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Abstract. Hierarchical Text Classification (HTC) involves assign-
ing documents to labels organized within a taxonomy. Most pre-
vious research on HTC has focused on supervised methods. How-
ever, in real-world scenarios, employing supervised HTC can be
challenging due to a lack of annotated data. Moreover, HTC often
faces issues with large label spaces and long-tail distributions. In
this work, we present Knowledge Graphs for zero-shot Hierarchical
Text Classification (KG-HTC), which aims to address these chal-
lenges of HTC in applications by integrating knowledge graphs with
Large Language Models (LLM) to provide structured semantic con-
text during classification. Our method retrieves relevant subgraphs
from knowledge graphs related to the input text using a Retrieval-
Augmented Generation (RAG) approach, thereby augmenting the
model’s understanding of label semantics at various hierarchy lev-
els. We evaluate KG-HTC on three open-source HTC datasets: WoS,
DBpedia, and Amazon. Our experimental results show that KG-HTC
significantly outperforms three baselines in the strict zero-shot set-
ting, particularly achieving substantial improvements at deeper lev-
els of the hierarchy. This evaluation demonstrates the effectiveness
of incorporating structured knowledge into LLMs to address HTC’s
challenges in large label spaces and long-tailed label distributions.
Our code is available at: https://github.com/QianboZang/KG-HTC.

1 Introduction

Text classification is a fundamental task in natural language process-
ing that focuses on assigning one or more predefined categories to
a given piece of text. A specific and increasingly important exten-
sion of text classification is Hierarchical Text Classification (HTC),
where the labels are not simply flat but are organized within a multi-
level taxonomy. HTC aims to categorize textual data into multi-level
label systems with parent-child relationships, where labels at differ-
ent levels are organized as a hierarchical taxonomy. Figure 1 features
an example of HTC from the Amazon Product Review dataset. ' In
this figure, the root of the hierarchy is the name of the dataset, and a
review needs to be classified to labels at multiple levels. The exam-
ple input text can be sequentially classified as Health Personal Care,
Household Supplier, and Dishwashing. HTC has been successfully
applied in different domains, including e-commerce product catego-
rization [4, 26], hierarchical topic modeling of e-participation plat-
forms [29], fine-grained literature management [6, 16], to name a
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Figure 1. An example of HTC from the Amazon Product Review dataset.

few.

However, in real-world applications, HTC can face one or multi-
ple out of the following three significant challenges. First, there may
be a shortage of annotated data, particularly as the cost of manually
labeling custom data at multiple hierarchical levels is prohibitively
high [5]. This problem becomes even more severe in dynamic envi-
ronments such as retail systems, where taxonomies evolve with new
product lines. Second, practical taxonomies often exhibit large-scale
label spaces [34]. For instance, the hierarchy of the Amazon Prod-
uct Review dataset contains over 500 leaf categories. Third, real-
world datasets in HTC can exhibit highly imbalanced long-tail dis-
tributions, i.e., a small number of frequent categories dominates the
dataset while most classes remain underrepresented. For instance,
15 % of categories account for 80 % of total instances in the third
level of the Amazon Product Review dataset. In contrast, the bot-
tom 50 % of categories collectively represent merely 6 % of the data
volume.

For these three reasons, and contrary to flat text classification,
standard supervised approaches are not well-suited to HTC in many
industry settings [11, 13, 16, 24]. As a consequence, researchers
have increasingly turned to zero-shot learning methods to approach
HTC [2, 11, 25]. We can group recent zero-shot learning based stud-
ies into three main approaches. The first approach leverages the
in-context learning of pre-trained Large Language Models (LLMs)
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through carefully designed prompts to accomplish accurate classifi-
cation. Halder et al. [11] transforms any text classification task into
a universal binary classification problem, where deep learning mod-
els determine a binary (True or False) prediction for a given text
and a potential class label. However, this method requires multiple
classifications for each textual data, as each possible label needs to
be evaluated individually. The second approach utilizes embedding
models converted from pre-trained LLMs to calculate the distance
between input text and labels for classification. Secondly, Bongio-
vanni et al. [2] proposed Z-STC to propagate similarity scores up the
hierarchy and leverage this propagated information to improve clas-
sification quality for upper-level labels. The third method combines
embedding models with LLM-based classification. Thirdly, Paletto
et al. [25] introduced HiLLA, where LLMs generate new label layers
inserted into the bottom of the current taxonomy. Then, Paletto fol-
lows Z-STC for classification. However, Bongiovanni et al. [2]’s and
Paletto et al. [25]’s methods exhibit low classification performance
for deeper levels.

