[en] We consider the dynamics of a continuously monitored qubit in the limit of strong measurement rate where the quantum trajectory is described by a stochastic master equation with Poisson noise. Such limits are expected to give rise to quantum jumps between the pointer states associated with the nondemolition measurement. A surprising discovery in earlier work [A. Tilloy, Phys. Rev. A 92, 052111 (2015)1050-294710.1103/PhysRevA.92.052111] on quantum trajectories with Brownian noise was the phenomena of spikes observed in-between the quantum jumps. Here, we show that spikes are observed also for Poisson noise. We consider three cases where the nondemolition is broken by adding, to the basic strong measurement dynamics, either unitary evolution or thermal noise or additional measurements. We present a complete analysis of the spike and jump statistics for all three cases using the fact that the dynamics effectively corresponds to that of stochastic resetting. We provide numerical results to support our analytic results.
Research center :
DphysMS
Disciplines :
Physics
Author, co-author :
Sherry, Alan ; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
Bernardin, Cedric ; Faculty of Mathematics, National Research University, Higher School of Economics, Moscow, Russian Federation
Dhar, Abhishek ; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
KUNDU, Aritra ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Chetrite, Raphael; Institut de Physique de Nice (INPHYNI), Université Côte d'Azur, CNRS, Nice, France
U-AGR-7239 - C22/MS/17233877/NDFluc-part UL - ARITRA Kundu
Funders :
Agence Nationale de la Recherche Department of Atomic Energy, Government of India Fonds National de la Recherche Luxembourg Department of Science and Technology, Ministry of Science and Technology, India National Research University Higher School of Economics Tata Institute of Fundamental Research
Funding number :
17132054
Funding text :
We thank M. Bauer, R. Chhaibi, and C. Pellegrini for useful discussions. This work was supported by the projects RETENU ANR-20-CE40 of the French National Research Agency (ANR). A.S. and A.D. acknowledge financial support of the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4001. A.K. acknowledges financial support for Project No. NDFluc U-AGR-7239-00-C from the Luxembourg National Research Fund, Fonds National de la Recherche. A.D. acknowledges the J.C. Bose Fellowship (Grant No. JCB/2022/000014) of the Science and Engineering Research Board of the Department of Science and Technology, Government of India. A.D. and A.K. thank Laboratoire J A Dieudonn\u00E9 and INPHYNI, Nice, for supporting a visit which initiated this project. A.D. thanks the National Research University Higher School of Economics, Moscow, for supporting a visit. R.C. thanks ICTS-TIFR for supporting a visit for the completion of the project.
D. Bohm and J. Bub, A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory, Rev. Mod. Phys. 38, 453 (1966) 0034-6861 10.1103/RevModPhys.38.453.
P. Pearle, Reduction of the state vector by a nonlinear Schrödinger equation, Phys. Rev. D 13, 857 (1976) 0556-2821 10.1103/PhysRevD.13.857.
P. Pearle, Stochastic dynamical reduction theories and superluminal communication, Phys. Rev. D 33, 2240 (1986) 0556-2821 10.1103/PhysRevD.33.2240.
L. Diósi, Stochastic pure state representation for open quantum systems, Phys. Lett. A 114, 451 (1986) 0375-9601 10.1016/0375-9601(86)90692-4.
N. Gisin, Quantum measurements and stochastic processes, Phys. Rev. Lett. 52, 1657 (1984) 0031-9007 10.1103/PhysRevLett.52.1657.
A. Barchielli, Measurement theory and stochastic differential equations in quantum mechanics, Phys. Rev. A 34, 1642 (1986) 0556-2791 10.1103/PhysRevA.34.1642.
R. Alicki and M. Fannes, On dilating quantum dynamical semigroups with classical Brownian motion, Lett. Math. Phys. 11, 259 (1986) 0377-9017 10.1007/BF00400224.
L. Diósi, Continuous quantum measurement and Itô formalism, Phys. Lett. A 129, 419 (1988) 0375-9601 10.1016/0375-9601(88)90309-X.
V. P. Belavkin, A new wave equation for a continuous nondemolition measurement, Phys. Lett. A 140, 355 (1989) 0375-9601 10.1016/0375-9601(89)90066-2.
V. P. Belavkin, A posterior Schrödinger equation for continuous nondemolition measurement, J. Math. Phys. 31, 2930 (1990) 0022-2488 10.1063/1.528946.
