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Abstract

Deepfakes are visual media created using deep learning models to partially manipulate or
fully synthesize human faces. They cover a variety of forgery methods, broadly categorized
into four types: face swaps, facial reenactments, facial attribute manipulations, and synthetic
face generation. Their increasing realism in recent years has raised concerns regarding
their misuse, thereby creating an urgent need for reliable deepfake detection techniques.
Hence, various deepfake detection methods have been proposed. They are predominantly
based on Deep Neural Networks trained in a supervised manner. As a result, these methods
are often prone to generalization issues; hindering their applicability in real-world settings.
Although promising, their performance degrades considerably when encountering unseen
images/videos that differ significantly from the training data. This drop can be attributed
to two different sources of variation in the visual data: forgery diversity and environmental
variability.

Herein, this thesis aims to enhance the robustness of deep-fake detectors to these two
complementary sources of variation by reformulating deepfake detection as an unsupervised
anomaly detection (UAD) task. This formulation eliminates the need for annotated fake data
and reduces the dependence on specific types of forgeries.

In the first part of the manuscript, we focus on improving the generalization of deepfake
detectors to unseen forgeries. While some research works have attempted to improve this
aspect, they have mainly targeted blending-based artifacts typically induced by several face-
swaps generation techniques. As a consequence, they usually show degraded performance

when dealing with non-blending-based deepfakes, including diffusion-based face-swaps and



other deepfake types characterized by inherently different artifacts. To address this issue, we
propose a self-supervised framework that allows extracting features from different artifact-
prone regions. This self-supervision mechanism is then coupled with a one-class classifier
that models the feature distribution of real data only, thereby avoiding overfitting specific
types of deepfake artifacts. This idea has then been extended to temporal deepfake lo-
calization, where the goal is to spot specific frames in an unsegmented stream that have
undergone deepfake manipulations. Experiments performed on several benchmarks have
demonstrated the improved generalization capabilities of the proposed methods.

In the second part of this work, we also address the lack of robustness to environmen-
tal changes. Deep learning models, including deepfake detectors, are often challenged by
the domain shift issue, a phenomenon frequently caused by uncontrolled variations in light-
ing, resolution, or background. These variations are typically unrelated to forgeries and
can further compromise the detection performance of deepfake detectors. In the literature,
this problem has often been mitigated by adopting an Unsupervised Domain Adaptation
(UDA) approach. Nevertheless, existing UDA techniques are primarily designed for binary
and multi-class classification, while being incompatible with the core proposed paradigm for
deepfake detection, namely, unsupervised anomaly detection. Indeed, UDA for UDA is an
ill-posed problem due to what we call the two-fold unsupervised curse. To overcome this
issue, we propose to take advantage of the scarcity of anomalies and rely on a clustering
technique to isolate a predominant cluster to be used for the alignment step. This pioneer-
ing work has been validated on anomaly detection benchmarks, showing great potential for

enhancing the generalization of deepfake detectors.



Chapter 1

Introduction

Visual forgery in photographs is not a recent phenomenon. Throughout history, photographs
have been deliberately manipulated to alter facts, influence the public’s opinion, or spread
misinformation [1]. Forgery users recognized the powerful impact of the saying “seeing is
believing” and leveraged it to their advantage, despite the effort and expertise required to
produce these manipulations.

Technological advancements, particularly the development of affordable digital cam-
eras and personal computers, have enabled easy access to digital photographs and visual
forgery, respectively. Software such as Photoshop made photo editing easier, yet human ex-
pertise remained essential. Consequently, detecting these manipulations has been of great
interest in the field of Computer Vision, particularly in Multimedia Forensics. Traditional ap-
proaches often rely on physics-based or geometrical models [2, 3], or on the analysis of
artifacts such as compression inconsistencies [4] and sensor noise patterns [5], to deter-
mine the authenticity of a given photo.

As Generative Deep Learning (DL) grew more popular in recent years, visual facial forg-
eries became more realistic and even more accessible. Examples of DL-powered tools
that completely eliminated the need for expert intervention include DeepfacelLab [6] and
Faceswap [7]. This has led to what is known today as "Deepfakes", which can be defined
as digital content (images, audios, videos) that is partially or entirely synthesized by a deep

learning algorithm. Deepfakes cover a broad scope of facial manipulations, that range from
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Figure 1.1: Deepfake detection formulated as a binary classification task.

generating entirely synthetic personas to applying subtle edits such as altering eye color.
Despite the creative applications they introduced in education [8], entertainment [9], market-
ing [10], and filmmaking [11], deepfakes also present risks that cannot be overlooked. In fact,
they can facilitate malicious activities such as identity theft [12], political misinformation [13,
12], fraud [14], and the spread of non-consensual content [15, 16], which can undermine
the public’s trust in digital media and negatively impact individuals, organizations, and even
entire nations.

Given these threats, numerous deepfake detection techniques have been introduced
in the literature, with a clear predominance of deep learning-based methods. These ap-
proaches typically formulate deepfake detection as a supervised binary classification prob-
lem, where the goal is to distinguish between genuine and forged content. These detectors
are generally trained on large annotated datasets, where the training samples are labeled
as real or fake, as shown in Figure 1.1. This supervised setup encourages the detector to
identify small inconsistencies unique to the fake training data, in comparison to real visuals.
Indeed, deepfakes cannot fully reflect the behavior and appearance of a genuine person,
leaving detectable traces that detectors can learn to identify. These inconsistencies, known
as artifacts, vary significantly across different deepfake types and generation methods. For
instance, they can occur in the spatial domain, such as inconsistencies in colors, lighting,
or object shapes (shown in Figure 1.2), in the temporal domain as jittery motions (i.e., head
and mouth movements), and in the frequency domain as abnormal noise patterns and high-

frequency anomalies.



In this chapter, we begin by presenting the motivation and the scope of this work. Next,
we introduce our primary objectives and contributions to the topic of deepfake detection.
Finally, we conclude this chapter by listing the publications resulting from the investigations

of this thesis.

(a) Deformation (b) Odd texture (c) Asymmetry (d) Misplacement  (e) Discoloration

Figure 1.2: Examples of artifacts exhibited by different types of deepfakes depicting ab-
normalities affecting the semantics, the shapes and textures of the (a) background, (b) the
eyebrows, (c) the eyes, (d) the nose, and (e) the mouth regions.

1.1 Motivation and Scope

The detection performance of most existing detectors is generally satisfactory when evalu-
ated on deepfake data drawn from the same distribution as the training samples. However,
this performance deteriorates significantly when exposed to unseen data settings. This limi-
tation, known as lack of generalization, can be attributed to the use of deep neural networks
(DNNs), which often struggle to generalize beyond their training conditions [17]. This limita-
tion restricts their real-world applicability and highlights the need for more robust detection
strategies. To address this issue, tremendous efforts have been made to improve the ro-
bustness of deepfake detection methods to unseen face swap generation methods [18, 19,
20]. These approaches mainly try to model blending artifacts that are common to multiple
face-swapping techniques. Nevertheless, it is worth noting that more recent face swap meth-
ods, such as diffusion-based approaches, do not incorporate such traces. These cues are
also absent in other types of deepfakes, exhibiting completely different inconsistencies. As a
direct consequence, existing detection methods are still failing to detect unseen deepfakes

regardless of their nature or type. Moreover, as they rely on deep learning frameworks,
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state-of-the-art deepfake detection methods are also prone to the domain shift problem,
where training and testing data are acquired under different environmental settings.
Therefore, our goal is to improve the generalization capabilities of deepfake detectors to

get closer to real-world requirements.

1.2 Challenges

In this thesis, we argue that enhancing the generalization capabilities of deepfake detec-
tors necessitates categorizing the source of unseen information within the raw data to apply
suitable strategies. More specifically, we posit that the lack of generalization of deepfake de-
tectors originates from both forgery-related and forgery-unrelated factors, which occur at the
artifact level and the domain level, respectively. Artifact-level generalization issues can be
associated with the detector overfitting visual cues specific to forgery methods encountered
during training. In contrast, domain-level generalization issues refer to the model’s sensitivity
to variations in factors unrelated to the forgery itself, such as lighting, resolution, or subject
identity.

Although this categorization enables a more structured way of approaching the gen-
eralization problem, tackling each source remains challenging. Therefore, in the subse-
quent subsections, we discuss the challenges associated with addressing the artifact and

the domain-level generalization issues, respectively.

1.2.1 Forgery-related generalization for deepfake detection

Significant efforts have been made to improve generalization at the artifact level. These
works often train DNN architectures, such as XceptionNet [21] and EfficientNet [22], in a
supervised manner on large-scale annotated datasets [23, 24, 25, 26]. In particular, recent
studies extensively rely on blending artifact modeling [20, 27, 28, 19, 28, 29, 18, 30] typi-
cally observed in face-swapping forgeries. However, since these methods are supervised,
they tend to overfit the training artifacts. As a result, they are ineffective on forgeries where

these artifacts are absent. In fact, deepfakes are not limited to face swap forgeries. They



are broadly categorized into four types: Face Swap (FS), Facial Reenactment (FR), Facial
Attribute Manipulation (FAM), and Fully Synthetic Face (FSF) [31], each associated with dif-
ferent artifacts. This diversity poses a significant challenge in forgery-related generalization,
as artifacts are often difficult to model: they can be subtle, and their characteristics vary con-
siderably across deepfake types. They may occur in localized facial regions or be spread
across an entire image, and they can exist within the spatial, temporal, or frequency do-
mains, or in a combination of them. In many cases, they are non-interpretable, resembling
noise or manifesting as physical or anatomical inconsistencies. This complicates defining,
interpreting, and modeling them reliably, especially since they are continuously evolving with
the development of novel deepfake generation methods.

On a practical level, artifact variability makes it difficult to build representative datasets, as
this would require exhaustive collection, annotation, and continuous updates to incorporate
new deepfakes with novel artifacts.

The inherent variability of artifacts and the limited representativeness of annotated train-
ing datasets, therefore, reveal the fundamental limitations of supervised learning in building

a unified and generalizable solution across different deepfake types.

1.2.2 Forgery-unrelated generalization for deepfake detection

As discussed earlier, deepfake detectors suffer from domain-level generalization issues,
which can mainly be attributed to their reliance on deep learning models. In fact, detectors
can overfit domain-specific characteristics, such as lighting, pose, or background, which are
unrelated to actual forgeries and artifacts [32, 33]. As a result, their performance degrades
significantly when these domain attributes differ between the training and testing sets. While
identifying and labeling domain-specific attributes might seem like a viable solution, it quickly
becomes impractical, as deepfakes often appear in highly diverse settings, and exhaustive
labeling would require significant time and resources.

This challenge highlights the need to take into account the robustness of deepfake de-
tectors to unseen domains, as even a cross-type generalizable deepfake detector may still

fail in the presence of domain shift [34].



1.3 Objectives and Contributions

This thesis aims to enhance the generalization of deepfake detectors at both the artifact and
domain levels. To address the limited generalization across deepfake types, we propose
reformulating the problem as an unsupervised anomaly detection task. This formulation
enables treating deepfakes as anomalies regardless of their type and artifacts. Then, we
focus on strengthening this formulation to improve robustness to unseen domains. The
following subsections summarize the works developed during this thesis, outlining how these

contributions help achieve our objectives.

1.3.1 Toward Type-Agnostic Unsupervised Deepfake Detection

Our first contribution, entitled UNTAG, addresses the artifact-level generalization issues of
deepfake detectors. It introduces a novel two-stage framework for unsupervised, type-
agnostic deepfake detection. Most existing detectors rely on supervised learning and are
trained on a limited set of forgery types, typically face swaps and facial reenactments, which
restricts their ability to detect unseen deepfakes. To address this, Self-Supervised Learn-
ing (SSL) is investigated for enhancing the generalization of deepfake detectors. Training
SSL approaches includes two stages: pretraining on a generic pretext task, followed by fine-
tuning on labeled deepfake datasets. While SSL techniques achieved improved robustness
to novel deepfake generation methods, they still had two key shortcomings. First, the pre-
training task is often unrelated to deepfake detection, resulting in the learning of suboptimal
feature representations. Second, the fine-tuning stage remains supervised, making these
methods prone to overfitting specific artifacts and forgery types.