In this paper, we propose KG-HTC, a new method to enhance
HTC by integrating Knowledge Graphs (KGs) into LLMs for HTC.
To this end, we will focus on the strict zero-shot learning setting.
Since Directed Acyclic Graphs (DAGs) can represent the hierarchical
structure of labels in HTC, the combination of LLMs and knowledge
graphs seems particularly promising for this purpose. We represent
the taxonomy as a DAGs-based knowledge graph and compute the
cosine similarity between the text and the embeddings of labels at
each level. By applying preset thresholds, candidate labels that are
highly semantically relevant to the input text are chosen at every hi-
erarchical level. Then, leveraging these candidate labels, the system
dynamically retrieves the most pertinent subgraph from the complete
label knowledge graph corresponding to the given text. For the re-
trieved subgraph, an upwards propagation algorithm is employed to
systematically enumerate all possible hierarchical paths from the leaf
nodes to the root, with each path representing a complete reversed
hierarchical label sequence. These structured sequences are subse-
quently concatenated into a prompt, which is fed into an LLM to
perform the zero-shot classification task.

We evaluate our approach using three public datasets and achieve
new state-of-the-art results for all of them. Without relying on any
annotated data, the KG-HTC method significantly enhances the
model’s capability to overcome the issues of long-tail distributions
and sparse labels. We find that compared to the approaches of Bon-
giovanni et al. [2] and Paletto et al. [25], our KG-HTC exhibits signif-
icantly smaller performance degradation as the label hierarchy deep-
ens. As such, the contributions of this paper are threefold:

1. We present a novel approach — KG-HTC - to integrate KGs into
LLMs for HTC under a strict zero-shot setting.

2. We implement a novel pipeline that semantically retrieves rele-
vant subgraphs from the label taxonomy based on cosine similar-
ity with the input text and transforms it to a structured prompt.

3. We conduct an in-depth assessment of KG-HTC, comparing it
with the previous state-of-the-art on three main public HTC
datasets.

The remainder of this paper is structured as follows: First, we sur-
vey related work in Section 2. Subsequently, we introduce KG-HTC
in Section 3. Section 4 describes our experimental settings, followed
by an analysis of our experimental results in Section 5. Finally, we
conclude our research in Section 6.

2 Related Work

Hierarchical Text Classification. The task of HTC was initially
proposed by Sun and Lim [30], who suggested using Support Vec-
tor Machine classifiers as a solution. Subsequently, Kowsari et al.
[16] explored various deep learning methods, training different deep
neural networks for each level of the taxonomy. More recently, Liu
et al. [22] introduced the integration of knowledge graphs to enhance
HTC. They employed Graph Neural Networks (GraphSAGE) to en-
code knowledge graphs and combined graph embeddings with BERT
text embeddings for fine-tuning. This approach currently represents
the state-of-the-art in supervised settings. However, supervised meth-
ods face challenges in industrial applications. The primary issue is
the lack of annotated data, as the cost of labeling data across multi-
ple hierarchical levels can be prohibitively high. As LLMs continue
to improve [31, 20, 28, 32], zero-shot inference has become increas-
ingly popular in many fields [3, 12, 19, 35].

Zero-shot HTC. Three recent studies align with our strict zero-
shot learning setting of HTC. First, Halder et al. [11] proposed the
Task-Aware Representation method for zero-shot text classification.
This approach allows any text classification task to be converted into
a universal binary classification problem. Given a text and a set of
labels, the LLMs determines whether (True) or not (False) alabel
matches. However, due to HTC’s extensive label space, this method
requires multiple iterations to complete a single classification.

