[en] There is a global concern about the decline of wild pollinators and the ecosystem services they provide. Although land-use change is a major threat to biodiversity, it is still poorly understood how land-use heterogeneity (or land-use structure) impacts pollinator communities and entomophilous crop production. Based on a literature review, we performed a meta-analysis to (1) assess how landscape structure, both composition and configuration, affects pollinator species richness and abundance, and (2) examine the impact of landscape structure on the production of key entomophilous crops. We extracted information on pollinator communities and crop production from 101 studies with a total of 920 site replicates distributed widely across the globe. To obtain landscape structure (total area of all crops, crop diversity, and landscape Shannon’s Diversity Index) information, we sourced data from the database Map-SPAM as well as satellite images. We found that pollinator species richness increased with the number of crop species in the surrounding area. Pollinator abundance increased with the number of different crops but decreased with increasing agricultural area in the surrounding landscape. Crop production of several crops was associated with landscape heterogeneity. Notably, fruit set increased with an increasing number of crop species in neighbouring fields and decreased with increasing agricultural area, that is, when nature is substituted with agriculture in the surrounding landscape. We also found positive correlations between edge density of an area and pollinator species richness and entomophilous crop production suggesting that edge density can be used as a landscape structure indicator to assess pollinator diversity. The effects of landscape structure were more pronounced in crops with high pollinator dependence, showing stronger relationships with both pollinator diversity and crop production. These findings highlight the importance of maintaining landscape heterogeneity through crop diversity and natural habitats to support pollinators and their services, though unmeasured factors such as intensification or local management may also play a role.
Research center :
Luxembourg Centre for Socio-Environmental Systems (LCSES)
Disciplines :
Environmental sciences & ecology
Author, co-author :
Sritongchuay, Tuanjit ; Department Computational Landscape Ecology, UFZ -Helmholtz Centre for Environmental Research, Leipzig, Germany ; Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany ; Department of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences, Postboks ; NMBU, Norway
Beckmann, Michael ; Department Computational Landscape Ecology, UFZ -Helmholtz Centre for Environmental Research, Leipzig, Germany ; Chair of Environmental Planning, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Dalsgaard, Bo; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
Klein, Alexandra-Maria ; Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany ; Centre for Environmental and Climate Science, Lund University, Lund, Sweden
Lausch, Angela ; Department Computational Landscape Ecology, UFZ -Helmholtz Centre for Environmental Research, Leipzig, Germany ; Institute for Geoinformation and Surveying, Department of Architecture, Facility Management and Geoinformation, Dessau, Germany ; Institute of Geoscience & Geography, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Nielsen, Anders ; Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
Osterman, Julia; Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany ; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden ; Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
Selsam, Peter; Department Monitoring and Exploration Technology, UFZ -Helmholtz Centre for Environmental Research, Leipzig, Germany
Wayo, Kanuengnit ; Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat, Thailand ; Research Center for Theoretical Simulation and Applied Research in Bioscience and Sensing, Walailak University, Nakhon Si Thammarat, Thailand
SEPPELT, Ralf ; University of Luxembourg > Luxembourg Centre for Socio-Environmental Systems (LCSES) ; Department Computational Landscape Ecology, UFZ -Helmholtz Centre for Environmental Research, Leipzig, Germany ; Institute of Geoscience & Geography, Martin-Luther-University Halle-Wittenberg, Halle, Germany ; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
External co-authors :
yes
Language :
English
Title :
Crop diversity in the landscape boosts pollinators and yield of pollinator dependent crops across the world
Adamidis, G.C., Cartar, R.V., Melathopoulos, A.P., Pernal, S.F., Hoover, S.E., Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: a comparison of 23 canola varieties. Sci. Rep., 9, 2019, 14208, 10.1038/s41598-019-50811-y.
Aguilera, G., Roslin, T., Miller, K., Tamburini, G., Birkhofer, K., Caballero-Lopez, B., Lindström, S.A.-M., Öckinger, E., Rundlöf, M., Rusch, A., Smith, H.G., Bommarco, R., Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats. J. Appl. Ecol. 57 (2020), 2170–2179, 10.1111/1365-2664.13726.
Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., Klein, A.M., Long-Term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18 (2008), 1572–1575, 10.1016/j.cub.2008.08.066.
Aizen, M.A., Aguiar, S., Biesmeijer, J.C., Garibaldi, L.A., Inouye, D.W., Jung, C., Martins, D.J., Medel, R., Morales, C.L., Ngo, H., Pauw, A., Paxton, R.J., Sáez, A., Seymour, C.L., Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25 (2019), 3516–3527, 10.1111/gcb.14736.
Blaschke, T., Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (2010), 2–16, 10.1016/j.isprsjprs.2009.06.004.
Dicks, L.V., Breeze, T.D., Ngo, H.T., Senapathi, D., An, J., Aizen, M.A., Basu, P., Buchori, D., Galetto, L., Garibaldi, L.A., Gemmill-Herren, B., Howlett, B.G., Imperatriz-Fonseca, V.L., Johnson, S.D., Kovács-Hostyánszki, A., Kwon, Y.J., Lattorff, H.M.G., Lungharwo, T., Seymour, C.L., Vanbergen, A.J., Potts, S.G., A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5 (2021), 1453–1461, 10.1038/s41559-021-01534-9.
Doncaster, C.P., Alonso Chávez, V., Viguier, C., Wang, R., Zhang, E., Dong, X., Dearing, J.A., Langdon, P.G., Dyke, J.G., Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97 (2016), 3079–3090, 10.1002/ecy.1558.
Duflot, R., San-Cristobal, M., Andrieu, E., Choisis, J.-P., Esquerré, D., Ladet, S., Ouin, A., Rivers-Moore, J., Sheeren, D., Sirami, C., Fauvel, M., Vialatte, A., Farming intensity indirectly reduces crop yield through negative effects on agrobiodiversity and key ecological functions. Agric. Ecosyst. Environ., 326, 2022, 107810, 10.1016/j.agee.2021.107810.
Duru, M., Therond, O., Martin, G., Martin-Clouaire, R., Magne, M.-A., Justes, E., Journet, E.-P., Aubertot, J.-N., Savary, S., Bergez, J.-E., Sarthou, J.P., How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron. Sustain. Dev. 35 (2015), 1259–1281, 10.1007/s13593-015-0306-1.
Eeraerts, M., A minimum of 15% semi-natural habitat facilitates adequate wild pollinator visitation to a pollinator-dependent crop. Biol. Conserv., 278, 2023, 109887, 10.1016/j.biocon.2022.109887.
Fahrig, L., Baudry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C., Siriwardena, G.M., Martin, J.-L., Functional landscape heterogeneity and animal biodiversity in agricultural landscapes: heterogeneity and biodiversity. Ecol. Lett. 14 (2011), 101–112, 10.1111/j.1461-0248.2010.01559.x.
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., King, D., Lindsay, K.F., Mitchell, S., Tischendorf, L., Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200 (2015), 219–234, 10.1016/j.agee.2014.11.018.
Felipe-Lucia, M.R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., Boeddinghaus, R.S., Bonkowski, M., Buscot, F., Fiore-Donno, A.M., Frank, K., Goldmann, K., Gossner, M.M., Hölzel, N., Jochum, M., Kandeler, E., Klaus, V.H., Kleinebecker, T., Leimer, S., Manning, P., Oelmann, Y., Saiz, H., Schall, P., Schloter, M., Schöning, I., Schrumpf, M., Solly, E.F., Stempfhuber, B., Weisser, W.W., Wilcke, W., Wubet, T., Allan, E., Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. 117 (2020), 28140–28149, 10.1073/pnas.2016210117.
Garibaldi, L.A., Aizen, M.A., Cunningham, S., Klein, A.M., Pollinator shortage and global crop yield: looking at the whole spectrum of pollinator dependency. Commun. Integr. Biol. 2 (2009), 37–39, 10.4161/cib.2.1.7425.