Given these limitations, we propose a self-supervised approach tailored specifically for
deepfake detection. Unlike generic pretraining, our first stage learns features that focus on
artifact-prone regions, making the representations more relevant to the task. In the second
stage, supervised fine-tuning is replaced by an unsupervised anomaly detection task. In
other words, we fit a one-class classifier directly on the learned feature of the genuine im-

age, thus modeling the distribution of real data without requiring any labeled deepfakes. This



reduces the risk of overfitting specific artifacts while enabling type-agnostic deepfake detec-
tion. Our results show that UNTAG outperforms supervised, self-supervised, and other un-
supervised approaches, achieving better generalization without relying on labeled fake data.
This emphasizes the effectiveness of our formulation for fully unsupervised, type-agnostic
deepfake detection. UNTAG has been published in [35].

1.3.2 Exploring Unsupervised Time-Series Anomaly Detection for Video Deep-

fakes Detection

While UNTAG improved type-agnostic deepfake detection, it remains limited to deepfake
image data, overlooking the fact that deepfakes frequently occur as videos. Although it con-
ceptually applies to individual video frames, it cannot capture temporal artifacts, which can
be indicative of forgeries. Existing video deepfake detectors [36, 37, 38, 39, 40] address
this problem through supervised training on annotated deepfake datasets, using 3D convo-
lutional neural networks (3D CNNs) [41] and transformers [42] to model temporal depen-
dencies. Nevertheless, these methods rely on extensive labeled data, making them costly
and prone to poor generalization to unseen artifacts and deepfake types. Moreover, they
often assume that videos are either entirely real or entirely fake, thereby overlooking par-
tially manipulated videos, which require temporally localizing the manipulated frames. This
task of localizing specific forged frames aligns with unsupervised multivariate Time Series
Anomaly Detection (TSAD), particularly since videos can be interpreted as multivariate pixel
trajectories.

Therefore, to extend the UAD formulation to temporal data, i.e., videos, we conducted a
systematic study of unsupervised multivariate TSAD methods to investigate their suitability
for video deepfake detection. This has been motivated by the fact that existing TSAD com-
parative studies often adopt inconsistent evaluation protocols and focus on standard perfor-
mance metrics, such as precision and recall, which fail to capture the temporal aspect of
anomalies. Furthermore, practical aspects such as model stability, computational cost, and
robustness across different types of anomalies are frequently neglected. To address these

issues, we performed a comprehensive evaluation study of recent unsupervised time-series



anomaly detection techniques, incorporating range-based metrics and a unified protocol to
better assess their real-world applicability to tasks such as video-based deepfake detection.

This work has been published [43].

1.3.3 Integrating Spatial Priors for Lightweight Unsupervised Temporal Deep-
fake Localization

Based on our previous evaluation study, we employ the time-series anomaly detection for-
mulation for unsupervised deepfake localization in videos. Since standard deepfake de-
tection techniques are trained only on annotated datasets depicting entirely real or entirely
fake videos, they have restricted applicability on untrimmed videos. In other words, these
detectors cannot detect forgeries at the frame level in live streams or partially manipulated
videos. Attempts to solve this issue are often trained in a supervised manner on multimodal
videos, where video and audio inputs are jointly processed to verify their synchronization
and localize forged frames. However, these approaches suffer from several drawbacks; first,
the supervision can result in poor generalization capabilities. Second, deepfakes typically
do not include audio, and even when they do, they are likely to be forged as well. Finally,
processing audio-visual data results in large and cumbersome model architectures.

To mitigate the aforementioned issues, we reformulate the task as an unsupervised mul-
tivariate time-series anomaly detection problem, enabling type-agnostic deepfake detection.
Aside from requiring only real data for training, our approach does not depend on audio
data, making it more applicable under realistic scenarios. Furthermore, to avoid large com-
putational requirements, we use geometric facial representations i.e., facial landmarks, as
multivariate time-series input instead of directly modeling raw pixel data. Finally, our ap-
proach introduces an ensembling strategy for tracking artifact-prone facial regions. Our
experiments, conducted on the ForgeryNet dataset [26], highlighted the relevance of our
approach, making it the first lightweight and fully unsupervised method for deepfake local-

ization. This work has been published in [44].

10



1.3.4 Bridging Domain Gaps in Semantic Anomaly Detection using Unsuper-
vised Domain Adaptation

All our previous work established Unsupervised Anomaly Detection (UAD) as a more suit-
able alternative to supervised learning for generalizable image and video deepfake detec-
tion. By training a one-class classifier only on normal data, this formulation alleviates the
need for expensive annotated fake data and improves robustness to multiple types of gen-
eration methods. However, like most deep learning-based techniques, it remains sensitive
to domain shift [34]. For instance, a one-class classifier trained on indoor faces may detect
outdoor ones as outliers due to unseen variations in the lighting conditions. Consequently,
despite being effective in a single domain, the UAD formulation may fail in the presence of a
domain gap, which restricts its applicability to real-world scenarios.

Existing approaches tackling domain shift in visual unsupervised anomaly detection pri-
marily include few-shot domain adaptation methods. These approaches are trained jointly
on a one-class source set and a small set of annotated real samples from the target do-
main, ensuring minimal exposure to the target domain’s distribution. Although this strategy
may seem adequate, it remains constrained by the need for labeled target-domain data
and the risk of insufficient representativeness of the target domain characteristics. Alterna-
tively, in standard multi-class classification tasks, Unsupervised Domain Adaptation (UDA)
has shown more promising results against domain shift. By leveraging a suitable alignment
objective and a larger, but unlabeled, target domain set, UDA enables implicit feature dis-
tribution alignment without requiring any labels. Nevertheless, applying UDA to one-class
anomaly detectors is not straightforward, as both tasks are unsupervised, leading to what
we define as the two-fold unsupervised curse, an open challenge that has never been ad-
dressed in the literature.

To overcome this issue, we propose a novel UDA framework tailored specifically for one-
class-based UAD. Our approach assumes that anomalies are rare and leverages clustering
techniques to identify target-normal domain data, enabling their alignment with the one-class
source real data. Extensive experiments on standard adaptation benchmarks validate the

effectiveness of this framework, emphasizing its potential to address UDA with UAD. This
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work, which lays the foundation for domain-adaptive unsupervised deepfake detection, is

currently under review.

1.4 Publications

JOURNALS

1. Mejri, N., Lopez-Fuentes, L., Roy, K., Chernakov, P., Ghorbel, E. and Aouada, D.,
2024. Unsupervised anomaly detection in time-series: An extensive evaluation and

analysis of state-of-the-art methods. Expert Systems with Applications, p.124922.

2. Mejri, N., Ghorbel, E., Kacem, A., Chernakov, P., Foteinopoulou, N., and Aouada,
D., 2025, Unsupervised Domain Adaptation with One-class Anomaly Detection, under

preparation for submission.

CONFERENCES

1. Mejri, N., Ghorbel, E. and Aouada, D., 2023, June. Untag: Learning generic features
for unsupervised type-agnostic deepfake detection. In ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5).
IEEE.

2. Mejri, N., Chernakov, P., Kuleshova, P., Ghorbel, E. and Aouada, D., 2024, July. Facial
Region-Based Ensembling for Unsupervised Temporal Deepfake Localization. In 2024

IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.

3. Mejri, N., Ghorbel, E., Kacem, A., Chernakov, P., Foteinopoulou, N., and Aouada, D.,
2025, When Unsupervised Domain Adaptation meets One-class Anomaly Detection:
Addressing the two-fold unsupervised curse by leveraging anomaly scarcity, under

review, submitted to the Conference on Neural Information Processing Systems 2025.
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Agnostic and Generalizable Deepfake Detection. IEEE/CVF Computer Vision and
Pattern Recognition Conference (CVPR).

3. Karadeniz, A.S., Mallis, D., Mejri, N., Cherenkova, K., Kacem, A. and Aouada, D.,
2024. DAVINCI: A Single-Stage Architecture for Constrained CAD Sketch Inference.

Proceedings of the British Machine Vision Conference (BMVC).
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1.5 Thesis Outline

This dissertation is organized as follows:

» Chapter 2: This chapter introduces the necessary background for understanding the
contributions of this thesis. It focuses primarily on Unsupervised Learning concepts
such as Unsupervised Anomaly Detection (UAD), Self-Supervised Learning (SSL),
and Unsupervised Domain Adaptation (UDA).

» Chapter 3: This chapter introduces UNTAG, a two-stage framework for type-agnostic

deepfake detection which combines a self-supervision mechanism with one-class UAD.
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Chapter 4: This chapter extends the formulation of UNTAG to the temporal domain,
where deepfakes are known for showing notable temporal inconsistencies. The chap-
ter presents a general evaluation study of existing Unsupervised Time Series Anomaly
Detection (TSAD) approaches with the aim of assessing their applicability to real-world

applications, such as Deepfake Detection.

Chapter 5: This chapter builds on the findings of the previous chapter and tackles the
task of Unsupervised Deepfake Temporal Localization, where a facial-region-based

ensemble for detecting partially manipulated videos is introduced.

Chapter 6: In this chapter, we investigate the applicability of Unsupervised Domain
Adaptation (UDA) for UAD problems and propose a framework for solving the doubly

unsupervised nature of the tasks for general image classification.

Chapter 7: This final chapter summarizes the work presented in this thesis and further

discusses future perspectives.
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Chapter 2

Background

This chapter covers the background required to understand the contributions presented in
this thesis. Specifically, we begin by introducing self-supervision, a representation learning
paradigm that helps capture discriminative features exclusively from unlabeled data. Sec-
ond, we introduce unsupervised anomaly detection, the core notion supporting all our con-
tributions, and enabling cross-type deepfake detection. Finally, we introduce Unsupervised

Domain Adaptation (UDA) for binary and multiclass image classification.

2.1 Self-supervised Learning

This section introduces the Self-Supervised Learning (SSL) paradigm and outlines two of its
prominent subcategories, namely context-based methods and contrastive learning. Subse-
quently, representative pretext tasks used in SSL, along with their associated downstream

tasks, are described.

2.1.1 The paradigm of Self-Supervised Learning

Self-Supervised Learning (SSL), initially introduced in [45], is a subcategory of unsupervised
learning [46] that enables learning generic feature representations in contexts where large-

scale unlabeled data is available, but whose annotation process can be impractical or costly.
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Figure 2.1: lllustration of a typical Self-Supervised Learning (SSL) framework. In Stage 1,
the model is first pretrained on unlabeled data using an adequate pretext task. Then, in
Stage 2, the model is fine-tuned on labeled data from a different downstream task.

SSL typically follows a two-stage framework consisting of a pretraining phase followed by a
fine-tuning phase as depicted in Figure 2.1. The first stage, known as the pretext task, has an
auxiliary objective, whose goal is learning transferable features directly from the unlabeled
data without needing any human annotations [47]. More specifically, pretext tasks require
deriving pseudo-labels deterministically from intrinsic properties of the unlabeled data, such
as spatial structure [48, 49, 50], temporal continuity [51, 52, 53], or invariance under var-
ious data augmentations [54, 55, 56, 57]. The second stage typically utilizes the learned
representations as a starting point for fine-tuning a variety of downstream tasks, such as
image classification or segmentation. This often results in faster convergence and perfor-
mance comparable to supervised learning methods, while reducing the risk of overfitting,
particularly when the downstream task training data is limited [46].