Second, Bongiovanni et al. [2] proposed Zero-shot Semantic Text
Classification (Z-STC), which utilized the Upward Score Propaga-
tion (USP) method for HTC. This approach leverages pre-trained
language models, such as BERT [7] and RoBERTa [21], to indepen-
dently encode documents and taxonomy labels into a semantic vector
space. The prior relevance score of each label is then computed via
cosine similarity. By incorporating the hierarchical structure of the
taxonomy, USP recursively propagates the relevance scores of lower-
level labels upward to their parent nodes. The key idea is that if a
child label is relevant to the content to be classified, its parent label
should also be considered relevant. This hierarchical score propaga-
tion effectively integrates local semantic cues into the global taxon-
omy, improving overall classification performance.

Finally, Paletto et al. [25] proposed the Hierarchical Label Aug-
mentation (HiLA) method for HTC. They used pre-trained LLMs to
generate additional child labels for the leaf nodes of the existing la-
bel hierarchy. Since satisfying token constraints by directly inputting
the whole hierarchy into an LLM is challenging, they adopted an it-
erative approach to generate extended sub-labels for each branch to
avoid redundancies and label overlap. Moreover, Paletto et al. [25]
applied Bongiovanni’s Z-STC to the new deeper levels to accom-
plish the HTC task. As such, HiLA represents the state-of-the-art in
the strict zero-shot setting. However, as we demonstrate in Section 5,
Bongiovanni’s [2] and Paletto’s [25]’s methods exhibit low classifi-
cation accuracy for deeper-level labels. As the taxonomy deepens,
the label space for the corresponding single-layer classification task
becomes larger, and the distributions of labels become more biased.

Retrieval Augment Generation. Retrieval-Augmented Genera-
tion (RAG) can dynamically retrieve relevant information from an
external corpus or database during in-context learning inference
[15, 17]. Graph RAG extends RAG to retrieve interconnected enti-
ties and relationships through KGs, enabling richer contextual un-
derstanding [8]. Both RAG and graph RAG have demonstrated sig-
nificant improvements in open-domain question answering [9, 27].
However, there is limited research on leveraging RAG and graph
RAG for text classification.



Table 1. List of symbols.

Symbol Explanation

l A hierarchy level of a label taxonomy, ! € {1,...,L}

ct Set of all labels at level [

ci A label at level [

T cﬁ The parent label of cé

1 cé The set of child labels of ci

U (x) A vector embedding of a text

Sc(¥1, ¥2)  The cosine similarity of two embeddings W1 and W2

Q! All queried labels by S with a threshold 7; at level [
3 Method

3.1 Problem ldentification

Zero-shot text classification via LLMs is formally framed as a gener-
ative classification task. Given a text sequence = (z1, T2, ..., Tn)
as input, where n denotes text length, an LLM generates an output
texty ~ LLM(x) using a Top-p sampling strategy. In classification
contexts, the set of labels can be defined as C. The generated text y
can then be mapped to a predicted label ¢ € C.

Our mathematical framework follows the formulation established
by Paletto et al. [25], with key symbols summarized in Table 1. In hi-
erarchical text classification, all labels C' in the label space are orga-
nized into a hierarchical taxonomy C' = (C*,C?,...,C"), where L
is the maximum depth of the taxonomy, i.e., the number of levels. To
formally capture the dependencies of the labels, we adopt the upward
and downward arrow notation employed by [25], where T cé repre-
sents the parent node of ¢! in the hierarchy and | ¢! represents the set
of child nodes of ¢ in the hierarchy. For all I € {2, ..., L}, each la-
bel ¢t € C' must satisfy the structural constraint 1 ¢; € C*~*. Like-
wise, foralll € {1,...,L—1},] ¢, € C'"'. The task of hierarchi-
cal text classification requires an LLM to iteratively generate outputs
(y*, 4%, ..., y") corresponding to predicted labels (&',¢2, ..., &%)
within a hierarchical taxonomy, i.e., ¢ € C' VI € {1,...,L}.