Garibaldi, L.A., Bartomeus, I., Bommarco, R., Klein, A.M., Cunningham, S.A., Aizen, M.A., Boreux, V., Garratt, M.P.D., Carvalheiro, L.G., Kremen, C., Morales, C.L., Schüepp, C., Chacoff, N.P., Freitas, B.M., Gagic, V., Holzschuh, A., Klatt, B.K., Krewenka, K.M., Krishnan, S., Mayfield, M.M., Motzke, I., Otieno, M., Petersen, J., Potts, S.G., Ricketts, T.H., Rundlöf, M., Sciligo, A., Sinu, P.A., Steffan-Dewenter, I., Taki, H., Tscharntke, T., Vergara, C.H., Viana, B.F., Woyciechowski, M., EDITOR'S CHOICE: REVIEW: trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52 (2015), 1436–1444, 10.1111/1365-2664.12530.
Garibaldi, L.A., Carvalheiro, L.G., Vaissiere, B.E., Gemmill-Herren, B., Hipolito, J., Freitas, B.M., Ngo, H.T., Azzu, N., Saez, A., Astrom, J., An, J., Blochtein, B., Buchori, D., Garcia, F.J.C., Oliveira da Silva, F., Devkota, K., Ribeiro, M. d F., Freitas, L., Gaglianone, M.C., Goss, M., Irshad, M., Kasina, M., Filho, A.J.S.P., Kiill, L.H.P., Kwapong, P., Parra, G.N., Pires, C., Pires, V., Rawal, R.S., Rizali, A., Saraiva, A.M., Veldtman, R., Viana, B.F., Witter, S., Zhang, H., Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351 (2016), 388–391, 10.1126/science.aac7287.
Garibaldi, L.A., Oddi, F.J., Miguez, F.E., Bartomeus, I., Orr, M.C., Jobbágy, E.G., Kremen, C., Schulte, L.A., Hughes, A.C., Bagnato, C., Abramson, G., Bridgewater, P., Carella, D.G., Díaz, S., Dicks, L.V., Ellis, E.C., Goldenberg, M., Huaylla, C.A., Kuperman, M., Locke, H., Mehrabi, Z., Santibañez, F., Zhu, C.-D., Working landscapes need at least 20% native habitat. Conserv. Lett., 14, 2021, e12773, 10.1111/conl.12773.
Garibaldi, L.A., Goldenberg, M.G., Burian, A., Santibañez, F., Satorre, E.H., Martini, G.D., Seppelt, R., Smaller agricultural fields, more edges, and natural habitats reduce herbicide-resistant weeds. Agric. Ecosyst. Environ., 342, 2023, 108260, 10.1016/j.agee.2022.108260.
Gittleman, J.L., Kot, M., Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39 (1990), 227–241, 10.2307/2992183.
Griffith, J.A., Martinko, E.A., Price, K.P., Landscape structure analysis of kansas at three scales. Landsc. Urban Plan. 52 (2000), 45–61, 10.1016/S0169-2046(00)00112-2.
Habel, J.C., Schmitt, T., Ulrich, W., Gros, P., Salcher, B., Teucher, M., Landscape homogenisation and simplified butterfly community structure go on par across Northern Austria. Land. Ecol. 38 (2023), 3237–3248, 10.1007/s10980-023-01785-w.
Hammond, C.M., Luschei, E.C., Boerboom, C.M., Nowak, P.J., Adoption of integrated pest management tactics by wisconsin farmers. Weed Technol. 20 (2006), 756–767, 10.1614/WT-05-095R1.1.
Hass, A.L., Liese, B., Heong, K.L., Settele, J., Tscharntke, T., Westphal, C., Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agric. Ecosyst. Environ. 253 (2018), 140–147, 10.1016/j.agee.2017.10.019.