According to Gui et al. [46], SSL methods can be classified into three major categories:
context-based methods, Contrastive Learning (CL) methods, and Masked Image Modeling
(MIM). In the following subsections, we focus primarily on the first two categories, namely
context-based and contrastive SSL, as they have been used in the contributions of this

thesis.

2.1.2 Context-based pretext tasks

Context-based SSL defines pretext tasks in which the input data is deliberately transformed,

and the model is trained to infer a property of the transformation or to recover missing infor-
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mation. Since these transformations are predefined and deterministic, they allow associating
each transformed data point with a corresponding pseudo-label without requiring manual an-
notations. Classical pretext task examples include rotation prediction [48], where the input is
rotated by fixed angles and the model is trained to classify the applied rotation; jigsaw puz-
zZle solving [50], where the input is divided into shuffled patches and the model predicts their
original arrangement; and colorization [58], where the image chrominance channels are re-
moved and the model is trained to restore them from the grayscale input. Representative
transformations for each task are illustrated in Figure 2.2.

Formally, for a given input space X; (e.g., image or video space), and an unlabeled
dataset D = {X}}\, C X, consider a finite set of K transformations 7 = {7;}/*,. Each
transformation 7} is associated with a task-specific pseudo-label y; € ). In classification-
based pretext tasks, such as rotation prediction [48] or jigsaw solving [50], y; = j, corre-
sponding to the index j of the transformation itself, leading to a label space Y = {1,..., K}.
In regression-based pretext tasks, such as colorization [58], the pseudo-label is directly de-
rived from the original input, such as the image’s chrominance channels, and resides in
the vector space Y = RY*Wx2_ Therefore, the augmented dataset for the pretext task is
expressed as:

DAUQ — {(Tj(Xi)7 yi,j)}zgv:’szl '

Let {p : X — Y be a neural network model with parameters 6, which maps each transformed
sample of DAY to its corresponding pseudo-label. The training objective of context-based

SSL approaches is formalized as:
1 N K
min —= ; ; L(Co(T5(X)), y;)

where £ denotes an appropriate loss function. For classification pretext tasks, cross-entropy
loss is commonly used, whereas regression tasks typically rely on losses such as Mean
Absolute Error (MAE) or Mean Squared Error (MSE) [59].
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Figure 2.2: Examples of transformations applied in the context of different pretext tasks,
namely (a) Rotation prediction [48], (b) Jigsaw solving [50] and (c) colorization [58].

2.1.3 Contrastive pretext tasks

As described in the previous section, context-based self-supervised learning focuses on
predicting properties of applied transformations, which makes the model sensitive to their
presence. By contrast, contrastive self-supervised learning adopts a fundamentally different
strategy: it seeks to learn feature representations that are invariant to such transformations
by identifying correspondences between multiple views of the same input. A view refers to
a transformed version of the original unlabeled instance as shown in Figure 2.3 (A). Rather
than associating each transformed sample with an explicit pseudo-label, contrastive meth-
ods construct pairs of input data where different augmented views of the same data point are
treated as similar (positive pairs), whereas views from different data points are considered
dissimilar (negative pairs). The core objective is therefore to learn an embedding space in
which augmented views of the same instance are mapped to similar representations, while
views from different instances are mapped to dissimilar representations. This is illustrated
in the contrastive framework of Chen et al. [54] in Figure 2.3 (B)-(C).

Specifically, let X denote the input space, and let D = {X;}¥, C & be a dataset of N un-
labeled samples. Let T = {T; : & — X}fil denote a finite set of stochastic transformations,
such as random cropping, color jittering, or horizontal flipping, as illustrated in Figure 2.3 (A).
Let 7T =TW o TM o0 T and 7 = 7P 6 T o ... 0 T'?) denote two independently
sampled compositions of the transformations in 7, where each Tj(l) and Tj@) being the same
transformation 7); applied with independently sampled random parameters. For each input
X,, these compositions yield two distinct views X" = 7()(X;) and X\? = 7(?(X;). These

views are passed through an encoder network fy, : X — R4, which maps each augmented
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(A) lllustration of the set T of data augmentations used in SimCLR [54]. Each view
is generated by composing all transformations 7;; € 7, where each T; applied using
independently sampled random parameters.
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Figure 2.3: lllustration of the contrastive pretext task of SImCLR [54], note that the figures
are taken from [54].
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input to a d-dimensional feature vector:

2 = fo(Xz(‘l))v Zz@) = Jo, (XEQ)) (1)

(2

The objective is to minimize the distance between positive pairs, i.e., the views gen-
erated from the same image, while pushing apart all other (negative) pairs, as illustrated
in Figure 2.3 (B)-(C). This is achieved by using contrastive losses such as the Normalized
Temperature-scaled Cross Entropy (NT-Xent) loss [54].

Specifically, given a batch of B unlabeled samples, let {z;}?Z, denote the set of rep-
resentations corresponding to the 2B augmented views (two views per sample X;). Each
representation z; has a unique positive counterpart z;, where the index j is defined as:

i+B ifi<B
j= (2.2)
i—B ifi>B

The NT-Xent loss [54] is then computed as:

1 & exp (sim(z;,z;)/7)
LNTXent = ﬁz—bg 5 = (2.3)
=1 >~ Ljesa exp (sim(z, zg ) /7)
k=1
where sim(a,b) = H;’”Tﬁ denotes cosine similarity, and 7 € RT is a temperature pa-

rameter. This formulation encourages the encoder fy to learn representations that are
both transformation-invariant and instance-discriminative, which is beneficial for downstream

tasks such as classification or retrieval.

2.1.4 Downstream task: Binary Classification

After pretraining the encoder fy, for a given pretext task (i.e., context-based or contrastive),
the learned representations can be transferred to a wide variety of downstream tasks, such
as binary classification, as commonly done in SSL deepfake detection methods [60, 61, 62].

Let D = {(X;, )}, denote a small labeled dataset composed of N samples (i.e., a
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deepfake detection dataset), with binary labels y; € {0,1} for a given application that can
be formulated as a binary classification task. A linear or shallow classifier gy, : RY — {0, 1}
is trained on top of the frozen or fine-tuned encoder fy,, forming the composed model ¢ =

9o, © fa,- The objective is to minimize the Binary Cross Entropy (BCE) loss:

N
£00,) = " Lacean, (o, (X0), ), @4)
i=1

where Lgce denotes the standard binary cross-entropy. Empirically, despite the limited size
of D, the fine-tuned classifier can achieve satisfactory performance, often comparable to
fully supervised models trained on larger labeled datasets, highlighting the effectiveness of

SSL pretraining in low-label regimes [46].

2.2 Unsupervised Anomaly Detection

Anomaly Detection (AD) is a fundamental machine learning task whose primary goal is to
detect instances that significantly deviate from some notion of normality [63]. Although AD
can be framed as a binary classification problem when sufficient labeled anomalies are avail-
able, such annotations are often unavailable or costly to obtain in practice. This limitation is
particularly relevant in domains such as industrial manufacturing [64] or spacecraft teleme-
try [65]. For instance, deliberately damaging expensive components in a production line or
injecting failures into spacecraft systems is unreasonable, as it would compromise valuable
resources, such as hardware or the spacecratft itself.

In such settings, anomaly detection is typically formulated as an unsupervised learning
task, where models are trained on unlabeled data composed primarily of normal samples.
Depending on how normality is modeled (i.e., what assumptions are made about anomalies),
Unsupervised Anomaly Detection (UAD) techniques can be grouped into three major cate-
gories: one-class classification, reconstruction-based, and density-based techniques [63],

with each category appearing at least once in our contributions:
» One-Class Classification (OCC) is a discriminative modeling paradigm grounded in
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Classification Probabilistic Reconstruction

decision function
[ ]

Figure 2.4: Various anomaly detection (AD) methods produce distinct types of decision
functions, and their potential limitations. The decision regions are indicated by white and red
for normal and anomalous areas, respectively. One-class classification techniques generally
learn a discriminative boundary that separates normal from anomalous instances, but could
be too loose leaving anomalies undetected (i). In contrast, probabilistic methods estimate
the data distribution with the potential issue of possibly underfitting (or overfitting) the tails of
a distribution (ii). Finally, reconstruction-based models aim to capture the intrinsic geometric
structure of the data, such as a manifold or representative prototypes with the risk that
Manifold or prototype structure artifacts leading to a good reconstruction of anomalies (iii).
Figure from [63].

the concentration assumption [66, 67], and aiming to learn a decision boundary that
compactly encloses the normal data distribution while assigning high anomaly scores
to instances outside it. This formulation has motivated several well-established works,
including One-Class Support Vector Machines (OC-SVM) [68], Support Vector Data
Description (SVDD) [69], and recent deep learning-based methods such as Deep
SVvDD [70].

» Reconstruction-based approaches are generative techniques that learn to reconstruct
normal inputs with a low reconstruction error, under the assumption that anomalies
cannot be accurately reconstructed. Representative methods include Principal Com-
ponent Analysis (PCA) [71], Autoencoders (AEs) [72], and GANs [73].

« Finally, probabilistic strategies assume that normal data occupies high-density regions
of an underlying distribution, while anomalies reside in low-density regions. This per-

spective motivated works such as Gaussian Mixture Model (GMM) [74] and Kernel
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Density Estimation (KDE) [75], which estimate the data density and identify anomalies

as samples falling below a likelihood threshold.

Formally, let X denote the input space, and let D" = {(X;,v:);yi = O}f\il C X x)Ybea
training set composed of primarily normal samples, where y; = 0 denotes the normal class.
Let fs, : X — R? be a feature extractor, and let ss, : R* — R be a scoring function. The
composed model can be defined as (s = sy, o fp, with parameters 6 = (¢;,0;). The UAD

training objective is then expressed as:
min Bx, y)~pn [£(Co(Xi), yi = 0)] + Areg - B(foy, 50, 0), (2.5)

where L is a loss function applied to the anomaly score, R is a regularization term, and
Areg € R balances the influence of the regularization. The choice of R varies depending
on the UAD subcategory and may be omitted in some formulations [63]. For instance, Deep
SVDD [70], a one-class-based method, employs L2-regularization over network weights to
avoid feature collapse [70].

At inference, the model is expected to generalize to the test distribution D*St, which
includes both normal and anomalous samples. For each X; € D, the model computes an

anomaly score ¢((X;). A binary prediction is then obtained by thresholding the score:

. 1, if{(X;)>d (anomaly) 2.6)
0, otherwise (normal),
where § € R is a threshold based on calibration or evaluation criteria.
This unified UAD formulation accommodates various data modalities, such as images,
where the input space is X = R ¢ with h, w, and ¢ denoting the image height, width,
and number of channels, respectively; as well as time-series, where the input X; corre-

sponds to a temporally ordered sequence X; = {X;}1<;<7, with X; € R? representing a

d'-dimensional observation at timestamp ¢, and 7" being the length of the sequence.
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Domain
shift

Training data Testing data

Figure 2.5: lllustration of domain shift in unsupervised domain adaptation: the model is
trained on labeled source data from the photo domain and evaluated on unlabeled target
data from the cartoon domain, highlighting the challenge of generalizing across visually
distinct domains despite the shared label space between both domains.

2.3 Unsupervised Domain Adaptation for classification

Most unsupervised anomaly detection (UAD) methods implicitly assume that the distribution
of normal data encountered during training remains unchanged at test time and that the
model is expected to generalize to unseen domains without explicit adaptation. However,
this assumption is often challenged in practice due to the presence of domain shift [34],
which results in a significant degradation of performance under cross-domain settings (see
Figure 2.5).

Unsupervised Domain Adaptation (UDA) is a well-established paradigm within Transfer
Learning (TL) that mitigates domain shift by transferring knowledge from a labeled source
domain to a related but different unlabeled target domain [76]. Specifically, UDA aims to
learn domain-invariant feature representations by jointly training a model on labeled source
data and unlabeled target data, thus eliminating the need for manual annotation on the target
domain. As UDA has not been studied in the context of UAD, the following sections provide
a review of representative UDA approaches from general image classification, covering the
multi-class settings.