3.2 System architecture

Figure 2 illustrates the full process of our KG-HTC. First, we store
all labels in a graph database and a vector database, respectively.
Given an input text, we subsequently retrieve labels of top candi-
dates Q' at each level [ from the vector database and retrieve a valid
subgraph from the graph database by checking parent-child relation-
ships between candidates from adjacent levels. Then, we convert a
set of paths in a retrieved subgraph into a structured prompt and con-
catenate the structured context with a classification prompt. Finally,
we leverage In-context Learning for zero-shot text classification.

3.3 Storage of hierarchical labels

In the first step, we store all labels into a vector database and
graph database, respectively. The RAG component relies on a vector
database to quickly locate nodes at each level. The graph database
enables structural reasoning to generate paths that adhere to hierar-
chical constraints. In hierarchical text classification, the taxonomies
of labels can be conceptualized as DAG knowledge graphs, where
multi-level labels are interconnected through hierarchical affiliation
relationships. By explicitly representing the relational pathways be-
tween labels in each tier, a LLM can develop a structural understand-
ing of individual labels and their conceptual boundaries within the

Algorithm 1: Subgraph Retrieval

Input: Input text z, labels {C*,C?,... CF}
Output: Retrieved sub-graph G

Initialize an empty graph structure G < 0;
Compute the embedding ¥ (z) for the input text x;
for [ < 110 Ldo
Compute W(ct) for all labels at level I;
Calculate dc (U (z), ¥(c!)) via Equation 1;
Retrieve candidates Q' C C' via Equation 2;
end
for [ < 21to L do
for each . € Q' do
if 1 ¢t € Q' then
Add nodes 1 ¢! and ¢ to G;
Add edge (1 ¢, ¢}) to G;
end
end

end
Delete repeated (1 ¢}, c})in G ;
return G,

hierarchy. This graph-based knowledge representation equips LLMs
with dual advantages: it not only establishes explicit semantic navi-
gation pathways for text processing tasks, but also creates topological
constraints that may substantially enhance classification accuracy in
zero-shot scenarios through improved semantic disambiguation [22].

3.4 Subgraph Retrieval

Empirical studies have demonstrated that the RAG framework ex-
hibits significant advantages in open question-answering tasks for
LLMs [10, 14, 17]. A defining challenge in HTC stems from the
scenarios of large label spaces, where the label taxonomy spans
many categories. By dynamically retrieving relevant documents from
vector databases through a similarity check with in-context learn-
ing, RAG effectively enhances the factual accuracy of generated re-
sponses.

The research of Li et al. [18] shows that LL.Ms exhibit limitations
in both long-context processing and classification tasks of large label
spaces. Directly encoding the full knowledge graph into LLMs may
therefore suffer from performance degradation due to information
overload or attention dilution. To mitigate this issue, we propose an
RAG enhanced framework that dynamically retrieves semantically
relevant subgraph (sub-tree) components from the whole knowledge
graph based on the input text. These retrieved subgraphs are sub-
sequently structured as contextualized prompts, enabling the classi-
fier to prioritize critical hierarchical dependencies while suppressing
(heuristically) irrelevant noise. We will thoroughly introduce this ap-
proach in Section 3.5.

Specifically, for each hierarchical level [, we compute the cosine
similarity distance between the embedding of the input text and all
labels at level [:

de(a, ) = 1= ¢ (V(@), ¥(c), M

where ¥ : X — R denotes the embedding function fine-tuned from
the pre-trained LLMs, and Sc (-, -) represents the cosine similarity
operator. We then retrieve labels of top candidates at each level [:

Q' ={ci|dc(z, ¢i) <m}, 2)
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Figure 2. The system architecture of KG-HTC.
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Figure 3. Visualization of the knowledge graph (tree) constructed from the
multi-level taxonomy in the Amazon Product Review dataset. The red nodes
represent labels in the first hierarchical level. The green nodes denote sub-
categories (second level) interconnected through parent-child relationships.
The yellow nodes correspond to the fine-grained leaf categories in the third
(deepest) level.

where 7; is a similarity threshold and represents the maximum cosine
distance allowed for a label ¢} to be included in the set of candidate
labels Q' for level 1.

