P. Acevedo, A. J. Magana, Y. Walsh, H. Will, B. Benes, and C. Mousas. Embodied immersive virtual reality to enhance the conceptual understanding of charged particles: A qualitative study. Computers & Education: X Reality, 5:100075, 2024. doi: 10.1016/j.cexr.2024.100075 2
P. Albus, A. Vogt, and T. Seufert. Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166:104154, 2021. doi: 10.1016/j.compedu.2021.104154 3
M. S. Andersen and G. Makransky. The validation and further development of a multidimensional cognitive load scale for virtual environments. Journal of Computer Assisted Learning, 37(1):183–196, 2021. doi: 10. 1111/jcal.12478 6
J. O. Bailey, J. N. Bailenson, and D. Casasanto. When does virtual embodiment change our minds? Presence, 25(3):222–233, 2016. doi: 10. 1162/PRES a 00263 2
_ _ [5] B. S. Bloom. Time and learning. American Psychologist, 29(9):682, 1974. doi: 10.1037/h0037632 3
A. L. Butt, S. Kardong-Edgren, and A. Ellertson. Using game-based virtual reality with haptics for skill acquisition. Clinical Simulation in Nursing, 16:25–32, 2018. doi: 10.1016/j.ecns.2017.09.010 3, 7
J. H. Caldwell, W. G. Huitt, and A. O. Graeber. Time spent in learning: Implications from research. The Elementary School Journal, 82(5):471–480, 1982. doi: 10.1086/461282 3
E. Campos, I. Hidrogo, and G. Zavala. Impact of virtual reality use on the teaching and learning of vectors. Frontiers in Education, 7:965640, 2022. doi: 10.3389/feduc.2022.965640 2, 3
D. Checa and A. Bustillo. A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79:5501–5527, 2020. doi: 10.1007/s11042-019-08348-9 2
B. Dalgarno and M. J. Lee. What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1):10–32, 2010. doi: 10.1111/j.1467-8535.2009.01038.x 3
Y. Dudai. The restless engram: Consolidations never end. Annual Review of Neuroscience, 35(1):227–247, 2012. doi: 10.1146/annurev-neuro -062111-150500 8
H. Ebbinghaus. Memory: A Contribution to Experimental Psychology. Teachers College, Columbia University, New York, NY, 1913. 5, 8
C. Ekstrand, A. Jamal, R. Nguyen, A. Kudryk, J. Mann, and I. Mendez. Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: A randomized controlled study. Canadian Medical Association Open Access Journal, 6(1):E103–E109, 2018. doi: 10.9778/cmajo.20170110 2
J. K.-Y. Essoe, N. Reggente, A. A. Ohno, Y. H. Baek, J. Dell’Italia, and J. Rissman. Enhancing learning and retention with distinctive virtual reality environments and mental context reinstatement. npj Science of Learning, 7(1):31, 2022. doi: 10.1038/s41539-022-00147-6 3
S. Fleck and M. Hachet. Making tangible the intangible: Hybridization of the real and the virtual to enhance learning of abstract phenomena. Frontiers in ICT, 3:30, 2016. doi: 10.3389/fict.2016.00030 1
W. C. Fredrick and H. J. Walberg. Learning as a function of time. The Journal of Educational Research, 73(4):183–194, 1980. doi: 10.1080/ 00220671.1980.10885233 3
S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P. Wenderoth. Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23):8410–8415, 2014. doi: 10.1073/ pnas.1319030111 1
F. Guay, R. J. Vallerand, and C. Blanchard. On the assessment of situational intrinsic and extrinsic motivation: The situational motivation scale (sims). Motivation and Emotion, 24:175–213, 2000. doi: 10.1023/A: 1005614228250 5, 6
D. Hamilton, J. McKechnie, E. Edgerton, and C. Wilson. Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1):1–32, 2021. doi: 10.1007/s40692-020 -00169-2 2
R. Heradio, L. De La Torre, D. Galan, F. J. Cabrerizo, E. Herrera-Viedma, and S. Dormido. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98:14–38, 2016. doi: 10.1016/j.compedu. 2016.03.010 1
J. Hollan, E. Hutchins, and D. Kirsh. Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction, 7(2):174–196, 2000. doi: 10.1145/ 353485.353487 2
E. Hu-Au and S. Okita. Exploring differences in student learning and behavior between real-life and virtual reality chemistry laboratories. Journal of Science Education and Technology, 30(6):862–876, 2021. doi: 10. 1007/s10956-021-09925-0 2, 3
E. Hutchins. Cognition in the Wild. MIT Press, Cambridge, MA, 1995. 2
L. Jensen and F. Konradsen. A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23:1515–1529, 2018. doi: 10.1007/s10639-017-9676-0 2
J. Kisker, T. Gruber, and B. Schöne. Virtual reality experiences promote autobiographical retrieval mechanisms: Electrophysiological correlates of laboratory and virtual experiences. Psychological Research, 85:2485–2501, 2021. doi: 10.1007/s00426-020-01417-x 2, 3, 8
M. Klepsch, F. Schmitz, and T. Seufert. Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8:1997, 2017. doi: 10.3389/fpsyg.2017. 01997 5, 6
M. Klepsch and T. Seufert. Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1):45–77, 2020. doi: 10.1007/s11251-020 -09502-9 6
D. Kolb. Experiential Learning: Experience as the Source of Learning and Development. Pearson Education, Upper Saddle River, NJ, 2nd ed., 2015. 1
C. Kontra, D. J. Lyons, S. Beilock, and S. L. Beilock. Physical experience enhances science learning. Psychological Science, 26(6):737–749, 2015. doi: 10.1177/0956797615569355 1