Formally, Let D* = {(X?,4$)}Y, be a labeled dataset from a source domain, consisting
of N, samples, where each input Xs € R"%*¢ s an image and its associated label yf € Y =
{1,...,C},fori =1,...,N,. Let D! = {X!} ¥ be an unlabeled dataset from a related but

distinct target domain, composed of N; samples, where each X! € R"™w*¢ fori =1,..., N;.
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We assume that the source and target domains share the same label space ), and that
there exists a domain shift between them. The goal of Unsupervised Domain Adaptation
(UDA) for image classification is to learn a model ¢ : R"*%*¢ — Y using both D* and D,
such that it generalizes effectively to the target domain. Specifically, the model consists of
a domain-invariant feature extractor f : R"*wx¢ — R4, followed by a classifier g : R — ),
suchthat { =go f.

Given this general setting, the two subsequent sections introduce two major UDA fami-

lies: moment-matching and adversarial UDA techniques.

2.4 Moment-matching Domain Adaptation

Moment matching approaches constitute a class of UDA techniques whose goal is to learn
domain-invariant feature representations by explicitly aligning the distributions of the source
and target domains. This is typically achieved by minimizing statistical distances such as
the Maximum Mean Discrepancy (MMD) [77], which measures the discrepancy between the
empirical means of feature representations in a reproducing kernel Hilbert space (RKHS).
Specifically, samples from both domains are mapped into an RKHS via a kernel-induced
feature map ¢, and the squared distance between their mean embeddings is minimized. A
large distance indicates misalignment between the two distributions. Formally, given feature
embeddings f(X?) and f(X§) extracted by the shared encoder f, the squared MMD is

defined as:

e (D*, D") = [|Extorps [o(F(X))] = Excepe o (F (X3, (2.7)

where Hyer is the RKHS associated with the kernel ker. The multiple-kernel MMD (MK-
MMD) [78] extends this formulation by combining several kernels to capture features across
different layers and scales, as illustrated in Figure 2.6, thereby improving the robustness
of distribution alignment. A notable extension is the Joint Maximum Mean Discrepancy
(JMMD) [79], which aligns joint distributions across multiple domain-specific layers, encour-

aging consistency in both marginal and conditional distributions. Another related method
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Figure 2.6: lllustration of MK-MMD domain alignment using multiple kernels.

is Correlation Alignment (CORAL) [80], which minimizes the discrepancy between second-
order statistics (i.e., covariances) of source and target features, and can be interpreted as

analogous to MMD with a second-order polynomial kernel [80].

2.4.1 Adversarial Domain Adaptation

Adversarial UDA constitutes a popular class of domain adaptation methods that aim to learn
domain-invariant feature representations by implicitly aligning the source and target distribu-
tions. This is typically achieved by introducing an auxiliary trainable module, known as the
domain discriminator, which distinguishes whether input features originate from the source
or target domain.

Formally, a domain discriminator D : R¢ — [0, 1] is introduced, where R? is the feature
space. The discriminator is trained to output 1 for source features and 0 for target features.
In contrast, the feature extractor f is optimized to produce representations that prevent the
discriminator from reliably distinguishing between the two domains. This adversarial setup
encourages the learned feature space to be domain-invariant.

The learning process is formulated as a minimax optimization between two objectives:
(i) a supervised classification loss on the labeled source data, and (ii) an adversarial loss

that aligns the source and target distributions. The classification loss is defined as
1 &
£5(f.9) = 5 D a(F (X)), (2.8)
8 =1

26



— T — 5 oo LD
|:> |:> |:> ﬁ |:> |:> |:> E class label ¢°

Y
label predictor g (-;6, )

S0IN)eoJ
<

a‘cadv
%, - 90 g domain classifier D(-;6,)
Vo) f
(/{*‘ 1§ v / O}
feature extractor  f(+;60y) {9}@*&@%
4 |:> |:> @ domain label
oL®
E> 90y P OLaty @
forwardprop  backprop (and produced derivatives) 3] 9

Figure 2.7: lllustration of the DANN architecture [81].

where ¢ denotes the cross-entropy loss. This term promotes discriminative learning on the

source domain. The adversarial loss is defined as
1 S
Laay(f. D) = —— ZlogD X)) - 7 > log(1 — D(f(X)))), (2.9)
=1

where D learns to distinguish source from target representations, while f is optimized to
make its outputs indistinguishable across domains.

The full objective is given by
mcin mgx L5(¢) + Aadv Laav(f, D), (2.10)

where A4y > 0 balances the classification and alignment losses.
This formulation follows the DANN framework [81], as illustrated in Figure 2.7, and enables
the model to learn representations that are both class-discriminative on the source domain

D* and domain-invariant across D* and Dt.
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Chapter 3

UNTAG: Learning Generic Features
for Unsupervised Type-Agnostic

Deepfake Detection

This chapter introduces a novel framework for UNsupervised Type-AGnostic deepfake de-
tection referred to as UNTAG. Existing methods are generally trained in a supervised manner
at the classification level and usually focus on detecting two types of forgeries at most; there-
fore, limiting their generalization capability across different types of deepfakes. To handle
that, we reformulate the problem of deepfake detection as a one-class classification coupled
with a self-supervision feature learning mechanism. Our intuition is that by estimating the
distribution of real data in a discriminative feature space, a deepfake can be detected as
an outlier regardless of its type. In particular, UNTAG involves two sequential steps. First,
deep representations are learned based on a self-supervised mechanism that focuses on
manipulated regions. Second, a one-class classifier that detects deepfakes from the learned
deep representations is estimated. The results reported on several datasets show the ef-
fectiveness of UNTAG. They also highlight the relevance of the proposed new paradigm for

unsupervised type-agnostic deepfake detection. The source code is publicly available.

28



3.1 Introduction

Deepfakes are realistic facial images or videos that are either fully generated or partially
altered using a generative Deep Neural Network (DNN) such as Generative Adversarial
Networks (GANs) [73, 82]. Over the last years, numerous incidents, including fraud and
misinformation [13, 12], have raised concerns about their misuse [83].

Given this threat, several deepfake detection methods have been introduced [84, 23, 85,
86, 87, 88, 89, 90]. Nevertheless, existing approaches remain hardly applicable to real-
world scenarios given their lack of inter-type generalization. In fact, generalization can be
addressed at two levels: (1) At the inter-type level, we mean robustness to unseen types of
deepfakes. Possible types of deepfakes are Face Swap (FS), Facial Reenactments (FR), Fa-
cial Attribute Manipulations (FAM), and Fully Synthetic Faces (FSF) such as GAN-generated
faces; (2) At the intra-type level, we mean robustness to unseen forgery methods generating
the same type of deepfakes. While intra-type generalization has been extensively studied,
the topic of inter-type generalization remains less explored. Figure 3.1 further clarifies the
distinction between intra-type and inter-type generalizations. This figure depicts the different
types of deepfakes along with dataset examples incorporating them. It also specifies the
focus of our chapter compared to most state-of-the-art methods.

Earlier approaches formulate the problem of deepfake detection as an end-to-end binary
supervised classification task [23]. More specifically, they mostly learn a DNN model that fo-
cuses on image or video cues, known as artifacts. Unfortunately, such methods have shown
poor intra-type generalization capabilities. This drop in performance might be explained by
the fact that fully supervised DNNs tend to overfit the training data, as highlighted in [91, 92,
93, 94]. To overcome these limitations, some approaches have employed a self-supervision
strategy for extracting more generic features [28, 60, 95]. Nevertheless, these approaches
rely on a supervised classification for detecting deepfakes. Thus, they highly depend on
annotated data; hence achieving low inter-type generalization. In other words, they tend to
be effective solely in the presence of forgery types encountered at the training phase.

This chapter addresses the under-explored research problem of type-agnostic deepfake
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Figure 3.1: (1) The focus of most state-of-the-art deepfake detectors in terms of intra-type
and inter-type generalization versus (2) the focus of the proposed method. (a) and (b) refer
to the forgery types and datasets, respectively. FR, FS, FSF, and FAM refer to Facial Reen-
actment, Face Swap, Fully Synthetic Faces, and Facial Attribute Manipulation, respectively.
Other is for unknown and stacked forgery types.

detection using unlabeled data. As a solution, we propose to model the distribution of nor-
mal images/videos and detect deepfakes as anomalies. Such an approach also prevents
the use of costly annotated data. To the best of our knowledge, unsupervised classification
for deepfake detection has only been considered in [96] where a Variational Auto-Encoder
(VAE) was used to learn the distribution of real data. However, while this approach can
be conceptually employed for detecting any types of deepfakes, the authors do not explic-
itly consider more than two usual types, namely Face Swaps and Facial Reenactments.
In Section 3.5, we show experimentally that [96] has poor generalization across different
types of deepfakes. Two facts might explain this. First, the generated features are not
discriminative enough as the learning process is not implicitly guided to focus on specific
artifact-sensitive regions. Second, the Variational Auto-Encoder (VAE) assumes that the
latent representations of real data follow a Gaussian distribution which might be too simplis-
tic for modeling the complex distribution of real data. In this chapter, we propose a novel
Unsupervised Type-Agnostic deepfake detection (UNTAG) which leverages an appropriate
self-supervision mechanism for learning generic yet discriminative features. First, a simple

augmentation technique called R-Splicer is introduced. It generates synthetic data by apply-
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Figure 3.2: The proposed UNTAG framework is based on: (a) First, a self-supervised fea-
ture learning is considered: a pretext task learns implicitly artifact-sensitive region features
by predicting the manipulated regions if any in an image; and (b) Second, an unsupervised
generative one-class classifier is estimated using the self-supervised features of real im-
ages.
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ing splicing and blending operations on multiple predefined regions in a given image. The
selected regions are known to potentially incorporate artifacts for different types of deep-
fakes. Then, the augmented data are used to train a deep learning network that detects the
manipulated regions. Our intuition is that by employing this self-supervision mechanism, the
network will implicitly produce features that can target artifact-sensitive regions. Second, the
feature learning step is followed by an unsupervised one-class generative classifier which
estimates the probability density of real data; thus, considering only authentic data during
the training phase.

The contributions of this chapter are summarized below: (1) The paradigm of unsuper-
vised type-agnostic deepfake detection is introduced. To the best of our knowledge, no
prior work has explicitly formulated it as such; (2) A novel framework called UNTAG for
unsupervised type-agnostic deepfake detection is proposed. In this context, an original non-
contrastive self-supervised pretext task is specifically tailored for the problem of deepfake
detection; (3) A simple augmentation technique termed R-Splicer is proposed and used for
training the pretext task; (4) A protocol for evaluating the performance of deepfake detec-
tors under the proposed formulation using three well-known datasets and two generation
methods, namely, ForgeryNet [26], FaceForensics++ [23], Celeb-DF [24], StarGAN2 [97],
StyleGAN [98, 99] is designed; and (5) An extensive experimental evaluation is carried out.
The chapter is structured as follows: Section 3.2 describes the state-of-the-art of self-
supervised and unsupervised deepfake detection. Section 3.3 formulates the new paradigm
of type-agnostic deepfake detection using a one-class classifier. The proposed method
called UNTAG is detailed in Section 3.4. The experiments’ results and limitations are given

in Section 3.5. Finally, Section 3.6 concludes this work.

3.2 Related works

Earlier deepfake detection methods mostly train a Convolutional Neural Network (CNN) in
an end-to-end manner to detect generic [86, 21, 22] or specific artifacts [100, 101, 94]. De-

spite their performance in constrained settings, it has been shown in multiple references
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that they struggle to generalize to unseen deepfake generation methods [91, 92, 93, 94]. To
overcome this issue, a growing focus is being given to self-supervision [102, 20, 103, 27,
62, 104, 61, 60].