To ensure hierarchical consistency, we validate cross-level depen-
dencies by checking parent-child relationships between candidates
from adjacent levels. A candidate label ¢; € Q' must satisfy the con-
dition that its parent label 1 ¢; belongs to Q' ~!. Algorithm 1 shows
the complete process for retrieving a subgraph based on input text x
as the query.

Algorithm 2: From Subgraph to Hierarchical Label Paths

Input: Input text x, subgraph G retrieved via Algorithm 1
Output: Set of hierarchical paths { Pi, P, ...}

Initialize path set P < (;
for each leaf node ¢t € CT do
Initialize a stack structure S < {[cF]};
for ! < Lto2do
\ Push the parent node 1 ¢} € C'~! of ¢F to S;
end
Add StoP;
end
return P;

3.5 Serialization from Subgraph to Prompt

For an input text x, we first retrieve a subgraph G through Algo-
rithm 1. To effectively inject the KG into the LLM, we adopt a strat-
egy that converts one graph structure into a set of paths through
parent-child edge connections [33]. Specifically, each subgraph is
serialized as a set of hierarchical paths from root to leaf nodes.
This chain-based representation ensures structural consistency while
maintaining compatibility with sequential input formats of LLMs.
For HTC tasks, the length of paths equals the taxonomy depth L.
LLMs cannot directly understand graph information. We need to
transfer the subgraph to a prompt. A feasible method is to input the
paths inside graphs as a prompt for graph understanding and rea-
soning [23]. Valid hierarchical label paths in the subgraph are pre-
served as contextual prompts with the upwards propagation. The
upwards propagation is implemented as a loop traversal algorithm



Algorithm 3: KG-HTC

Input: Input text x, prompt template P
Output: Predicted hierarchical labels y = (3,42, ..., y%)

Initialize the set of predicted labels y <+ (J;
Retrieve subgraph G via Algorithm 1;
Transform G to hierarchical label paths P;
for level | + 1to L do
if . == 1 then
‘ prompt < concat(zx, P, C*);
else
Retrieve candidates Ql via Equation 2;
prompt « concat(z, P, Q'U | y'=1) ;
end
y' < LLM(Prompt);
Addy' toy ;

end
returny = (y',...,y")

that systematically explores all possible paths from the terminal leaf
nodes to the root node in a hierarchical structure. Starting from any
leaf node ¢/ € C* in the deepest hierarchical level, Algorithm 2
can progressively traverse parent nodes until reaching root nodes,
and then backtrack to explore alternative branches. This exhaustive
traversal guarantees the complete enumeration of all valid path com-
binations. After obtaining all path combinations, the sequence of el-
ements in each path P; will be reversed to ensure the directional
consistency from the first layer to the L™ layer, with the final out-
put being the complete set of paths P = {P;, P, ... }. Each path
P, = (p! — p? — ... — pF) represents a connected node sequence,
where pt € G and p} € C*.

We can convert a set of paths in a retrieved subgraph into a struc-
tured prompt using — to connect two nodes in adjacent levels. This
structured context enables the LLM to recognize hierarchical con-
straints during classification. An illustrative prompt example of such
multi-level label paths for the Amazon Product Review dataset is
provided in the third block of Figure 2.

3.6 Classification of Each Level

Our approach leverages In-context Learning and prompt engineering
by concatenating the structured context extracted from the retrieved
subgraph with a classification prompt template. Subsequently, the
concatenated prompt is fed into the LLM for inference. The final
block of Figure 2 features an example of the classification template
from the Amazon Product Review dataset.

For HTC, we follow a layer-wise classification strategy. The model
begins by predicting the label at the first level, then proceeds to clas-
sify labels at deeper levels sequentially, until the deepest level is
reached. One major challenge in HTC is the large number of can-
didate labels. Providing all possible labels in a single prompt often
leads to performance degradation [18]. However, since the number of
first-level labels is usually small (no more than 10 among our eval-
uation datasets), we can directly include all first-level labels into the
prompt. This strategy simplifies inference and heuristically enhances
classification performance.

