15,” Cell Metabolism 5 (2007): 305–312, https://doi.org/10.1016/j.cmet.2007.03.002.
P. Ranea-Robles, S. Violante, C. Argmann, et al., “Murine Deficiency of Peroxisomal L-Bifunctional Protein (EHHADH) Causes Medium-Chain 3-Hydroxydicarboxylic Aciduria and Perturbs Hepatic Cholesterol Homeostasis,” Cellular and Molecular Life Sciences: CMLS 78 (2021): 5631–5646, https://doi.org/10.1007/s00018-021-03869-9.
S. Violante, N. Achetib, C. W. T. van Roermund, et al., “Peroxisomes Can Oxidize Medium- and Long-Chain Fatty Acids Through a Pathway Involving ABCD3 and HSD17B4,” FASEB Journal 33 (2019): 4355–4364, https://doi.org/10.1096/fj.201801498R.
D. L. Jenkins and O. W. Griffith, “Antiketogenic and Hypoglycemic Effects of Aminocarnitine and Acylaminocarnitines,” Proceedings of the National Academy of Sciences of the United States of America 83 (1986): 290–294.
M. Chegary, H. te Brinke, M. Doolaard, et al., “Characterization of L-Aminocarnitine, an Inhibitor of Fatty Acid Oxidation,” Molecular Genetics and Metabolism 93 (2008): 403–410.
N. Dasgupta, Y. H. Xu, S. Oh, et al., “Gaucher Disease: Transcriptome Analyses Using Microarray or mRNA Sequencing in a Gba1 Mutant Mouse Model Treated With Velaglucerase Alfa or Imiglucerase,” PLoS One 8 (2013): e74912, https://doi.org/10.1371/journal.pone.0074912.
X. Yang, B. Zhang, C. Molony, et al., “Systematic Genetic and Genomic Analysis of Cytochrome P450 Enzyme Activities in Human Liver,” Genome Research 20 (2010): 1020–1036, https://doi.org/10.1101/gr.103341.109.
M. Jmoudiak and A. H. Futerman, “Gaucher Disease: Pathological Mechanisms and Modern Management,” British Journal of Haematology 129 (2005): 178–188, https://doi.org/10.1111/j.1365-2141.2004.05351.x.
P. K. Mistry, T. Taddei, S. vom Dahl, and B. E. Rosenbloom, “Gaucher Disease and Malignancy: A Model for Cancer Pathogenesis in an Inborn Error of Metabolism,” Critical Reviews in Oncogenesis 18 (2013): 235–246, https://doi.org/10.1615/critrevoncog.2013006145.
E. Sidransky, M. A. Nalls, J. O. Aasly, et al., “Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease,” New England Journal of Medicine 361 (2009): 1651–1661, https://doi.org/10.1056/NEJMoa0901281.
Y. Afinogenova, J. Ruan, R. Yang, et al., “Aberrant Progranulin, YKL-40, Cathepsin D and Cathepsin S in Gaucher Disease,” Molecular Genetics and Metabolism 128 (2019): 62–67, https://doi.org/10.1016/j.ymgme.2019.07.014.
M. K. Pandey, T. A. Burrow, R. Rani, et al., “Complement Drives Glucosylceramide Accumulation and Tissue Inflammation in Gaucher Disease,” Nature 543 (2017): 108–112, https://doi.org/10.1038/nature21368.
M. K. Pandey, G. A. Grabowski, and J. Kohl, “An Unexpected Player in Gaucher Disease: The Multiple Roles of Complement in Disease Development,” Seminars in Immunology 37 (2018): 30–42, https://doi.org/10.1016/j.smim.2018.02.006.
J. C. Serfecz, A. Saadin, C. P. Santiago, et al., “C5a Activates a pro-Inflammatory Gene Expression Profile in Human Gaucher iPSC-Derived Macrophages,” International Journal of Molecular Sciences 22 (2021): 9912, https://doi.org/10.3390/ijms22189912.
O. E. Owen, K. J. Smalley, D. A. D'Alessio, M. A. Mozzoli, and E. K. Dawson, “Protein, Fat, and Carbohydrate Requirements During Starvation: Anaplerosis and Cataplerosis,” American Journal of Clinical Nutrition 68 (1998): 12–34.
N. Nurjhan, A. Bucci, G. Perriello, et al., “Glutamine: A Major Gluconeogenic Precursor and Vehicle for Interorgan Carbon Transport in Man,” Journal of Clinical Investigation 95 (1995): 272–277, https://doi.org/10.1172/JCI117651[doi].
G. F. Cahill, Jr., “Fuel Metabolism in Starvation,” Annual Review of Nutrition 26 (2006): 1–22, https://doi.org/10.1146/annurev.nutr.26.061505.111258.
J. G. Okun, P. M. Rusu, A. Y. Chan, et al., “Liver Alanine Catabolism Promotes Skeletal Muscle Atrophy and Hyperglycaemia in Type 2 Diabetes,” Nature Metabolism 3 (2021): 394–409, https://doi.org/10.1038/s42255-021-00369-9.
C. Beers, A. Burich, M. J. Kleijmeer, et al., “Cathepsin S Controls MHC Class II-Mediated Antigen Presentation by Epithelial Cells In Vivo,” Journal of Immunology 174 (2005): 1205–1212, https://doi.org/10.4049/jimmunol.174.3.1205.
E. Dheilly, E. Battistello, N. Katanayeva, et al., “Cathepsin S Regulates Antigen Processing and T Cell Activity in Non-Hodgkin Lymphoma,” Cancer Cell 37 (2020): 674-689 e612, https://doi.org/10.1016/j.ccell.2020.03.016.
C. M. Costantino, H. L. Ploegh, and D. A. Hafler, “Cathepsin S Regulates Class II MHC Processing in Human CD4+ HLA-DR+ T Cells,” Journal of Immunology 183 (2009): 945–952, https://doi.org/10.4049/jimmunol.0900921.
R. J. Riese, R. N. Mitchell, J. A. Villadangos, et al., “Cathepsin S Activity Regulates Antigen Presentation and Immunity,” Journal of Clinical Investigation 101 (1998): 2351–2363, https://doi.org/10.1172/JCI1158.
S. Thanei, M. Theron, A. P. Silva, et al., “Cathepsin S Inhibition Suppresses Autoimmune-Triggered Inflammatory Responses in Macrophages,” Biochemical Pharmacology 146 (2017): 151–164, https://doi.org/10.1016/j.bcp.2017.10.001.
P. A. de Mingo, E. de Gregorio, S. Chandra, et al., “Differential Role of Cathepsins S and B in Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion,” Frontiers in Immunology 9 (2018): 391, https://doi.org/10.3389/fimmu.2018.00391.
H. D. Perez, O. Ohtani, D. Banda, et al., “Generation of Biologically Active, Complement-(C5) Derived Peptides by Cathepsin H,” Journal of Immunology 131 (1983): 397–402.
M. K. Liszewski, M. Kolev, G. Le Friec, et al., “Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation,” Immunity 39 (2013): 1143–1157, https://doi.org/10.1016/j.immuni.2013.10.018.