Leveraging self-supervision for deepfake detection. Instead of training a network in an
end-to-end manner, self-supervised methods guide the learning of feature representations
by considering a contrastive loss or an auxiliary task known as the pretext task. Auxiliary
task-based approaches typically involve the classification of augmented data which sim-
ulates a targeted inconsistency [102, 20, 103, 27, 61, 60, 28, 95]. Contrastive learning
approaches [104, 62] aim at minimizing/maximizing the similarity/dissimilarity between an
instance and its augmentations. Although these techniques leverage self-supervision, the
final classification remains supervised unlike UNTAG which uses a one-class classifier. As a
consequence, these techniques do not generalize effectively to unseen types of deepfakes
and require the availability of large annotated datasets.

Unsupervised deepfake detection. While existing deepfake detection methods rely on a
binary classification task, Khalid et al. [96] introduced a one-class classifier architecture for
detecting deepfakes as anomalies. This means that only real data are considered during
the training phase. While this idea seems promising for achieving inter-type generalization,
the authors attempted to detect only two kinds of deepfakes, namely, face-swaps and facial
reenactments. As discussed in the introduction, this method lacks inter-type generalization
capabilities probably due to: (1) the low discriminative power of learned features; and (2) the
constraining assumption that real embeddings follows a Gaussian distribution. This claim is

experimentally supported in Section 3.5.

3.3 A new paradigm for type-agnostic deepfake detection

Let D = (Z, L) be a dataset composed of N images Z = {I;}Y, and their corresponding
labels £ = {li}f\il. I, € R>*wxh [, € [0,1] and ¢, w and h are the number of channels, the
width and the height of the image 1,, respectively. 7 is defined by Z = 7% U ¥ where 7%

and Z%' are the subsets of real and fake images, respectively. For all i € [1, N] and I; € Z,
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the label I; = 11 <7+, with 1 being an indicator function. Z*" is assumed to contain all types
of deepfakes, i.e., I = Jj_, "7, with Z*> being the set of images belonging to a particular
type of deepfakes, and n the total number of forgery types. The ultimate goal of deepfake

detection is to learn a function f(.) such that,
Vie[l,N]andI; € Z, f(I;) = I;. (3.1)

Fully supervised approaches. These methods aim at learning a feature extractor function

fo(.) parametrized by the weights 6 of a neural network such that,
Vie[l,NJand I; € Z, o(fo(L;)) = L, (3.2)

where o(.) is an activation function used for classifying the input image as real or fake. Note
that only a subset of D denoted by D = (Z,£) C D is used to train the model. In fact,
supervised methods focus mostly on one to two types of deepfakes, e.g. face-swaps and
facial reenactment. In other words, Z = Z® U ZF, with 7" = (Ji, 7%t c I* being the
subset containing the fake images of the considered forgery types. Each type is denoted
by Fy;), for s(j) € [1,n] a sampling function indicating the deepfake type and n1 < n
the number of deepfake types in Z7". Focusing on a subset of fakes makes the inter-type
generalization difficult. In addition to that, since fy is learned in an end-to-end manner,
supervised techniques usually do not generalize to unseen generation algorithms producing
similar types of deepfakes F” [20, 105].

Self-supervision based on an auxiliary task for deepfake detection. For an enhanced
intra-type generalization, self-supervised techniques, usually decouple the learning process
into two stages. A first stage extracts rich representations by considering an auxiliary task
that is generally unrelated to the detection task. The second stage discriminates between
real and fake images based on the extracted representations. Formally, the aim of self-

supervised approaches is to learn two functions fy, and f,, parametrized by the neural
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network weights 6, and 6, respectively, such that,
Vie[l,NJand I; € Z, fo,(fo,(L;)) = L. (3.3)

Typically, the estimation of fy, involves only the set of real images Z%. The latter is ex-
tended to a set of transformed images 4% associated with pseudo-labels £4"9, forming
DA — (TAv [£Av9) The dataset DA™ is used to perform the auxiliary task. Hence, fy,
maps latent embeddings resulting from the auxiliary task to their corresponding labels. For
the second phase, the subset D is used in a supervised fashion. Although self-supervised
mechanisms improve intra-type generalization aspect, these approaches still rely on anno-
tated data and are therefore not generic across different types of deepfakes.

Leveraging self-supervision for one-class type-agnostic deepfake detection. In this
chapter, we propose to address the problem of unsupervised type-agnostic deepfake detec-
tion. However, unlike [96], our goal is to learn discriminative type-agnostic features, while
modelling more accurately the distribution of real data. For that purpose, we propose to de-
couple the feature learning from the final classification as in Eq. (3.3). First, a self-supervised
strategy tailored to the task of type-agnostic deepfake detection is leveraged for estimating
fo,. However, instead of learning a binary classifier during the second stage, the embed-
dings fg, (I) generated from real samples I € T are assumed to follow a multivariate,
Gaussian mixture distribution, such that fy, (I) o p(fs, (I)|l = 0) and [ is the label of I. The
probability density p(fs, (I)|l = 0) is defined as,

K

p(fo, (DL =0) =" @i N(fo, (DI(75, ), 1 = 0). (3.4)

=1
Note that Zfil ®, = 1, K is the number of Gaussian components and ®; is the weight
of the component i. This assumption is in line with the concentration hypothesis [106],
which suggests that the embeddings of real and fake data are respectively assumed to be
concentrated and non-concentrated in the feature space. At this stage, unlike previous self-

supervised methods, no annotated data is used. Hence, the problem can be seen as a one-
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class classification since only real images are taken into account for training. As real data is
unlikely to be noise-free, we refer to this formulation as an unsupervised task. The function
fo, allows the discrimination between real latent features and any non-real embeddings and

is computed as follows,

Joo(fo, (1)) = 1 = 110,15, ()5 7)) (3.5)

where L(0s|fg,(I)) = —Log(p(fe, (I)]l = 0) is the log-likelihood given the parameter 0, =

(T4, XZi)iep, k] @nd 7 > 0 is a predefined threshold.

3.4 UNTAG: Unsupervised type-agnostic deepfake detection

This section describes the proposed approach called UNsupervised Type-AGnostic (UN-
TAG) deepfake detection. As formulated in Eq. (3.4) and Eq. (3.5), a framework involving an
auxiliary and a downstream task is proposed for detecting deepfakes. In particular, a pretext
task for learning type-agnostic artifact-sensitive features is proposed in order to estimate fy,
(3.4.1). Hereafter, a final unsupervised classification process allows estimating fy, based
on a one-class Gaussian Mixture Model (GMM) (3.4.2). An overview of UNTAG is given in
Figure 3.2.

3.4.1 Self-supervised learning of generic and discriminative type-agnostic

features

Inspired by [48, 107, 108], our objective is to learn discriminative and generic representa-
tions from a set of transformed images. For that purpose, a projection head [54] is adopted
as it has shown great performance [54, 109, 108]. A projection head is a multilayer percep-
tron (MLP) appended to the backbone network just after its pooling layer. It is used during
training and discarded at inference time.

More concretely, given a dataset of transformed images and their generated pseudo-

labels D49, the pretext task learns a composition of two functions f,, and f,. The function
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fos, parametrized by 65 corresponds to the projection head. The two mappings are learned
in an end-to-end manner such that, given an input image I, € 74" and its associated
pseudo-label I,,, € [0, k],

f03 o f91 (Im) = lm (36)
fo, (I,,) denotes the features extracted by the backbone network and fy. (fs, (I,,)) refers to

the predicted pseudo-label. It is done by minimizing the following loss denoted by R,

R,= E H(zm,Lfgsofel(uIm)}, (3.7)

I~y

where =y is the distribution of the augmented training data, H is the cross-entropy loss,

Real face

Nose Eyes Brows

Figure 3.3: The transformations generated by R-splicer given a real image from
ForgeryNet [26]

and Ly, of, (Im|Im) = Ly, (Im|fs,(Im)) is the likelihood of being in the presence of label
I, given the extracted image embeddings f(I,,). Overall, the key idea consists in applying
suitable transformations to images for learning discriminative representations. In line with
this, a tailored data augmentation called R-splicer is proposed in order to generate DA%,

R-Splicer. Augmenting real data by generating pseudo-fake images is a common practice
in the deepfake detection literature [20, 103, 27, 19, 28]. Such methods simulate character-
istic face-swap artifacts using simplistic operations [20, 103, 27, 19]. These augmentation

strategies coupled with self-supervision have significantly boosted the intra-type generaliza-
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tion capabilities of deepfake detectors. In particular, they mostly focus on creating synthetic
blending or warping artifacts located in the boundaries of the facial area. As a result, these
approaches struggle to achieve inter-type generalization as experimentally demonstrated
in [19] on GAN-generated images. In contrast, our method tries to be more generic by mim-
icking different deepfake types. It simulates artifacts not only in the boundaries of the facial
area, but also in the background and in more localized facial regions. Hence, it achieves
good inter-type generalization, as shown in Section 3.5.

Our approach is based on two key observations about deepfakes: (1) Most methods
[1083, 20, 27, 19, 28] assume that artifacts lie only in the facial area. However, in practice,
this does not always hold. For example, inconsistencies may occur in the person’s hair or
background in GAN-generated faces, and (2) deepfakes may exhibit fine-grained local and
global inconsistencies, or both simultaneously. For example, fully synthetic faces are global
forgeries whereas facial reenactments are fine-grained. These observations suggest that
the model should target different regions of the image and take into consideration local and
global artifacts. In line with these observations, the introduced R-Splicer applies splicing
operations on a predefined set of facial and non-facial regions. In total, & (k = 5) regions are
manipulated as depicted in Figure 3.3. In this chapter, the choice of regions is heuristically
made by taking into account three elements: (1) areas in which artifacts are more likely to
appear in different types of deepfakes; (2) areas with high-level semantics; and (3) simplicity
of the splicing operation. For example, other regions such as the ear have been excluded,
as it is often occluded and difficult to detect. More regions might be included in future works.
This is in line with the recently introduced methods [28], which aim at manipulating different
regions. Nevertheless, this work differs from ours as the manipulations are partly supervised
with annotated images by considering the cross-entropy loss.

Formally, a spliced image I, is defined as,
19 = M; 017 + (Juu — Mi) 019, for j € [1,¢], (3.8)

where j is the channel index, M; is a grayscale mask associated with the predetermined
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it region, I, is the target image to be manipulated and 1, is the image transferring its
region of interest, J,«, is the all-ones matrix of size w x h and © is the element-wise
multiplication. Therefore, using a set of n, real images belonging to Z%, the dataset DA% =
(z4v9, £Av9) is built by applying on each image all the predefined splicing operations denoted
by T = {7}}?20, where k is the number of candidate manipulation regions. This means that
T4 = |0 (Us_ T;(1:)) with Ty being the identity transformation such that 7o(I) = I for
I € Z% and T; for j # 0 a function that splices the j* region and replaces it with the
same region from another image. The generated labels £49 = U?;O(Ufzoj) correspond
to the manipulated regions. A technical explanation of the details of R-Splicer is provided in

Algorithm 1.

3.4.2 Unsupervised one-class classification with Gaussian Mixture Models

For detecting deepfakes, we finally propose the use of a generative one-class classifier
denoted by fy, in Eq. (3.5). The network trained for the pretext task is frozen for extracting
features that are fed to the one-class classifier. More precisely, a GMM is first fitted using
only real data embeddings, as presented in Eq. (3.4). The GMM parameters, denoted by 65
in Eqg. (3.5), are estimated using the Expectation-Maximization (EM) method [110]. Then,
at inference, the GMM discriminates between embeddings extracted from real images and

non-authentic ones as shown in Eq. (3.5).

