Doctoral thesis (Dissertations and theses)
Unsupervised Anomaly Detection for Type-Agnostic and Cross-Domain Deepfake Detection
MEJRI, Nesryne
2025
 

Files


Full Text
Thesis_NesryneMejri_final.pdf
Author postprint (81.57 MB) Creative Commons License - Attribution, Non-Commercial
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Unsupervised Anomaly Detection; Deepfake Detection
Disciplines :
Computer science
Author, co-author :
MEJRI, Nesryne  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Language :
English
Title :
Unsupervised Anomaly Detection for Type-Agnostic and Cross-Domain Deepfake Detection
Defense date :
14 July 2025
Institution :
Unilu - University of Luxembourg [Faculty of Science, Technology and Medicine (FSTM)], Luxembourg, Luxembourg
Degree :
Docteur en Informatique (DIP_DOC_0006_B)
Promotor :
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
President :
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Jury member :
RIESS, Christian;  FAU - Friedrich-Alexander-Universität Erlangen-Nürnberg > Multimedia Communications and Signal Processing Lab
EBRAHIMI, Touradj;  EPFL - École Polytechnique Fédérale de Lausanne > Multimedia Signal Processing Group
OURDANE, Mohamed;  Post Luxembourg > Cybersecurity department
Focus Area :
Security, Reliability and Trust
FnR Project :
FNR16763798 - UNFAKE - Unsupervised Multi-type Explainable Deepfake Detection, 2021 (01/10/2021-31/08/2025) - Nesryne Mejri
FNR16353350 - FakeDeTeR - Deepfake Detection Using Spatio-temporal-spectral Representations For Effective Learning, 2021 (01/03/2022-28/02/2025) - Djamila Aouada
Funders :
FNR - Luxembourg National Research Fund
Post Luxembourg
ESA - European Space Agency
Funding number :
BRIDGES2021/IS/16353350/FaKeDeTeR; UNFAKE, ref.16763798; SKYTRUST 4000133885/21/ NL/MH/hm
Funding text :
This work is supported by the Luxembourg National Research Fund, under the BRIDGES2021/IS/16353350/FaKeDeTeR and UNFAKE, ref.16763798 projects, by Post Luxembourg and by the European Space Agency under the project SKYTRUST 4000133885/21/ NL/MH/hm.
Available on ORBilu :
since 16 July 2025

Statistics


Number of views
145 (28 by Unilu)
Number of downloads
45 (11 by Unilu)

Bibliography


Similar publications



Contact ORBilu