Johansen, L., Westin, A., Wehn, S., Iuga, A., Ivascu, C.M., Kallioniemi, E., Lennartsson, T., Traditional semi-natural grassland management with heterogeneous mowing times enhances flower resources for pollinators in agricultural landscapes. Glob. Ecol. Conserv., 18, 2019, e00619, 10.1016/j.gecco.2019.e00619.
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., Bommarco, R., Brittain, C., Burley, A.L., Cariveau, D., Carvalheiro, L.G., Chacoff, N.P., Cunningham, S.A., Danforth, B.N., Dudenhöffer, J.-H., Elle, E., Gaines, H.R., Garibaldi, L.A., Gratton, C., Holzschuh, A., Isaacs, R., Javorek, S.K., Jha, S., Klein, A.M., Krewenka, K., Mandelik, Y., Mayfield, M.M., Morandin, L., Neame, L.A., Otieno, M., Park, M., Potts, S.G., Rundlöf, M., Saez, A., Steffan-Dewenter, I., Taki, H., Viana, B.F., Westphal, C., Wilson, J.K., Greenleaf, S.S., Kremen, C., A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16 (2013), 584–599, 10.1111/ele.12082.
Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274 (2007), 303–313, 10.1098/rspb.2006.3721.
Kral-O'Brien, K.C., O'Brien, P.L., Hovick, T.J., Harmon, J.P., Meta-analysis: higher plant richness supports higher pollinator richness across many land use types. Ann. Èntomol. Soc. Am. 114 (2021), 267–275, 10.1093/aesa/saaa061.
Larsen, A.E., Noack, F., Impact of local and landscape complexity on the stability of field-level pest control. Nat. Sustain 4 (2021), 120–128, 10.1038/s41893-020-00637-8.
Lesiv, M., Laso Bayas, J.C., See, L., Duerauer, M., Dahlia, D., Durando, N., Hazarika, R., Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., Bilous, A., Perez-Hoyos, A., Gengler, S., Prestele, R., Bilous, S., Akhtar, I. ul H., Singha, K., Choudhury, S.B., Chetri, T., Malek, Ž., Bungnamei, K., Saikia, A., Sahariah, D., Narzary, W., Danylo, O., Sturn, T., Karner, M., McCallum, I., Schepaschenko, D., Moltchanova, E., Fraisl, D., Moorthy, I., Fritz, S., Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol. 25 (2019), 174–186, 10.1111/gcb.14492.
Lowe, E.B., Groves, R., Gratton, C., Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery – a meta-analysis. Agric. Ecosyst. Environ., 310, 2021, 107290, 10.1016/j.agee.2020.107290.
Magrach, A., Giménez-García, A., Allen-Perkins, A., Garibaldi, L.A., Bartomeus, I., Increasing crop richness and reducing field sizes provide higher yields to pollinator-dependent crops. J. Appl. Ecol. 60 (2023), 77–90, 10.1111/1365-2664.14305.
Marja, R., Tscharntke, T., Batáry, P., Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – a meta-analysis. Agric. Ecosyst. Environ., 326, 2022, 107822, 10.1016/j.agee.2021.107822.
Martin, E.A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M.P.D., Holzschuh, A., Kleijn, D., Kovács-Hostyánszki, A., Marini, L., Potts, S.G., Smith, H.G., Al Hassan, D., Albrecht, M., Andersson, G.K.S., Asís, J.D., Aviron, S., Balzan, M.V., Baños-Picón, L., Bartomeus, I., Batáry, P., Burel, F., Caballero-López, B., Concepción, E.D., Coudrain, V., Dänhardt, J., Diaz, M., Diekötter, T., Dormann, C.F., Duflot, R., Entling, M.H., Farwig, N., Fischer, C., Frank, T., Garibaldi, L.A., Hermann, J., Herzog, F., Inclán, D., Jacot, K., Jauker, F., Jeanneret, P., Kaiser, M., Krauss, J., Le Féon, V., Marshall, J., Moonen, A.-C., Moreno, G., Riedinger, V., Rundlöf, M., Rusch, A., Scheper, J., Schneider, G., Schüepp, C., Stutz, S., Sutter, L., Tamburini, G., Thies, C., Tormos, J., Tscharntke, T., Tschumi, M., Uzman, D., Wagner, C., Zubair-Anjum, M., Steffan-Dewenter, I., The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22 (2019), 1083–1094, 10.1111/ele.13265.