3.5 Experiments

3.5.1 Experimental Protocol

Baselines. We propose to compare UNTAG to six representative baselines: Two supervised
deepfake detection approaches called (1) DFD-HF [111] and Xception-Ext is an Xcep-
tion [21] that we re-adapt and combine with our pretext task feature extractor pretrained
on R-spliced data. It is finetuned using the protocol of [23]. (3) a self-supervised deepfake

detection method termed DSP-FWA [103]; (4) to the best of our knowledge, the only fully
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Algorithm 1: R-Splicer

Input: A set 7 of N% real images, where N < N, k = 5 regions
An index-to-region mapping {{0 : No Transform}, {1 : Background}, {2 : Mouth},
{3 : Nose}, {4 : {Eyes}, {5 : Brows}}
A predefined set of facial landmark IDs for each region
Output: An augmented dataset DA% = (7449, £Au9)
1
2 749 <[] // Initialize empty image list
3 LAY < []// Initialize empty label list
4
5 fori <« 1to N do

// Face processing

6 I; « Load i** image from 7%

7 I, < cropped Region-Of-Interest // the face in I,

8

9 for region_index < 0 to k do

// Lookup region_index in the index-to-region mapping

10 if region_index == 0 then

11 ‘ I,+ I,// No transformation applied

12 end

13 else

14 Retrieve facial landmark IDs for associated with region_index
15 Sample 20 face candidates {I.,..., I>°} from 7%

16 Compute head poses for all 20 face candidates

17 Select I, with the closest head pose to I;

18

19 Compute landmarks Imk; for I, // original image

20 Compute landmarks Imk, forl. // splicing candidate
21

22 Warp Imk. to match Imk;

23 Generate splicing mask M

24 Compute(I,,)j=3 // Blend region onto I, following Eq(8)
25

26 end

27 Iy < region_index // Assign region_index label

28 T4v9 « append(Z4*9, I,,)

29 LA« append(£A49, 1,,)
30 end
31 end
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W Celeb-DF [24] FF++ [23] StyleGAN [98]  StarGAN[97]  ForgeryNet [26] Mean
Method AUC  Acc. AUC  Acc. AUC  Acc. AUC  Acc. AUC  Acc. 1VC

Xception-Ext [21]  50.29 50.57 48.58 50.00 55.35 44.50 46.99 50.00 4984 50.16  50.21

DFD-HF [111] 43.12 50.70 51.21 50.75 50.66 52.35 76.99 50.75 43.10 50.32 52.96
DFD-HF-OC 25.40 50.00 31.06 50.00 59.87 37.36 51.50 43.33 37.66 49.95 43.57
DSP-FWA [103] 49.47 49.50 53.65 53.36 63.57 63.10 50.76 50.81 51.65 51.40 53.65
DSP-FWA-OC 52.61 52.60 72.00 71.79 50.93 50.62 54.30 54.35 5720 5713 60.33
SimCLR [54] 43.06 56.22 51.44 59.72 37.97 56.46 15.31 50.40 5418 57.23 41.50
RotNet [48] 72.05 69.75 75.28 70.71 59.26 60.87 34.58 56.64 51.82 53.84 62.38

OC-FakeDect [96] 74.10 69.95 54.16 54.27 49.84 65.82 41.35 76.50 63.81 60.32 57.90
UNTAG (Ours) 7471 70.64 81.81 75.61 82.81 76.87 91.14 87.30 77.02 70.70 80.03

Table 3.1: AUC (%) and Accuracy (Acc. in %) of UNTAG compared to the selected baselines
on five different datasets. The best results are highlighted in bold. The second best results
are underlined. The sub-blocks from top to bottom show supervised, self-supervised, and
unsupervised methods, respectively.

unsupervised deepfake detection called OC-FakeDect [96]; (5) SIimCLR [54] a contrastive
self-supervised generic approach, and (6) a generic unsupervised one-class classification
method entitled RotNet [48] supported by a non-contrastive pretext task. It generates image
features in a similar way to UNTAG. For evaluating DFD-HF [111] and DSP-FWA [103] in
terms of both classification and quality of features, two variants are proposed: the first one
is based on a supervised classifier, while the second employs a GMM-based unsupervised
classification similar to UNTAG. More specifically, we first consider the two original models
and attempt to directly classify images as fake or real. In the second variant, the classifica-
tion layer is discarded and a GMM is fitted to detect deepfakes in an unsupervised manner.
In this case, the two methods are denoted by DFD-HF-OC and DSP-FWA-OC, respectively.
This allows carrying out a fair comparison with our approach, while evaluating the relevance

of the unsupervised setting for type-agnostic deepfake detection.

Datasets and Experimental Settings. In the remainder of this chapter, we refer to face-
swaps as FS, facial reenactments as FR, facial attribute manipulations as FAM, fully synthetic
faces (GAN-generated faces) as FSF, the combination of the four aforementioned types as

Multi, and the combination of the four aforementioned types with stacked manipulations as
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W SimCLR [54] RotNet[48]  OC-FakeDect[96] = UNTAG (Ours)
Subset AUC Acc. AUC Acc. AUC  Acc. AUC  Acc.

Celeb-DF [24] 43.06 56.22 72.05 69.75 74.10 69.95 74.71  70.64
FF++ DF [23] 52.30 58.71 73.67 70.70 48.31 52.79 83.45 76.14
FF++ FS [23] 55.89 60.96 74.03 70.36 48.15 52.57 76.64 72.65
FF++ FaceShifter [112] 50.22 59.41 74.61 70.60 68.54 58.68 85.19 80.13
BlendFace [26] 50.10 56.91 44.47 51.73 54.02 52.18 71.17 66.06
FaceShifter [112] 61.22 60.26 53.11 54.75 63.85 60.87 73.94 67.95
DeepFakes [6] 55.73 59.56 59.88 59.05 66.41 63.30 83.45 76.14
MMReplacement [26] 52.94 58.14 58.06 57.81 63.94 61.20 78.91 72.29
Mean AUC 52.68+4.97 63.74+10.74 60.92+9.01 78.43+4.82

Table 3.2: AUC (%) and Accuracy (Acc. (%)) on Face Swap (FS) deepfake generation
methods.

W SImCLR [54] RotNet [48] OC-FakeDect [96]  UNTAG (Ours)
Subset AUC Acc. AUC Acc. AUC  Acc. AUC  Acc.

FF++ NT[113] 59.58 6226  75.08 71.42  50.95  53.16 76.57 72.09
FF++ F2F[114] 6146 6173 7551 71.41  50.65  53.50 76.93 72.97
ATVGNet[115] ~ 53.93 59.14  49.73 5526 6225  59.29 75.18 69.57
FOMotion [116]  56.67 59.20  46.87 5290  69.21  64.89 75.78  69.70
TalkingHead [117] 54.86 59.07  47.22 5230  66.78  61.17 75.03  69.39
Mean AUC 57.30+2.84 58.88:13.44 59.97+7.81 75.90+£0.75

Table 3.3: AUC (%) and Accuracy (Acc. (%)) for Face Reenactment (FR) deepfake genera-
tion methods.

Multi+, respectively. Figure 3.4 presents examples of artifacts that commonly appear in
different facial regions, along with the deepfake types they are associated with. Three well-
known datasets are considered for the experiments, namely, ForgeryNet [26] (Multi+), Face-
Forensics++ [23] (FS, FR), and Celeb-DF [24] (FS). In addition, we generate two datasets
using StarGAN2 [97] (FAM) and StyleGAN2 [98] (FSF). ForgeryNet [26] is a recently intro-
duced dataset. Compared to other datasets, it has the advantage to include all types of
deepfakes. Table 3.7 provides further details regarding the dataset statistics and our pro-
tocol. During testing, balanced sets of about 2000 samples are utilized. Forged data is

randomly sampled from forgery datasets, whereas real data is randomly sampled from the
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W SimCLR [54] RotNet [48] OC-FakeDect [96] UNTAG (Ours)
Subset AUC Acc. AUC Acc. AUC Acc. AUC Acc.

StarGAN2* [97] 15.31 50.40 34.58 56.64 41.35 76.50 91.14 87.30
SC-FEGAN [118] 61.57 59.73 52.00 53.69 59.26 56.51 70.16 65.78
MaskGAN [119]  53.05 55.63 49.44 51.42 61.46 59.25 75.73 69.52
StarGAN2 [97] 54.97 56.96 56.15 56.28 67.55 64.01 79.18 71.92
Mean AUC 46.23+18.13 48.04+8.13 57.40+9.75 79.05+7.69

Table 3.4: AUC (%) and accuracy (Acc. (%)) for Face Attribute Manipulation (FAM) deepfake
generation methods.

W SimCLR [54] RotNet[48]  OC-FakeDect[96]  UNTAG (Ours)
Subset AUC Acc. AUC Acc. AUC  Acc. AUC  Acc.

StyleGAN2* [98] 31.42 55.05 61.08 62.00 53.03 66.30 80.82 74.65
StyleGAN3 [99]  56.62 61.05 52.36 59.74 50.47 65.30 85.08 78.46
StyleGAN2 [98] 61.19 60.34 49.23 51.60 62.45 59.25 78.22 71.67
Mean AUC 49.74+13.09 54.22+5.01 55.31+£5.15 81.37+2.83

Table 3.5: AUC (%) and Accuracy (Acc. (%))for Fully Synthetic Faces (FSF) deepfake gen-
eration methods.

ForgeryNet validation set [26]. An exception is made for the StyleGANS3 [99]: about 300
samples are utilized'. Additionally, ForgeryNet takes into account more than 5400 subjects
in contrast to previous benchmarks such as Celeb-DF which consider only 59 individuals.
Hence, mixing real data from ForgeryNet [26] with fake data from the targeted datasets
ensure differentiating between the identity leakage [94, 33] phenomenon and actual high
deepfake detection performance. In the experiments, we report the Area Under the ROC
Curve (AUC) and the Accuracy (Acc.)

Implementation details. Since we train our model using real data only, we randomly sam-
ple a subset of 142,371 real images from the ForgeryNet training set. First, the 256 x 256
images are extracted with MediaPipe [124]. The details of landmarks of each region are

provided in Table 3.11. R-Splicer generates from real data 20,406 images annotated with

"This is mainly due to the fact that the authors released only this amount of curated data at the preparation
of this work.
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W Types SimCLR RotNet OC-FakeDect UNTAG (Ours)
Subset AUC  Acc. AUC Acc. AUC Acc. AUC  Acc.

FS-GAN [120] FS+FR 56.82 59.23 56.76 57.19 58.65 56.74 80.94 74.74
DiscoFaceGAN [121] FSF+FAM 55.15 58.56 64.65 62.39 71.72 67.22 80.97 74.45
StarGAN2+BlendFace [26] FAM+FS  40.93 53.81 45.74 51.78 60.03 57.63 71.40 67.24
StarGAN2+Deepfakes [26] FAM+FS  59.54 60.20 58.42 58.06 70.38 67.80 82.56 75.40

Mean AUC 53.11£7.20 56.39+6.82 65.19+5.89 78.97+4.42

Table 3.6: AUC (%) and Accuracy (Acc. (%)) for combined manipulations involving Face
Swap (FS), Face Reenactment (FR), Fully Synthetic Faces (FSF), and Face Attribute Ma-
nipulation (FAM).

FS, FAM, FSF

& Ak

FAM, FR, FS FS, FR

Figure 3.4: Common artifacts and their corresponding deepfake types. Images are randomly
samples from StyleGAN2 [98] and FF++ [23].