For classification beyond the first level, the model uses the pre-
diction from the previous level as a constraint for the current level.
For instance, the predicted label at level [ is y'. The candidate la-
bel set at the next level [ + 1 mainly consists of the subcategories

1 4! of the previous prediction 3!, along with additional labels Q'**
retrieved using Equation 2. This equation helps mitigate the impact
of potential errors in the previous level’s prediction, as the confi-
dence in all labels in | y; that are consistent with previous labeling
is continuously benchmarked against any close labels in the corre-
sponding layer C;41. This approach promises to improve the overall
robustness and accuracy of the classification process. Algorithm 3
illustrates the full process of our KG-HTC.

4 Experiment
4.1 Dataset

Amazon Product Reviews (Amazon). > Each data item has a title
and description and is classified according to a three-level hierarchi-
cal taxonomy with 6, 64, and 510 label categories, respectively.

Web of Science (WoS) [16]. °  This dataset is about scientific
literature. It includes data from multiple fields, such as natural sci-
ences, social sciences, and humanities and arts, and is widely used in
academic research, bibliometric analyses, and scientific evaluations.
Each item is classified according to a two-level hierarchical taxon-
omy with 7 and 134 label categories, respectively.

Dbpedia [1]. *  This dataset is an open knowledge base project
built on Wikipedia. Scientists extract and transform the vast wealth
of information from Wikipedia and present it in a structured and
standardized format. The data within the Dbpedia forms a massive
and complex knowledge graph that supports users in cross-domain
knowledge exploration. Each data item is classified according to a
three-level hierarchical taxonomy, encompassing 9, 70, and 219 la-
bel categories at each level, respectively.

4.2 Metric

We employ the Fl-macro score as the evaluation metric. The F1-
macro score ensures that rare classes contribute equally to the final
metric. This prevents overoptimistic performance estimates in imbal-
anced datasets, where some classes are underrepresented. Formally,
it is defined as:

c
1
Fi-macro = c ; Fi;, 3)

where C denotes the total number of classes, and the F1-score for the
i-th class is the harmonic mean of precision and recall:
Precision; x Recall;

Fi, =2x — . 4
1i Precision; + Recall; “)

To evaluate the compounded challenges of large label spaces and
long-tailed distributions, we implement a metric called average decay
rate via Equation 6:

(F1-macro of level;_1) — (F1-macro of level;)

d .= 5

eeays (F1-macro of level;_1) )
1 &

decay,,, = -1 ; decay; (6)

As label spaces tend to become larger at deeper labels, it is not
surprising that the F1-score tends to degrade.

3 huggingface.co/datasets/HDLTex/web_of_science
4 www.kaggle.com/datasets/danofer/DBpedia-classes
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Table 2. Main results. The evaluation metric is F1-macro. Our KG-HTC provides consistent and significant improvements over both the weak baseline and

the strong baselines.

WoS
Model

Dbpedia Amazon

Level 1 Level 2

Level 1

Level2 Level3 Levell Level2 Level3

Weak baselines GPT-3.5-turbo 0.642 0.358

0.616 0.645 0.672 0.754 0.178 0.129

HiLA [25] 0.647 0.371 0.768 0.660 0.629 0.762 0.393 0.249
Ours KG-HTC 0.756 0.630 0.883 0.796 0.894 0.908 0.654 0.445
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Figure 4. As the taxonomy deepens, KG-HTC exhibits a slower performance degradation on the WoS and Amazon datasets.

4.3 Experiment setup

Baselines. We evaluate our method by comparing the results to
two baselines. The first baseline is a weak baseline, where LLMs
will directly classify each data point per each layer of labels. Sec-
ondly, we use two LLM-based HTC approaches introduced by pre-
vious studies, Z-STC and HiLA [2, 25], as strong baselines (see also
Section 2). To the best of our knowledge, these two studies mark the
previous state-of-the-art in the strict zero-shot setting.