A. Barchielli and V. P. Belavkin, Measurements continuous in time and a posteriori states in quantum mechanics, J. Phys. A: Math. Gen. 24, 1495 (1991) 0305-4470 10.1088/0305-4470/24/7/022.
V. P. Belavkin, Quantum continual measurements and a posteriori collapse on CCR, Commun. Math. Phys. 146, 611 (1992) 0010-3616 10.1007/BF02097018.
P. Staszewski, Viacheslav Pavlovich Belavkin, 1946-2012: In memory of Professor V. P. Belavkin, Open Syst. Inf. Dyn. 20, 1377001 (2013) 1230-1612 10.1142/S1230161213770015.
M. Holland, S. Marksteiner, P. Marte, and P. Zoller, Measurement induced localization from spontaneous decay, Phys. Rev. Lett. 76, 3683 (1996) 0031-9007 10.1103/PhysRevLett.76.3683.
C. W. Gardiner, A. S. Parkins, and P. Zoller, Wave-function quantum stochastic differential equations and quantum-jump simulation methods, Phys. Rev. A 46, 4363 (1992) 1050-2947 10.1103/PhysRevA.46.4363.
J. Dalibard, Y. Castin, and K. Mølmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68, 580 (1992) 0031-9007 10.1103/PhysRevLett.68.580.
H. M. Wiseman and G. J. Milburn, Quantum theory of field-quadrature measurements, Phys. Rev. A 47, 642 (1993) 1050-2947 10.1103/PhysRevA.47.642.
B. M. Garraway and P. L. Knight, Evolution of quantum superpositions in open environments: Quantum trajectories, jumps, and localization in phase space, Phys. Rev. A 50, 2548 (1994) 1050-2947 10.1103/PhysRevA.50.2548.
C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, Berlin, 2004), pp. xxii, 449.
H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010), pp. xvi, 460.
S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (Oxford University Press, Oxford, 2006), pp. x, 605.
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002), pp. xxii, 625.
H. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics Monographs, Vol. 18 (Springer, New York, 2009).
K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, Cambridge, 2014).
C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, Progressive field-state collapse and quantum non-demolition photon counting, Nature (London) 448, 889 (2007) 0028-0836 10.1038/nature06057.
S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U. Busk Hoff, M. Brune, J.-M. Raimond, and S. Haroche, Quantum jumps of light recording the birth and death of a photon in a cavity, Nature (London) 446, 297 (2007) 0028-0836 10.1038/nature05589.
C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune et al., Real-time quantum feedback prepares and stabilizes photon number states, Nature (London) 477, 73 (2011) 0028-0836 10.1038/nature10376.
K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature (London) 499, 62 (2013) 0028-0836 10.1038/nature12264.
K. W. Murch, S. Weber, C. Macklin, and I. Siddiqi, Observing single quantum trajectories of a superconducting quantum bit, Nature (London) 502, 211 (2013) 0028-0836 10.1038/nature12539.
S. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W. Murch, and I. Siddiqi, Mapping the optimal route between two quantum states, Nature (London) 511, 570 (2014) 0028-0836 10.1038/nature13559.
S. L. Adler, D. C. Brody, T. A. Brun, and L. P. Hughston, Martingale models for quantum state reduction, J. Phys. A: Math. Gen. 34, 8795 (2001) 0305-4470 10.1088/0305-4470/34/42/306.
R. van Handel, J. K. Stockton, and H. Mabuchi, Feedback control of quantum state reduction, IEEE Trans. Automat. Control 50, 768 (2005) 0018-9286 10.1109/TAC.2005.849193.
H. Maassen and B. Kümmerer, Purification of quantum trajectories, Dynamics & Stochastics, IMS Lecture Notes Monographs Series, Vol. 48 (Inst. Math. Statist., Beachwood, OH, 2006), pp. 252-261.
M. Bauer and D. Bernard, Convergence of repeated quantum nondemolition measurements and wave-function collapse, Phys. Rev. A 84, 044103 (2011) 1050-2947 10.1103/PhysRevA.84.044103.
T. Benoist and C. Pellegrini, Large time behavior and convergence rate for quantum filters under standard non demolition conditions, Commun. Math. Phys. 331, 703 (2014) 0010-3616 10.1007/s00220-014-2029-6.
N. Bohr, I. on the constitution of atoms and molecules, London, Edinburgh, Dublin Philos. Mag., J. Sci. 26, 1 (1913) 1941-5982 10.1080/14786441308634955.