Dataset Types Approaches Subjects Videos Images H Samples Used
Real Fake Real Fake H Train Test

FF++ [23] FS, FR 5 - 1,000 5,000 0 2,200
Celeb-DF [24] FS 1 59 590 5,639 - 0 1,221
StyleGAN3 [99] FSF 1 386 - - 386 0 534

StarGAN2 [97] FAM 1 - - - - - 0 1,000

ForgeryNet [26] Multi+ 15 5400+ 99,630 121,617 1,438,201 1,457,861 || 142,371 2,200

Table 3.7: Specifications of the selected datasets, including the number of training and
testing samples used in our experiments. An equivalent number of real images is selected
from ForgeryNet [26] to avoid identity leakage [32, 122].

the manipulated region. For the pretext task, the annotated images are used to fine-tune
a ResNet-18 [123] for 107 iterations with a learning rate of 3.107°. UNTAG is implemented
using Pytorch [125] and trained with an NVIDIA Titan V GPU. Basic data augmentation op-
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w/ pretext w/  Celeb-DF [24] FF++ [23] StyleGAN [98] StarGAN [97] ForgeryNet [26]

task  GMM 0 acc AUC  Acc. AUC  Acc. AUC  Acc. AUC  Acc.
v X 6251 6117 5453 5375 4564 50.28 18.17 50.10 5529 57.73
X / 2743 5355 5485 4321  69.75 7399 6546 7042 2482 51.20
v v/ 7471 7064 8181 7561 8281 7687  91.14 8730 77.02 70.70

Table 3.8: Ablation on the role of each component in UNTAG, namely the pretext task as
a direct binary classifier and the GMM as a direct One-Class Classification (OCC) as a
Deepfake detector.
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Figure 3.5: Heatmap of the Mean AUC scores, summarizing the overall inter-type general-
ization of UNTAG and the selected baselines.

erations such as random horizontal flipping and random gray-scaling are applied. A GMM
model with 3 components is fitted using Scikitlearn [126]. The number of Gaussian com-
ponents is empirically fixed. The batch size is fixed to 32 and 512 for the first and second

steps, respectively.

3.5.2 Results

Comparison with the baselines. Table 3.1 reports the obtained results on the five con-
sidered datasets. UNTAG clearly outperforms state-of-the-art methods in all the datasets.
Overall, unsupervised classification-based methods like SImCLR [54], RotNet [48], OC-
FakeDetect [96] and UNTAG are more effective for learning features that are robust to dif-
ferent types of forgeries. In contrast, methods that are learned in a supervised manner

seem to not be suitable for type-agnostic deepfake detection. Xception-Ext, DFD-HF [111]
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Celeb-DF [24] FF++ [23] StyleGAN [98] StarGAN2 [97] ForgeryNet [26]
Feature Extractor AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc.

EfficientNet-BO [22] 59.00 62.83 70.76 68.34 55.82 63.30 79.56 75.30 52.07 56.64
ResNet34 [123] 71.81 69.77 84.22 77.36 7821 76.02 95.36 90.50 56.34 58.30
ResNet18 [123] 7471 7064 81.81 7561 8281 76.87 91.14 8730 77.02 70.70

Table 3.9: Performance of UNTAG under different backbones (Stage 1) when combined with
a GMM as the one-class classifier in Stage 2.

Celeb-DF [24] FF++ [23] StyleGAN [98] StarGAN2 [97] ForgeryNet [26]
One-class Classifier AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc.

OC-SVM [68] 19.91 75.02 29.02 62.09 2752 5786 2491 6230 21.89 7045
KDE [75] 7427 70.40 7454 70.02 7045 6863 80.24 7190 78.11 72.00
GMM [74] 74711 70.64 81.81 75.61 8281 76.87 91.14 8730 77.02 70.70

Table 3.10: Performance of UNTAG using a ResNet18 at Stage 1 while considering various
one-class classifiers in Stage 2.

and DSP-FWA [103] have a significantly lower performance than unsupervised methods. In
fact, despite the fact that DFD-HF [111] achieves an AUC of 91.63% and an accuracy of
83.81% using the original protocol of [111], changing the testing set impacts its performance
to a large extent. This suggests that the model has learned the identity of the subjects
rather than subject-independent features. Similarly, the supervised Xception classifier which
was extended with UNTAG’s pretext task is not capable of effectively detecting deepfakes.
Another observation can be made regarding self-supervision: DSP-FWA [103] achieves no-
ticeably higher performance than DFD-HF [111] and Xception-Ext [21], even when the clas-
sification is supervised. Finally, the irrelevance of the features generated by DFD-HF [111]
is confirmed when observing its unsupervised variant. In fact, the performance drops impor-
tantly when using DFD-HF-OC, in contrast to DSP-FWA-OC, which learns from simulated
warping artifacts.

Framework study. We report in Tables 3.9 and 3.10 variants of UNTAG using different
backbones and various one-class classifiers. We observe that most variants are competitive
overall and support the proposed framework, except for OC-SVM, which shows very low

performance on some datasets. This might be due to the deterministic nature of OC-SVM;
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Region Mediapipe [124] Landmark identifiers (IDs)

Facel  [108, 68, 143, 213, 210, 208, 426, 430, 433, 372, 298, 337]
Eyebrows [9, 68, 156, 124, 53, 52, 8, 282, 283, 353, 333, 298]

Eyes  [8, 222, 224, 35, 230, 6, 450, 265, 445, 442]

Nose  [193, 203, 164, 423, 417]

Mouth  [164, 165, 212, 200, 432, 391]

Table 3.11: Mediapipe [124] landmark IDs per region. f denotes the full face region used to
splice the background region.

therefore, supporting the use of a probabilistic classifier. We note that overall, the best per-
formance is achieved using the combination (Resnet18 + GMM) considered in the chapter.
Evaluation of the generalization capabilities. Tables 3.2, 3.3, 3.4, 3.5, and 3.6 show
the detailed performance of our method compared to SimCLR [54], RotNet [48] and OC-
FakeDect [96]. The performance obtained for each manipulation in the considered datasets
is reported separately. The results show that UNTAG also outperforms SimCLR [54] Rot-
Net [48] and OC-FakeDect [96] regardless of the considered manipulation type. This suc-
cess could be explained by the relevance of the proposed self-supervision task for deepfake
detection. In fact, the self-supervision employed by RotNet [48] which is based on rotation
predictions are less suitable for type-agnostic deepfake detection. Similarly, SimCLR [10],
which is a contrastive-based self-supervision approach, achieves lower generalization per-
formance than UNTAG. This is further confirmed in Figure 3.5. Additionally, Figure 3.6 show-
ing the t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of the real and
fake embeddings produced by OC-FakeDect [96] and UNTAG and its variants confirm that
UNTAG yields overall more generic representations than OC-FakeDect [96]. Indeed, real
and fake embeddings seem to be more easily separable for all the UNTAG variants as com-
pared to OC-FakeDect [96]. Also, the t-SNE visualization embeddings of UNTAG suggests
that real data are for most datasets distributed over several small clusters; thus highlighting
the relevance of the GMM-based modeling.

Ablation Study. The role of each UNTAG’s component, namely the proposed pretext task
and one-class classification, is investigated. In Table 3.8, the ablation study results are re-

ported. First, we consider the pretext task as a standalone classifier. To this end, the pretext
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task network is retrained as a binary classifier detecting spliced and non-spliced images
and used for detecting deepfakes at inference. The results show that the network is only
sensitive to face swaps as in Celeb-DF [24], but performs poorly on GAN-generated images.
Second, instead of fitting the GMM model with real-image embeddings, we directly use the
set of 142,371 authentic images to estimate the model parameters. The results show that
the GMM can distinguish between real and GAN-generated images, suggesting that these
images have inherently different generation processes. These experiments show that our
pretext task and one-class classification are complementary and justifies their use for type-

agnostic deepfake detection.

Number of Gaussians

Dataset Forgery Type
1 2 3

Celeb-DF[24] FS 73.89 73.87 74.71
FF++[23] FS,FR 81.03 81.01 81.81
StyleGAN[98, 99] FSF 81.91 82.68 82.81
StarGAN2[97] FAM 82.76 89.41 91.14
ForgeryNet[26] Multi+ 76.17 76.53 77.02
Mean AUC 79.15 80.70 81.50

Table 3.12: The AUC performance of UNTAG using different number of Gaussian compo-
nents for classification. Bold results highlight the best performance.

Number of Gaussian Components. In Table 3.12, we vary the number of GMM compo-
nents and report the AUC of UNTAG, accordingly. The best performance is obtained when
using 3 components. Thus, all the results are reported in the chapter using 3 components.

Ablation on the contribution of the background and extension to non-natural image
domains. Table 3.13 reports UNTAG’s accuracy with and without background splicing on
in-domains and out-of-domain data. The results generally show a slight improvement, espe-
cially on diffusion [128] (DDPM) Table 3.13 reports the testing results on images generated
using diffusion models [128], animal faces [97] (AFHQ) and portraits [129] (Metfaces). Two
observations can be made: (1) UNTAG achieves promising and consistent performance on

diffusion models, which is reasonable as artifacts in fully synthetic images occur in the back-
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In-Domain (ID) Out-of-Domain (OOD)
Splicing Celeb-DF FF++ StyleGAN StarGAN2 ForgeryNet diffusion AFHQ Metfaces

w/o bg 70.41 75.50 76.77 87.60 70.59 73.50  55.52 54.69
w/ bg 70.64 75.61 76.87 87.30 70.70 76.86  55.65 54.85

Table 3.13: AUC (%) of background splicing on different datasets including diffusion, animals
and portraits.

ground as well. (2) Since our model was trained on real human faces, our method does not
generalize to other datasets with a different semantic viewpoint, even when the subjects are
human portraits [129].

Limitations. Despite the relevance of the learned representations as compared to the con-
sidered baselines, the t-SNE visualization of the fake and real embeddings produced by UN-
TAG demonstrates some limitations Figure 3.6. Indeed, the embeddings are overall globally
separable, but there still exists a significant overlap between them. The clusters of real and
fake data remain too close, therefore, it would be interesting to incorporate in a future work

a contrastive loss to enhance the distinction between the two distributions.

3.6 Conclusion

In this chapter, the problem of deepfake detection has been formulated as an unsupervised
type-agnostic problem. A solution termed UNTAG using a one-class classifier and a self-
supervision mechanism has been proposed. In particular, a novel auxiliary task specifically
tailored for deepfake detection has been introduced. It aims at learning discriminative fea-
tures by detecting manipulated regions with a simple splicing-blending technique. Finally, a
GMM s fitted to the learned representations of the real data. As a result, deepfakes can
be detected as anomalies regardless of their types without using any data annotation. UN-
TAG achieves an encouraging inter-type generalization capabilities, while only relying on

real data for training.
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Celeb-DF [24] FF++ [23] StyleGAN [98] StarGAN2 [97]  ForgeryNet [26]

*

OC-FakeDect [96]

Resnet18-UNTAG

Resnet34-UNTAG

EfficientNet-BO-UNTAG
Figure 3.6: t-Distributed Stochastic Neighbor Embedding (t-SNE) [127] visualizations of the

real and fake embeddings for OC-FakeDect [96] and UNTAG. Darker points represent real
samples, while lighter points correspond to fake samples.
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Chapter 4

Unsupervised Anomaly Detection in
Time Series: An Extensive
Evaluation and Analysis of
State-of-the-art Methods

The previous chapter introduced UNTAG, a method enabling type-agnostic deepfake detec-
tion at the image level. Nevertheless, in realistic scenarios, deepfakes are not limited to
static images; they can also be videos. This motivates our investigation of unsupervised
anomaly detection techniques applied to temporally structured data. In fact, videos can be
interpreted as multivariate time Series, making it natural to examine the existing literature on
unsupervised multivariate Time-series Anomaly Detection (TSAD) techniques. Since these
approaches have not been applied to deepfake detection in the past, assessing their matu-
rity and understanding which underlying paradigms are best suited for a real-world task like
deepfake detection becomes a necessary step before considering their applicability to this
context.

To this end, this chapter presents an evaluation of recent unsupervised multivariate time-

series anomaly detection methods. Although the unsupervised multivariate TSAD literature
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is extensive, a comprehensive evaluation study taking into account real-world constraints
is still needed. Existing studies often evaluate primarily on standard metrics such as pre-
cision, recall, and F1-score, overlooking other important assessment aspects such as (i)
considering performance metrics specifically tailored for time-series data, (ii) analyzing the
model size and stability, (iii) evaluating across different anomaly types, and (iv) considering
a clear and a unified experimental protocol. The overall objective of this work is, therefore,
to gain insights into the suitability of these approaches for real-world tasks such as deepfake

detection.