L. D. LaDage, S. L. Tornello, J. M. Vallejera, E. E. Baker, Y. Yan, and A. Chowdhury. Variation in behavioral engagement during an active learning activity leads to differential knowledge gains in college students. Advances in Physiology Education, 42(1):99–103, 2018. doi: 10.1152/ advan.00150.2017 3
R. T. LaLumiere, J. L. McGaugh, and C. K. McIntyre. Emotional modulation of learning and memory: Pharmacological implications. Pharmacological Reviews, 69(3):236–255, 2017. doi: 10.1124/pr.116.013474 2, 3, 8
G. Li, J. A. Anguera, S. V. Javed, M. A. Khan, G. Wang, and A. Gazzaley. Enhanced attention using head-mounted virtual reality. Journal of Cognitive Neuroscience, 32(8):1438–1454, 2020. doi: 10.1162/jocn_a_01560 2
D. Lombardi, T. F. Shipley, Astronomy Team, Biology Team, Chemistry Team, Engineering Team, Geography Team, Geoscience Team, and Physics Team. The curious construct of active learning. Psychological Science in the Public Interest, 22(1):8–43, 2021. doi: 10.1177/ 1529100620973974 1
T. S. Love, K. R. Roy, M. Gill, and M. Harrell. Examining the influence that safety training format has on educators’ perceptions of safer practices in makerspaces and integrated STEM labs. Journal of Safety Research, 82:112–123, 2022. doi: 10.1016/j.jsr.2022.05.003 1
G. Makransky, N. K. Andreasen, S. Baceviciute, and R. Mayer. Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 03 2020. doi: 10. 1037/edu0000473 3, 7
G. Makransky and G. B. Petersen. The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3):937–958, 2021. doi: 10.1007/s10648-020-09586-2 3
G. Makransky, T. S. Terkildsen, and R. E. Mayer. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60:225–236, 2019. doi: 10.1016/j. learninstruc.2017.12.007 2, 3
M. Mergen, N. Graf, and M. Meyerheim. Reviewing the current state of virtual reality integration in medical education - a scoping review. BMC Medical Education, 24(1):788, 2024. doi: 10.1186/s12909-024-05777-5 3
J. Michael. Where’s the evidence that active learning works? Advances in Physiology Education, 30(4):159–167, 2006. doi: 10.1152/advan.00053 2006 1
I. Montagni, E. Guichard, and T. Kurth. Association of screen time with self-perceived attention problems and hyperactivity levels in French students: A cross-sectional study. BMJ Open, 6(2):e009089, 2016. doi: 10.1136/bmjopen-2015-009089 2, 6
J. M. Murre and J. Dros. Replication and analysis of Ebbinghaus’ forgetting curve. PLOS One, 10(7):e0120644, 2015. doi: 10.1371/journal.pone. 0120644 5, 8
K. A. Paller, J. D. Creery, and E. Schechtman. Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72(1):123–150, 2021. doi: 10.1146/annurev-psych-010419 -050815 8
L. G. Pelletier, M. S. Fortier, R. J. Vallerand, and N. M. Briere. Associations among perceived autonomy support, forms of self-regulation, and persistence: A prospective study. Motivation and Emotion, 25:279–306, 2001. doi: 10.1023/A:1014805132406 6
PHYWE Systeme GmbH. Der Permanentmagnet-Gleichstrommotor mit Cobra SMARTsense. [Online]. Available: https://www.phywe.de/, accessed: Mar. 29, 2025. 4, 5
M. Poupard, F. Larrue, H. Sauzéon, and A. Tricot. A systematic review of immersive technologies for education: Learning performance, cognitive load and intrinsic motivation. British Journal of Educational Technology, 56(1):5–41, 2025. doi: 10.1111/bjet.13503 3
M. Prince. Does active learning work? A review of the research. Journal of Engineering Education, 93(3):223–231, 2004. doi: 10.1002/j.2168-9830. 2004.tb00809.x 1
J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147:103778, 2020. doi: 10.1016/j.compedu.2019.103778 2
C. Schrader, C. Diekmann, P. Schulz, N. Mack, C. Bohrmann-Linde, and D. Zeller. Hands-on training: Effects on virtual presence, learning-centered emotions, cognitive load and learning outcome when learning with virtual reality. Computers in Human Behavior Reports, 16:100487, 2024. doi: 10.1016/j.chbr.2024.100487 3
L. B. Specht and P. K. Sandlin. The differential effects of experiential learning activities and traditional lecture classes in accounting. Simulation & Gaming, 22(2):196–210, 1991. doi: 10.1177/1046878191222003 3
L. Sun, B. G. Lee, D. Chieng, and S. Yang. Exploring collaborative immersive virtual reality serious games for enhancing learning motivation in physics education. In Proceedings of the 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 115–120. IEEE, 2024. doi: 10.1109/COMPSAC61105.2024.00026 2
J. Sweller. Cognitive load theory. In J. P. Mestre and B. H. Ross, eds., Psychology of Learning and Motivation, vol. 55, pp. 37–76. Academic Press, 2011. doi: 10.1016/B978-0-12-387691-1.00002-8 2, 3
J. Sweller, J. J. Van Merrienboer, and F. G. Paas. Cognitive architecture and instructional design. Educational Psychology Review, 10:251–296, 1998. doi: 10.1023/A:1022193728205 7
A. Tambini and L. Davachi. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends in Cognitive Sciences, 23(10):876–890, 2019. doi: 10.1016/j.tics.2019.07.008 8
F. Xue, R. Guo, S. Yao, L. Wang, and K.-L. Ma. From artifacts to outcomes: Comparison of HMD VR, desktop, and slides lectures for food microbiology laboratory instruction. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17, 2023. doi: 10.1145/3544548.3580913 2, 3, 6, 7