Merckx, T., Feber, R.E., Dulieu, R.L., Townsend, M.C., Parsons, M.S., Bourn, N.A.D., Riordan, P., Macdonald, D.W., Effect of field margins on moths depends on species mobility: Field-based evidence for landscape-scale conservation. Agric. Ecosyst. Environ. 129 (2009), 302–309, 10.1016/j.agee.2008.10.004.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Preferred reporting items for systematic reviews and Meta-Analyses: the PRISMA statement. (The PRISMA Group) PLoS Med, 6, 2009, e1000097, 10.1371/journal.pmed.1000097.
Moreaux, C., Meireles, D.A.L., Sonne, J., Badano, E.I., Classen, A., González-Chaves, A., Hipólito, J., Klein, A.-M., Maruyama, P.K., Metzger, J.P., Philpott, S.M., Rahbek, C., Saturni, F.T., Sritongchuay, T., Tscharntke, T., Uno, S., Vergara, C.H., Viana, B.F., Strange, N., Dalsgaard, B., The value of biotic pollination and dense forest for fruit set of arabica coffee: a global assessment. Agric. Ecosyst. Environ., 323, 2022, 107680, 10.1016/j.agee.2021.107680.
Newbold, T., Bentley, L.F., Hill, S.L.L., Edgar, M.J., Horton, M., Su, G., Şekercioğlu, Ç.H., Collen, B., Purvis, A., Global effects of land use on biodiversity differ among functional groups. Funct. Ecol. 34 (2020), 684–693, 10.1111/1365-2435.13500.
Osterman, J., Theodorou, P., Radzevičiūtė, R., Schnitker, P., Paxton, R.J., Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agric. Ecosyst. Environ., 315, 2021, 107383, 10.1016/j.agee.2021.107383.
Paradis, E., Schliep, K., Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in r. Bioinformatics 35 (2019), 526–528, 10.1093/bioinformatics/bty633.
Phalan, B., Onial, M., Balmford, A., Green, R.E., Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333 (2011), 1289–1291, 10.1126/science.1208742.
Priyadarshana, T.S., Martin, E.A., Sirami, C., Woodcock, B.A., Goodale, E., Martínez-Núñez, C., Lee, M.-B., Pagani-Núñez, E., Raderschall, C.A., Brotons, L., Rege, A., Ouin, A., Tscharntke, T., Slade, E.M., Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: a global review and meta-analysis. Ecol. Lett., 27, 2024, e14412, 10.1111/ele.14412.
Raderschall, C.A., Bommarco, R., Lindström, S.A.M., Lundin, O., Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agric. Ecosyst. Environ., 306, 2021, 107189, 10.1016/j.agee.2020.107189.
Raderschall, C.A., Bommarco, R., Lindström, S.A.M., Lundin, O., Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agric. Ecosyst. Environ., 306, 2021, 107189, 10.1016/j.agee.2020.107189.
Reilly, J., Bartomeus, I., Simpson, D., Allen-Perkins, A., Garibaldi, L., Winfree, R., Wild insects and honey bees are equally important to crop yields in a global analysis. Glob. Ecol. Biogeogr., 33, 2024, e13843, 10.1111/geb.13843.
Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., Morandin, L.A., Ochieng’, A., Viana, B.F., Landscape effects on crop pollination services: are there general patterns?. Ecol. Lett. 11 (2008), 499–515, 10.1111/j.1461-0248.2008.01157.x.
Selsam, P., Gey, R., Lausch, A., Bumberger, J., 2023. Imalys - Image Analysis. https://doi.org/10.5281/zenodo.8116370.
Selsam, P., Bumberger, J., Wellmann, T., Pause, M., Gey, R., Borg, E., Lausch, A., Ecosystem integrity remote Sensing—Modelling and service Tool—ESIS/Imalys. Remote Sens., 16, 2024, 1139, 10.3390/rs16071139.
