S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a web of open data. In international semantic web conference, pages 722-735. Springer, 2007.
L. Bongiovanni, L. Bruno, F. Dominici, and G. Rizzo. Zero-shot taxonomy mapping for document classification. In Proc of the 38th ACM/SIGAPP Symposium on Applied Computing, pages 911-918, 2023.
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33: 1877-1901, 2020.
S. Chatterjee, A. Maheshwari, G. Ramakrishnan, and S. N. Jagarlapudi. Joint learning of hyperbolic label embeddings for hierarchical multilabel classification. In P. Merlo, J. Tiedemann, and R. Tsarfaty, editors, Proc. of the 16th Conference of the European Chapter of the ACL: Main Volume, pages 2829-2841, Online, Apr. 2021. Association for Computational Linguistics. doi: 10. 18653/v1/2021. eacl-main. 247.
D. Chen, Z. Yu, and S. R. Bowman. Clean or annotate: How to spend a limited data collection budget. In C. Cherry, A. Fan, G. Foster, G. R. Haffari, S. Khadivi, N. V. Peng, X. Ren, E. Shareghi, and S. Swayamdipta, editors, Proc. of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 152-168. ACL, July 2022. doi: 10. 18653/v1/2022. deeplo-1. 17.
H. Chen, Q. Ma, Z. Lin, and J. Yan. Hierarchy-aware label semantics matching network for hierarchical text classification. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proc. of the 59th Annual Meeting of the ACL and the 11th Int Joint Conf on Natural Language Processing (Volume 1: Long Papers), pages 4370-4379, Online, Aug. 2021. ACL. doi: 10. 18653/v1/2021. acl-long. 337.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: Human language technologies, volume 1 (long and short papers), pages 4171-4186, 2019.
D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt, D. Metropolitansky, R. O. Ness, and J. Larson. From local to global: A graph rag approach to query-focused summarization. arXiv preprint arXiv: 2404. 16130, 2024.
W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, and Q. Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6491-6501, 2024.
Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, and H. Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv: 2312. 10997, 2, 2023.
K. Halder, A. Akbik, J. Krapac, and R. Vollgraf. Task-aware representation of sentences for generic text classification. In D. Scott, N. Bel, and C. Zong, editors, Proc. of the 28th International Conference on Computational Linguistics, pages 3202-3213, Barcelona, Spain (Online), Dec. 2020. International Committee on Computational Linguistics. doi: 10. 18653/v1/2020. coling-main. 285.
D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning Representations, 2021.
T. Hornek, A. Sartipi, I. Tchappi, and G. Fridgen. Benchmarking pretrained time series models for electricity price forecasting. In 2025 21st Int Conf on the European Energy Market, pages 1-7. IEEE, 2025.
W. Huang, E. Chen, Q. Liu, Y. Chen, Z. Huang, Y. Liu, Z. Zhao, D. Zhang, and S. Wang. Hierarchical multi-label text classification: An attention-based recurrent network approach. In Proc. of the 28th ACM international conference on information and knowledge management, pages 1051-1060, 2019.
V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage retrieval for open-domain question answering. In B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proc. of the 2020 Conf. on EMNLP, pages 6769-6781. ACL, Nov. 2020.
M. Klesel and H. F. Wittmann. Retrieval-augmented generation (rag). Business & Information Systems Engineering, 2025.
M. A. Kokmel, A. E. Abbas, and I. Tchappi. Striking the balance: Generalization vs. memorization in anonymization and de-anonymization through llms. Procedia Computer Science, 257: 888-895, 2025.
K. Kowsari, D. E. Brown, M. Heidarysafa, K. Jafari Meimandi, M. S. Gerber, and L. E. Barnes. Hdltex: Hierarchical deep learning for text classification. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 364-371, 2017. doi: 10. 1109/ICMLA. 2017. 0-134.
P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrievalaugmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33: 9459-9474, 2020.
T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen. Longcontext llms struggle with long in-context learning. arXiv preprint arXiv: 2404. 02060, 2024.
Z. Li, Q. Zang, D. Ma, J. Guo, T. Zheng, M. Liu, X. Niu, Y. Wang, J. Yang, J. Liu, et al. Autokaggle: A multi-agent framework for autonomous data science competitions. arXiv preprint arXiv: 2410. 20424, 2024.
A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv: 2412. 19437, 2024.
Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv: 1907. 11692, 2019.
Y. Liu, K. Zhang, Z. Huang, K. Wang, Y. Zhang, Q. Liu, and E. Chen. Enhancing hierarchical text classification through knowledge graph integration. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023, pages 5797-5810, Toronto, Canada, July 2023. ACL. doi: 10. 18653/v1/2023. findings-acl. 358.
Z. Luo, X. Song, H. Huang, J. Lian, C. Zhang, J. Jiang, and X. Xie. Graphinstruct: Empowering large language models with graph understanding and reasoning capability. arXiv preprint arXiv: 2403. 04483, 2024.
Y. Meng, J. Shen, C. Zhang, and J. Han. Weakly-supervised hierarchical text classification. In emnlpeedings of the AAAI conference on artificial intelligence, volume 33, pages 6826-6833, 2019.
L. Paletto, V. Basile, and R. Esposito. Label augmentation for zero-shot hierarchical text classification. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proc. of the 62nd Annual Meeting of the ACL, pages 7697-7706. ACL, Aug. 2024. doi: 10. 18653/v1/2024. acl-long. 416.
D. Patel, P. Dangati, J.-Y. Lee, M. Boratko, and A. McCallum. Modeling label space interactions in multi-label classification using box embeddings. ICLR 2022 Poster, 2022.
B. Peng, Y. Zhu, Y. Liu, X. Bo, H. Shi, C. Hong, Y. Zhang, and S. Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv: 2408. 08921, 2024.
A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative pre-training. OpenAI, 2018.
A. Simonofski, J. Fink, and C. Burnay. Supporting policy-making with social media and e-participation platforms data: A policy analytics framework. Government Information Quarterly, 38 (3): 101590, 2021.
A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. In Proc 2001 IEEE International Conference on Data Mining, pages 521-528, 2001. doi: 10. 1109/ICDM. 2001. 989560.
H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv: 2302. 13971, 2023.
A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv: 2412. 15115, 2024.
Q. Zhang, J. Dong, H. Chen, D. Zha, Z. Yu, and X. Huang. KnowGPT: Knowledge graph based prompting for large language models. Advances in Neural Information Processing Systems, 37: 6052-6080, 2024.
Y. Zhang, R. Yang, X. Xu, R. Li, J. Xiao, J. Shen, and J. Han. Teleclass: Taxonomy enrichment and llm-enhanced hierarchical text classification with minimal supervision. arXiv preprint arXiv: 2403. 00165, 2024.
K. Zhu, Q. Zang, S. Jia, S. Wu, F. Fang, Y. Li, S. Gavin, T. Zheng, J. Guo, B. Li, et al. LIME: Less is more for MLLM evaluation. arXiv preprint arXiv: 2409. 06851, 2024.