Computing architecture; Critical systems; Edge computing; Lunar dust; Mechanical parts; Power generation efficiency; Recognition systems; Solar panels; Thermal regulation; Trade off; Aerospace Engineering; Space and Planetary Science
Abstract :
[en] Lunar dust, also known as regolith, presents several challenges for rovers, including abrasive damage to mechanical parts, reduced traction, and impaired mobility. The accumulation of dust on solar panels and radiators diminishes power generation efficiency and disrupts thermal regulation, potentially leading to overheating of critical systems. Furthermore, contamination from lunar dust can compromise the integrity of scientific instruments and data, as electrostatically charged particles tend to adhere to surfaces, thereby impairing functionality. One precondition for mitigating the risks associated with lunar dust is its visual detection through computer vision algorithms. However, existing algorithms are computationally intensive and necessitate careful trade-offs regarding where the computation is conducted. This paper introduces an architecture for a lunar dust recognition system that addresses various computational trade-offs and initial validation results. The proposed approach leverages edge computing to establish an inter-satellite communication and computing system to cope with deep space mission requirements. To reduce bandwidth usage, machine learning techniques are employed to classify data into critical and non-critical categories, ensuring that only essential data is transmitted to Earth. However, scientists may benefit from raw data analysis, so opportunities for raw data downloading are also provided in the proposed design for analysis and model training, contingent on downlink capacity. The LunaLab at the University of Luxembourg, which replicates lunar surface conditions, has been utilized to validate the lunar dust recognition system.
P. T. Metzger, A. Dove, M. Conroy, J. Gloria, A. O'Reilly, and A. S. John, “Ejecta sheet tracking, opacity, and regolith maturity (ejecta storm): An instrument for lunar landing plume effects and dust dynamics,” vol. 2548, p. 2616, 2021, lPI Contribution No. 2548.
C. Calle, P. Mackey, M. Hogue, M. Johansen, H. Yim, P. Delaune, and J. Clements, “Electrodynamic dust shields on the international space station: Exposure to the space environment,” Journal of Electrostatics, vol. 71, no. 3, pp. 257-259, 2013, journal of ELECTROSTATICS, Electrostatics 2013 12th International Conference on Electrostatics.
N. Zeitlin, C. Calle, M. Hogue, M. Johansen, and P. Mackey, “Electrodynamic dust shield for lunar/iss experiment project,” 2021, dust Prevention & Mitigation.
N. Duncan, Z. Sternovsky, E. Grün, S. Auer, M. Horanyi, K. Drake, J. Xie, G. Lawrence, D. Hansen, and H. Le, “The electrostatic lunar dust analyzer (elda) for the detection and trajectory measurement of slow-moving dust particles from the lunar surface,” Planetary and Space Science, vol. 59, no. 13, pp. 1446-1454, 2011, exploring Phobos.
S. Maurice, R. C. Wiens, P. Bernardi, P. Caïs, S. Robinson, T. Nelson, O. Gasnault, J.-M. Reess, M. Deleuze, F. Rull, J.-A. Manrique, S. Abbaki, R. B. Anderson, Y. André, S. M. Angel, G. Arana, T. Battault, P. Beck, K. Benzerara, S. Bernard, J.-P. Berthias, O. Beyssac, M. Bonafous, B. Bousquet, M. Boutillier, A. Cadu, K. Castro, F. Chapron, B. Chide, K. Clark, E. Clavé, S. Clegg, E. Cloutis, C. Collin, E. C. Cordoba, A. Cousin, J.-C. Dameury, W. D'Anna, Y. Daydou, A. Debus, L. Deflores, E. Dehouck, D. Delapp, G. D. L. Santos, C. Donny, A. Doressoundiram, G. Dromart, B. Dubois, A. Dufour, M. Dupieux, M. Egan, J. Ervin, C. Fabre, A. Fau, W. Fischer, O. Forni, T. Fouchet, J. Frydenvang, S. Gauffre, M. Gauthier, V. Gharakanian, O. Gilard, I. Gontijo, R. Gonzalez, D. Granena, J. Grotzinger, R. Hassen-Khodja, M. Heim, Y. Hello, G. Hervet, O. Humeau, X. Jacob, S. Jacquinod, J. R. Johnson, D. Kouach, G. Lacombe, N. Lanza, L. Lapauw, J. Laserna, J. Lasue, L. L. Deit, S. L. Mouélic, E. L. Comte, Q.-M. Lee, C. Legett, R. Leveille, E. Lewin, C. Leyrat, G. Lopez-Reyes, R. Lorenz, B. Lucero, J. M. Madariaga, S. Madsen, M. Madsen, N. Mangold, F. Manni, J.