Seppelt, R., Arndt, C., Beckmann, M., Martin, E.A., Hertel, T.W., Deciphering the Biodiversity–Production mutualism in the global food security debate. Trends Ecol. Evol. 35 (2020), 1011–1020, 10.1016/j.tree.2020.06.012.
Siopa, C., Castro, H., Loureiro, J., Castro, S., PolLimCrop, a global dataset of pollen limitation in crops. Sci. Data, 10, 2023, 905, 10.1038/s41597-023-02797-6.
Sirami, C., Gross, N., Baillod, A.B., Bertrand, C., Carrié, R., Hass, A., Henckel, L., Miguet, P., Vuillot, C., Alignier, A., Girard, J., Batáry, P., Clough, Y., Violle, C., Giralt, D., Bota, G., Badenhausser, I., Lefebvre, G., Gauffre, B., Vialatte, A., Calatayud, F., Gil-Tena, A., Tischendorf, L., Mitchell, S., Lindsay, K., Georges, R., Hilaire, S., Recasens, J., Solé-Senan, X.O., Robleño, I., Bosch, J., Barrientos, J.A., Ricarte, A., Marcos-Garcia, M.Á., Miñano, J., Mathevet, R., Gibon, A., Baudry, J., Balent, G., Poulin, B., Burel, F., Tscharntke, T., Bretagnolle, V., Siriwardena, G., Ouin, A., Brotons, L., Martin, J.-L., Fahrig, L., Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. U. S. A. 116 (2019), 16442–16447, 10.1073/pnas.1906419116.
Smith, M.R., Mueller, N.D., Springmann, M., Sulser, T.B., Garibaldi, L.A., Gerber, J., Wiebe, K., Myers, S.S., Pollinator deficits, food consumption, and consequences for human health: a modeling study. Environ. Health Perspect., 130, 2022, 127003, 10.1289/EHP10947.
Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W.H., Marini, L., Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280 (2019), 16–23, 10.1016/j.agee.2019.04.022.
Tamburini, G., Bommarco, R., Wanger, T.C., Kremen, C., Van Der Heijden, M.G.A., Liebman, M., Hallin, S., Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv., 6, 2020, eaba1715, 10.1126/sciadv.aba1715.
Tscharntke, T., Disrupting plant-pollinator systems endangers food security. One Earth 4 (2021), 1217–1219, 10.1016/j.oneear.2021.08.022.
Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., Whitbread, A., Global food security, biodiversity conservation and the future of agricultural intensification. (ADVANCING ENVIRONMENTAL CONSERVATION: ESSAYS IN HONOR OF NAVJOT SODHI) Biol. Conserv. 151 (2012), 53–59, 10.1016/j.biocon.2012.01.068.
Valente, J.J., Gannon, D.G., Hightower, J., Kim, H., Leimberger, K.G., Macedo, R., Rousseau, J.S., Weldy, M.J., Zitomer, R.A., Fahrig, L., Fletcher, R.J., Wu, J., Betts, M.G., Toward conciliation in the habitat fragmentation and biodiversity debate. Land. Ecol. 38 (2023), 2717–2730, 10.1007/s10980-023-01708-9.
Viechtbauer, W., Viechtbauer, M.W., 2015. Package ‘metafor.’.
Vincent, L., Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991), 583–598, 10.1109/34.87344.
Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., Current status of landsat program, science, and applications. Remote Sens. Environ. 225 (2019), 127–147, 10.1016/j.rse.2019.02.015.
Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A.K.B., Fritz, S., Xiong, W., Lu, M., Wu, W., Yang, P., A cultivated planet in 2010: 2. The global gridded agriculturalproduction maps (preprint). Antroposhere Land Cover Land Use, 2020, 10.5194/essd-2020-11.
Zattara, E.E., Aizen, M.A., Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4 (2021), 114–123, 10.1016/j.oneear.2020.12.005.