Experiment details. We employ the GPT-3.5-turbo ’ LLM to
align with the previous evaluations as our strong baselines [25]. We
chose text-embedding-ada-002 ¢ as the embedding model
for the RAG system and neo4j ’ as the graph database in our ex-
periments. Furthermore, we deployed ChromaDB ® as the vector
database.

In our experiments among all datasets, we set the temperature of
the GPT-3.5-turbo model to 0.4 and the Top-p parameter to 0.4.
We use a moderate temperature and a low Top-p value to obtain a
relatively stable response of GPT—-3.5-turbo. For the RAG sys-
tem, we selected similarity threshold values 7; such that there are
10 label candidates retrieved at the second level and 40 at the third
level for both Dbpedia and Amazon datasets. For the WoS dataset,
we selected similarity threshold values 7; such that there are 20 label
candidates retrieved at the second level. Note that due to the inher-
ent randomness (non-determinism) in the generation of LLMs, the
generated output may occasionally fall outside the predefined label
space. In these cases, we convert the invalid output to a valid label by

5 platform.openai.com/docs/models/gpt-3.5-turbo
6 platform.openai.com/docs/guides/embeddings
7 neo4j.com

8 trychroma.com

randomly sampling from the label space, using a fixed random seed
of 42 for reproducibility.

5 Results

5.1 Main Results

The experimental results in Table 2 demonstrate that our KG-
HTC provides consistent and significant improvements over both
the weak baseline and the strong baselines. Compared to using
GPT-3.5-turbo alone for zero-shot classification (our weak
baseline), KG-HTC demonstrates remarkable performance improve-
ments. Our experimental results show that the average performance
improvement is 27.1 % for the first-level classification, while the sec-
ond and third levels achieve enhancements of 123.1 % and 139.0 %,
respectively. These results validate that integrating knowledge graphs
into LLMs can significantly enhance the performance of HTC. As the
classification level increases, KG-HTC demonstrates progressively
larger improvements, particularly in handling high-level abstract in-
formation. This indicates that KG-HTC can effectively address the
challenges associated with large label space and long-tailed distribu-
tions in hierarchical classification.

As we illustrate in Figure 4, our KG-HTC indicates the lowest per-
formance degradation on the WoS and Amazon datasets as the taxon-
omy deepens, and the performance gap among the whole three base-
lines significantly widens. These findings further demonstrate that
our approach effectively addresses the challenges posed by large la-
bel spaces and long-tailed distributions in hierarchical classification.


https://platform.openai.com/docs/models/gpt-3.5-turbo
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Table 3. Error Analysis. The Hit@K of the RAG system decreases at the
second and third levels across all misclassified samples.

WoS Dbpedia Amazon

Dataset

Level2 Level2 Level3 Level2 Level3

Hit@K 0.731 0.760 0.649 0.498 0.392

Table 4. Ablation study on the effectiveness of the subgraph retrieval. Full-
KG replaces the RAG-based subgraph retrieval by the retrieval of the entire
knowledge graph.

‘WoS Dbpedia Amazon

Dataset

Level1 Level2 Levell Level2 Level3 Levell Level2 Level3

Full-KG 0.762 0.616 0.913 0.670 0.884 0.926 0.633 0.431
KG-HTC 0.749 0.651 0.886 0.811 0.902 0.901 0.651 0.462

5.2 Error Analysis

The Hit@K metric specifies the fraction of queries for which the cor-
rect label appears in the top K results returned by the retriever. We
described the details of our RAG system in Section 4. In line with our
choice of 77, for Dbpedia and Amazon, we use Hit@ 10 for the classi-
fication of the second level and Hit@40 at the third level. We further
use Hit@20 for the classification of the second level of WoS. From
the results in Table 3, we observe that the Hit@K of the RAG sys-
tem decreases at the second and third levels across all misclassified
samples. This decline suggests that one key reason for performance
degradation is the RAG system’s inability to retrieve the correct sub-
graph during inference. When the retrieved knowledge is not closely
aligned with the input text or the classification task, the model lacks
sufficient contextual support for accurate reasoning. As a result, it
becomes more likely that incorrect labels are chosen. Inaccurate or
irrelevant subgraphs may also introduce noise or confusion, further
reducing the model’s ability to assign the correct labels. This obser-
vation also implies that the performance of KG-HTC can continue
to improve as information retrieval techniques evolve, especially in
terms of retrieval precision and relevance.