-F. Mariscal, J. Martinez-Frias, K. Mathieu, R. Mathon, K. P. McCabe, T. McConnochie, S. M. McLennan, J. Mekki, N. Melikechi, P.-Y. Meslin, Y. Micheau, Y. Michel, J. M. Michel, D. Mimoun, A. Misra, G. Montagnac, C. Montaron, F. Montmessin, J. Moros, V. Mousset, Y. Morizet, N. Murdoch, R. T. Newell, H. Newsom, N. N. Tuong, A. M. Ollila, G. Orttner, L. Oudda, L. Pares, J. Parisot, Y. Parot, R. Pérez, D. Pheav, L. Picot, P. Pilleri, C. Pilorget, P. Pinet, G. Pont, F. Poulet, C. Quantin-Nataf, B. Quertier, D. Rambaud, W. Rapin, P. Romano, L. Roucayrol, C. Royer, M. Ruellan, B. F. Sandoval, V. Sautter, M. J. Schoppers, S. Schröder, H.-C. Seran, S. K. Sharma, P. Sobron, M. Sodki, A. Sournac, V. Sridhar, D. Standarovsky, S. Storms, N. Striebig, M. Tatat, M. Toplis, I. Torre-Fdez, N. Toulemont, C. Velasco, M. Veneranda, D. Venhaus, C. Virmontois, M. Viso, P. Willis, and K. W. Wong, “The supercam instrument suite on the mars 2020 rover: Science objectives and mast-unit description,” Space Science Reviews, vol. 217, no. 3, p. 47, 2021. [Online]. Available: https://doi.org/10.1007/s11214-021-00807-w
P. Zanon, M. Dunn, and G. Brooks, “Current lunar dust mitigation techniques and future directions,” Acta Astronautica, vol. 213, pp. 627-644, 2023.
J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, “Lunar surface: Dust dynamics and regolith mechanics,” Reviews of Geophysics, vol. 45, no. 2, 2007.
P. B. Abel, M. D. Anderson, E. T. Blom, C. Calle, P. H. Dunlap, P. S. Greenberg, D. G. Fischer, S. A. Howard, K. M. Hurlbert, J. L. Jordan, D. R. Ludwiczak, E. Orndoff, F. Thomas, and C. J. Wohl, “Lunar dust mitigation: A guide and reference: First edition (2021),” NASA Glenn Research Center, 09 2021.
E. Grün, M. Horanyi, and Z. Sternovsky, “The lunar dust environment,” Planetary and Space Science, vol. 59, no. 14, pp. 1672-1680, 2011, lunar Dust, Atmosphere and Plasma: The Next Steps.
S. Popel, L. Zelenyi, A. Golub', and A. Dubinskii, “Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems,” Planetary and Space Science, vol. 156, pp. 71-84, 2018, dust, Atmosphere, and Plasma Environment of the Moon and Small Bodies.
O. E. Berg and F. F. Richardson, “The Pioneer 8 Cosmic Dust Experiment,” Review of Scientific Instruments, vol. 40, no. 10, pp. 1333-1337, 10 1969. [Online]. Available: https://doi.org/10.1063/1.1683778
E. Grün and M. Horányi, “A new look at apollo 17 leam data: Nighttime dust activity in 1976,” Planetary and Space Science, vol. 89, pp. 2-14, 2013.
D. Wooden, A. Cook, A. Colaprete, D. Glenar, T. Stubbs, and M. Shirley, “Evidence for a dynamic nanodust cloud enveloping the moon,” Nature Geoscience, vol. 9, 08 2016.
J. R. Szalay and M. Horányi, “Lunar meteoritic gardening rate derived from in situ ladee/ldex measurements,” Geophysical Research Letters, vol. 43, no. 10, pp. 4893-4898, 2016.
S. I. Popel, A. P. Golub', L. M. Zelenyi, and M. Horányi, “Dusty plasmas in the lunar exosphere: Effects of meteoroids,” Journal of Physics: Conference Series, vol. 946, no. 1, p. 012142, jan 2018. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/946/1/012142
T. Stubbs, R. Vondrak, and W. Farrell, “Impact of dust on lunar exploration,” Dust in Planetary Systems, pp. 239-243, 01 2007.
R. Christoffersen, J. Lindsay, S. Noble, and J. Lawrence, “Lunar dust effects on spacesuit systems: Insights from the apollo spacesuits,” LPI Contributions, 10 2008.
J. H. Agui and D. P. Stocker, “Nasa lunar dust filtration and separations workshop report,” 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:127511578
J. R. Gaier, “The effects of lunar dust on eva systems during the apollo missions,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:128516988
B. R. Hawke and J. W. Head, “Impact melt on lunar crater rims,” Proceedings of the Symposium on Planetary Cratering Mechanics, Flagstaff, Ariz., September 13-17, 1976, pp. 815-841, 1977.
M. Horanyi, J. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, and Z. Sternovsky, “A permanent, asymmetric dust cloud around the moon,” Nature, vol. 522, pp. 324-6, 06 2015.
S. I. Popel, S. I. Kopnin, and A. Y. Dubinskii, “Dusty plasmas over hydrogen-rich areas of lunar surface,” vol. 1, pp. 543-546, 2019.