W. Nagourney, J. Sandberg, and H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps, Phys. Rev. Lett. 56, 2797 (1986) 0031-9007 10.1103/PhysRevLett.56.2797.
T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, Observation of quantum jumps, Phys. Rev. Lett. 57, 1696 (1986) 0031-9007 10.1103/PhysRevLett.57.1696.
M. Bauer, D. Bernard, and A. Tilloy, Computing the rates of measurement-induced quantum jumps, J. Phys. A: Math. Theor. 48, 25FT02 (2015) 1751-8113 10.1088/1751-8113/48/25/25FT02.
T. Benoist, C. Bernardin, R. Chetrite, R. Chhaibi, J. Najnudel, and C. Pellegrini, Emergence of jumps in quantum trajectories via homogenization, Commun. Math. Phys. 387, 1821 (2021) 0010-3616 10.1007/s00220-021-04179-8.
M. Ballesteros, N. Crawford, M. Fraas, J. Fröhlich, and B. Schubnel, Perturbation theory for weak measurements in quantum mechanics, systems with finite-dimensional state space, Ann. Henri Poincaré 20, 299 (2019) 1424-0637 10.1007/s00023-018-0741-z.
A. Degasperis, L. Fonda, and G. C. Ghirardi, Does the lifetime of an unstable system depend on the measuring apparatus Nuovo Cimento A 21, 471 (1974) 0369-3546 10.1007/BF02731351.
B. Misra and E. C. G. Sudarshan, The Zeno's paradox in quantum theory, J. Math. Phys. 18, 756 (1977) 0022-2488 10.1063/1.523304.
A. Peres, Measurement of time by quantum clocks, Am. J. Phys. 48, 552 (1980) 0002-9505 10.1119/1.12061.
W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum zeno effect, Phys. Rev. A 41, 2295 (1990) 1050-2947 10.1103/PhysRevA.41.2295.
C. Teuscher, Turing's connectionism, Alan Turing: Life and Legacy of a Great Thinker (Springer, Berlin, 2004), pp. 499-529.
D. Layden, E. Martín-Martínez, and A. Kempf, Perfect zeno-like effect through imperfect measurements at a finite frequency, Phys. Rev. A 91, 022106 (2015) 1050-2947 10.1103/PhysRevA.91.022106.
N. Gisin and I. C. Percival, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25, 5677 (1992) 0305-4470 10.1088/0305-4470/25/21/023.
H. Mabuchi and H. M. Wiseman, Retroactive quantum jumps in a strongly coupled atom-field system, Phys. Rev. Lett. 81, 4620 (1998) 0031-9007 10.1103/PhysRevLett.81.4620.
J. D. Cresser, S. M. Barnett, J. Jeffers, and D. T. Pegg, Measurement master equation, Opt. Commun. 264, 352 (2006) 0030-4018 10.1016/j.optcom.2006.02.061.
A. J. Colin, S. M. Barnett, and J. Jeffers, Measurement-driven dynamics for a coherently-excited atom, J. Mod. Opt. 59, 1803 (2012) 0950-0340 10.1080/09500340.2012.744479.
M. Bauer, D. Bernard, and A. Tilloy, Zooming in on quantum trajectories, J. Phys. A: Math. Theor. 49, 10LT01 (2016) 1751-8113 10.1088/1751-8113/49/10/10LT01.
A. Tilloy, M. Bauer, and D. Bernard, Spikes in quantum trajectories, Phys. Rev. A 92, 052111 (2015) 1050-2947 10.1103/PhysRevA.92.052111.
M. Bauer and D. Bernard, Stochastic spikes and strong noise limits of stochastic differential equations, Ann. Henri Poincaré 19, 653 (2018) 1424-0637 10.1007/s00023-018-0645-y.
M. Kolb and M. Liesenfeld, Stochastic spikes and Poisson approximation of one-dimensional stochastic differential equations with applications to continuously measured quantum systems, Ann. Henri Poincaré 20, 1753 (2019) 1424-0637 10.1007/s00023-019-00772-9.
C. Bernardin, R. Chetrite, R. Chhaibi, J. Najnudel, and C. Pellegrini, Spiking and collapsing in large noise limits of sdes, Ann. Appl. Probab. 33, 417 (2023) 1050-5164 10.1214/22-AAP1819.
A. Tilloy, Continuous collapse models on finite dimensional hilbert spaces, Do Wave Functions Jump (Springer, Cham, 2020), pp. 167-188.