5.3 Ablation study

We sampled a subset with 5000 data samples for each evaluation
dataset with a random seed of 42 in the following experiments.

Effectiveness of Subgraph Retrieval. Our empirical results in-
dicate that involving knowledge graphs via RAG can improve the
performance of LLMs in HTC. In this experiment, we will evaluate
the component responsible for retrieving a subgraph. For a compar-
ative assessment, we remove the RAG system that previously was
responsible for fetching a subgraph from the entire knowledge graph
while keeping the other parts of the system unchanged. Instead, we
hand the full knowledge graph to the LLM. This adjusted setup is
referred to as Full-KG.

The corresponding performance results are presented in Table 4.
Our KG-HTC has substantially better results in F1-macro than Full-
KG, except in the classification of the first level. The reason is that the
total number of labels in the first-level classification is smaller. The
complete knowledge graph hence enables the LLMs to grasp better
the semantic relationships among labels, which can consequently aid
Full-KG in achieving improved classification performance. However,
as the label space expands, the subgraph retrieval allows LLMs to ex-
tract essential information, helping to alleviate performance declines
associated with long text inputs.

F1-macro across different RAG thresholds in DBpedia's L3 classification

0.9100

0.9075

0.9050

0.9025 0.9925 0:9020

macro

0.9000

F1

0.8975 +
0.8957
0.8950

0.8925

0.8900

2‘0 3‘0 4‘0 5‘0

number of retrieval candidates
Figure 5. Ablation study on the the impact of the number of retrieval can-
didates on model performance, with the results shown for Dbpedia’s L3 clas-
sification.

Table 5. Ablation study on the effectiveness of an open-source LLM
Qwen?2.5-8b.

‘WoS Dbpedia Amazon

Dataset

Levell Level2 TLevell [Level2 Level3 Levell Level2 Level3

Qwen 0.550 0.367 0.472 0.466 0.691 0.783 0.326 0.230
Qwen KG-HTC 0.715 0.509 0.699 0.575 0.799 0.762 0.418 0.343

Sensitivity of Subgraph Retrieval. In this experiment, we in-
vestigate the impact of the number of retrieval candidates on model
performance, with the results shown for Dbpedia’s L3 classification
from Figure 5. The F1-macro score peaks at 0.9025 when 40 candi-
dates are retrieved. However, the overall performance remains highly
stable within the tested range of 20 to 50 candidates. This indicates
that in practical applications, meticulous tuning of this parameter is
not required to achieve strong results.

Performance in open-source LLMs. In this experiment, we
changed the LLM from GPT-3.5-turbo to Qwen2.5-8b. Ta-
ble 5 demonstrates that our KG-HTC increases the performance of
Qwen2 . 5-8b except for the first-level classification in the Amazon
dataset. This enhancement suggests that the improvements offered
by our KG-HTC may be applicable to many open-source LLMs.

6 Conclusion

Supervised methods for HTC face challenges in industrial applica-
tions. This paper presents KG-HTC, a zero-shot HTC method that
leverages knowledge graphs and LLMs for HTC. Our proposed KG-
HTC dynamically retrieves subgraphs that are semantically relevant
to the input text and constructs structured prompts, thereby signif-
icantly enhancing classification performance under strict zero-shot
scenarios. Experimental results demonstrate that KG-HTC achieves
state-of-the-art performance on three open datasets (Amazon, WoS,
and Dbpedia) in the zero-shot setting, with significant improvements
observed in the classification of deeper hierarchical labels.

The limitation of this study is the assumption that a complete and
correct label taxonomy is available. Consequently, any inaccuracies
or errors within the knowledge graph are likely to result in a degra-
dation of our method’s performance. Our future research will focus
on leveraging large language models to construct knowledge graphs.
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