M. R. Evans and S. N. Majumdar, Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601 (2011) 0031-9007 10.1103/PhysRevLett.106.160601.
M. R. Evans and S. N. Majumdar, Diffusion with optimal resetting, J. Phys. A: Math. Theor. 44, 435001 (2011) 1751-8113 10.1088/1751-8113/44/43/435001.
M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic resetting and applications, J. Phys. A: Math. Theor. 53, 193001 (2020) 1751-8113 10.1088/1751-8121/ab7cfe.
A. Pal, A. Kundu, and M. R. Evans, Diffusion under time-dependent resetting, J. Phys. A: Math. Theor. 49, 225001 (2016) 1751-8113 10.1088/1751-8113/49/22/225001.
V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of (Equation presented)-level systems, J. Math. Phys. 17, 821 (1976) 0022-2488 10.1063/1.522979.
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976) 0010-3616 10.1007/BF01608499.
C. Pellegrini, Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case, Ann. Probab. 36, 2332 (2008) 0091-1798 10.1214/08-AOP391.
K. Snizhko, P. Kumar, and A. Romito, Quantum zeno effect appears in stages, Phys. Rev. Res. 2, 033512 (2020) 2643-1564 10.1103/PhysRevResearch.2.033512.
V. Dubey, R. Chetrite, and A. Dhar, Quantum resetting in continuous measurement induced dynamics of a qubit, J. Phys. A: Math. Theor. 56, 154001 (2023) 1751-8113 10.1088/1751-8121/acc290.
V. B. Braginskĭ and Y. I. Vorontsov, Quantum-mechanical limitations in macroscopic experiments and modern experimental technique, Usp. Fiz. Nauk 114, 41 (1974) 10.3367/UFNr.0114.197409b.0041
V. B. Braginskĭ and Y. I. Vorontsov, [Sov. Phys. Usp. 17, 644 (1975)] 0038-5670 10.1070/PU1975v017n05ABEH004362.
K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg, Quantum nondemolition measurements of harmonic oscillators, Phys. Rev. Lett. 40, 667 (1978) 0031-9007 10.1103/PhysRevLett.40.667.
W. G. Unruh, Quantum nondemolition, in Gravitational Radiation, Collapsed Objects and Exact Solutions (Proceedings of the Einstein Centenary Summer School, Perth, 1979), Lecture Notes in Physics, Vol. 124 (Springer, Berlin, 1980), pp. 385-426.
V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Quantum nondemolition measurements, Science 209, 547 (1980) 0036-8075 10.1126/science.209.4456.547.
C. M. Caves, K. S. Thorne, R. W. Drever, V. D. Sandberg, and M. Zimmermann, On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Rev. Mod. Phys. 52, 341 (1980) 0034-6861 10.1103/RevModPhys.52.341.
G. J. Milburn and D. F. Walls, Quantum nondemolition measurements via quadratic coupling, Phys. Rev. A 28, 2065 (1983) 0556-2791 10.1103/PhysRevA.28.2065.
W. H. Zurek, Pointer basis of quantum apparatus: into what mixture does the wave packet collapse Phys. Rev. D 24, 1516 (1981) 0556-2821 10.1103/PhysRevD.24.1516.
É. Roldán, I. Neri, R. Chetrite, S. Gupta, S. Pigolotti, F. Jülicher, and K. Sekimoto, Martingales for physicists: a treatise on stochastic thermodynamics and beyond, Adv. Phys. 72, 1 (2023) 0001-8732 10.1080/00018732.2024.2317494.
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Boston, 1964), Vol. II, Chap. 35.
M. Le Bellac, in Quantum Physics, edited by P. d. Forcrand-Millard (Cambridge University Press, Camb ridge, 2006).
E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976), pp. x, 171.
G. de Lange, D. Ristè, M. J. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R. N. Schouten, and L. DiCarlo, Reversing quantum trajectories with analog feedback, Phys. Rev. Lett. 112, 080501 (2014) 0031-9007 10.1103/PhysRevLett.112.080501.
Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret, To catch and reverse a quantum jump mid-flight, Nature (London) 570, 200 (2019) 0028-0836 10.1038/s41586-019-1287-z.
D. Applebaum, Levy processes and stochastic calculus, Cambridge Studies Adv. Math. 116, 223 (2009).
P. Tankov, Financial Modelling with Jump Processes (CRC Press, Boca Raton, FL, 2003).