4.1 Introduction

A multivariate time-series corresponds to a temporally ordered set of variables. This math-
ematical representation has been used in countless domains, such as finance, health, and
biomechanics. Designing methods for automatically analyzing time-series (e.g., forecast-
ing, classification, anomaly detection) has been widely investigated by researchers [130,
131]. A particular focus is given to anomaly detection in time-series [132, 133]. In gen-
eral, an anomaly or outlier can be defined as an observation or sample that does not follow
an expected pattern. The popularity of anomaly detection in time-series is probably due to
its interest in numerous industrial contexts. As an example, one can mention the detec-
tion of faulty sensors [134], fraudulent bank transactions [135], and pathologies in medical
data [136, 137].

In the literature, some attempts have been made to develop supervised and semi-supervised
approaches [138, 139]. Although supervised techniques may achieve higher detection per-
formance on anomalies seen during training, they usually risk overfitting those anomalies,
resulting in poor generalization to novel outliers. Semi-supervised approaches offer a more
flexible solution leveraging both labeled and unlabeled data [140]. However, despite being
promising [141, 140], these methods still rely on a certain amount of annotated data, which
can be constraining. Hence, the task of time-series anomaly detection is usually formulated

as an unsupervised problem [142]. In fact, since anomalies occur rarely, annotating data
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Standard Range-based Eval. of Comp. Per Anomaly Unified

Study eva_l. <.aval. :;:; recent DL  w/ML type. exp. slt\g%(iil?tly
metrics metrics [144] methods methods analysis protocol
[145] Yes No No Yes No No No No
[146] Yes No No No Yes Yes Yes No
[133] No No No No No No No No
[147] Yes No No Yes No No Yes No
[148] Yes Partial Partial No Yes Yes Partial No
[149] Yes No No Yes Yes No No Yes
[150] Yes No No Yes No No Partial No
[151] Yes No Partial Yes No No Partial No
[152] Yes Partial No No Yes Yes No Yes
[153] No No Partial Yes No No No No
[154] No Partial Partial Yes Yes No Partial No
[155] Yes No Partial Yes Yes No No No
Ours Yes Yes Yes Yes Yes Yes Yes Yes

Table 4.1: Comparison of existing evaluation studies of anomaly detection in time-series: we
specify which of the following aspects were taken into account: (1) standard performance
metrics which correspond to the precision, recall, and F1-score; (2) revisited performance
metrics extending the precision, recall, and F1-score to time-series introduced by Tatbul et al.
[144]; (3) network size; (4) consideration of ML approaches in the comparison; (5) evaluation
of recent deep learning techniques; (6) analysis with respect to the types of anomalies;
and (7) use of a unified experimental protocol. Note that by “partial”, we mean that the
authors briefly discussed the concept without necessarily producing any related comparison
or results in their study.

becomes challenging and costly. This makes unsupervised learning more adequate despite
being exposed to additional challenges such as the lack of explicit guidance and complex
hyper-parameter tuning [143]. In this article, we focus on the topic of unsupervised anomaly
detection in time-series.

Earlier methods of anomaly detection in time-series mostly employed traditional Machine
Learning (ML) [156, 157] and auto-regressive [158, 159] techniques. However, as discussed
in [145], these approaches are mainly subject to the curse of dimensionality. In other words,

their performance drops in the presence of high-dimensional time-series.
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To address this, motivated by the tremendous advances in Deep Learning (DL), massive
efforts have been recently made to design suitable Deep Neural Network (DNN) architec-
tures [160, 161, 142]. These DL-based approaches have achieved impressive performance
in terms of standard performance metrics (precision, recall, and F1-score). Nevertheless,
despite their promising results, their suitability in a realistic industrial context still needs fur-
ther investigation. For that purpose, it is timely to propose an extensive comparison of recent
unsupervised DL techniques that consider the following aspects:

(i) Model size and model stability: Existing methods overlook the model size and the
model stability, which are important indicators of the scalability and the performance sta-
bility. By a stable model, we mean a model which has stable performance under different
training trials.

(ii) Unified experimental protocol: There is no clear experimental protocol for evaluating
state-of-the-art methods. As a consequence, it can be noted that the reported experimental
values vary considerably from one chapter to another. For instance, as highlighted by Kim
et al. [147], a peculiar evaluation protocol called Point Adjustment (PA) introduced by Xu
et al. [161] is often used [162, 142], while it is ignored in other cases [163, 164].

(iii) Performance metrics for time-series: As discussed by Tatbul et al. [144], the used
standard performance metrics (precision, recall, and F1-score) might not be entirely ade-
quate for evaluating time-series anomaly detectors. These metrics were initially designed
for time-independent predictions and not for range-based ones. As an alternative, [144] ex-
tended these metrics to time-series. However, it can be noted that current state-of-the-art
methods do not consider these relatively novel evaluation criteria.

(iv) Experimental analysis with respect to the anomaly type: a detailed experimental
evaluation with respect to the type of anomaly is missing in the state-of-the-art. Significant
efforts have been dedicated to rigorously defining the different possible types of outliers in
time-series [145, 146]. However, no detailed experimental analysis has been carried out in
that direction.

(v) Comparison against ML methods: Similar to the works of [133, 149], we empha-

size the importance of comparing traditional ML strategies to DL approaches. Recent stud-
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ies [153, 151, 150] tend to focus on DL-based works, often overlooking ML techniques. Our
findings are consistent with [133, 149], and indicate that ML methods remain relevant for the
task of unsupervised anomaly detection in time-series.

In the literature, some survey studies were proposed for unsupervised time-series anomaly
detection [153, 154]. They primarily focus on presenting recent approaches, their relevant
applications and their challenges and limitations. Some other works [133, 152] have con-
ducted experiments to identify the flaws of current benchmark datasets and scoring func-
tions, proposing new datasets and issuing recommendations for practitioners. While few
other evaluation studies focused on experimentally comparing recent anomaly detection al-
gorithms [155, 149, 145, 150, 147, 146, 151, 152, 148]. Our work belongs to this latest
category. For instance, [145] present a brief comparison of recent DL algorithms in terms
of precision, recall, and F1-score but neglect the model size and model stability. We can
also mention the work of [146], where a new taxonomy for time-series outliers is proposed.
Then, based on that, a methodology to generate synthetic datasets is suggested. They
finally compare nine different algorithms according to outlier types but they do not include
the latest DL algorithms. Nevertheless, similar to [145], they only focus on classical eval-
uation criteria, omitting range-based evaluation, model stability and sizes. Furthermore,
[147] present a rigorous evaluation of recent DL techniques by questioning the Point Adjust-
ment protocol. Nevertheless, the model size and model stability, as well as the performance
metrics for time-series are not considered. [148] propose a large-scale evaluation study of
existing anomaly detection methods, thereby assessing the overall progress made in this
field. Nevertheless, they do not investigate the conceptual differences and limitations of
different types of approaches. In addition, recent state-of-the-art deep learning methods
published in top-tier venues such as [162, 160] are not considered. Last but not least, while
they attempt to readapt the AUC using the recently introduced range-based metrics [144],
they do not report the range-based precision, recall, and F1-score that are essential for an
in-depth comparative study of existing methods, which is the core objective of the present
chapter. The work presented by [151] compares DL techniques with and without the Point

Adjustment protocol under different federated learning settings using classical metrics only.
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Similarly, [150] provide a comprehensive review of DL-based anomaly detection for time-
series, detailing fundamental principles, applications, and guidelines for practitioners. They
compare several DL-based approaches using classical metrics but do not consider practical
aspects like model size and stability. The study of [152] proposes a benchmark for evaluating
univariate anomaly detection methods, mostly targeting classical ML approaches including
only few DL methods and without adopting a unified protocol. Furthermore, [149] report a
per-benchmark analysis between conventional, ML-based, and DL-based approaches, ac-
counting for model stability but lacking range-based evaluation, per-anomaly type analysis,
and a clear unified protocol. Lastly, [155] focus on evaluating multivariate techniques without
reporting any range-based performance, or per-anomaly type analysis.

Hence, in this survey, we provide a comprehensive evaluation study of recent state-of-
the-art algorithms by taking into account all the mentioned aspects (i) to (v). As summa-
rized in Table 4.1, an analysis using standard performance metrics, as well as the novel
performance metrics proposed by Tatbul et al. [144] is performed. In addition, the num-
ber of parameters of DL-based approaches is reported as it directly impacts the memory
consumption and the model scalability. Moreover, experiments according to the nature of
anomalies are carried out using the taxonomy that was recently introduced by Lai et al.
[146]. Lastly, a unified experimental protocol is used to compare existing methods. In short,
this work aims to provide a comprehensive evaluation of numerous paradigm-representative
time-series anomaly detection techniques, including recent deep learning methods, for a
better assessment of their practical relevance. For that purpose, additional aspects are con-
sidered in complement to the traditional performance metrics, such as employing a unified
experimental protocol, using range-based performance metrics, analyzing the performance
based on the type of anomalies, and studying the model size and stability. The aim of this
study is to help the community understand the advantages and limitations of state-of-the-art
techniques from a broader applicative perspective and lay the foundations for better experi-
mental evaluation practices.

The remainder of this chapter is organized as follows. Section 4.2 presents preliminaries

necessary for the understating of this chapter. Section 4.3 reviews state-of-the-art time-
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series anomaly detection methods. Section 4.4 describes the used datasets and details the
evaluation protocol considered in the experiments. Section 4.5 presents and analyzes the

results. Finally, Section 4.6 concludes this work.

4.2 Preliminaries

A time-series is a temporally ordered set of n variables which can be denoted by X =
{Xi}i<t<n where X; € R" refers to the n-dimensional vector of variables at an instant
t. Note that the time-series is univariate if n = 1, and is multivariate otherwise (n > 1).
This section reviews the necessary background for a better understanding of this survey.
Specifically, we start by recalling the different types of time-series anomalies according to the
taxonomy of [146]. Then, we present the usual paradigms employed for anomaly detection

in time-series.

4.2.1 Types of anomalies

As discussed in [145], anomalies in time-series can generally be classified into three main
categories, namely, point, contextual, and collective anomalies. However, unlike point anoma-
lies, the definitions of contextual and collective ones are more ambiguous in the state-of-the-
art, as stated by Lai et al. [146]. Indeed, they are heavily impacted by the application con-
text. For instance, [165] defines contextual anomalies as small temporal segments formed
by neighboring points, while [166] considers them as seasonal points (occurring periodi-
cally). Lai et al. have recently refined the definition of outlier types [146]. They distinguish
between point-wise outliers and pattern-wise outliers. The former is formed by global and
contextual outliers while the latter is composed of shapelet, seasonal, and trend outliers. In
the following, the taxonomy proposed by Lai et al. [146], which is central to our analysis, is

recalled.
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Figure 4.1: Examples of the five different types of outliers proposed in [146].
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Point-wise anomalies

Point-wise outliers are local anomalies occurring on individual time stamps. Let X = {X;}1<;<n
be a multivariate time-series and X, the expected value of X; at an instant ¢ according to a
regression model. Given a well-chosen threshold § > 0, an anomaly at an instant ¢ can be
formally defined by,

1X: — Xel| > 6, (4.1)

where ||.|| defines an L, norm.
Global outliers. They can be seen as point-wise anomalies which importantly deviate from
the rest of the points in a time-series. They usually correspond to spikes in the time-series,

as shown in Figure 4.1a. In this case, the threshold § can be formulated as,
§ = Ao (X), (4.2

where o(.) refers to the standard deviation operator and A € R**.

Contextual outliers. They refer to individual points which differ significantly from their neigh-
bors. The latter are often small glitches in the time-series as illustrated in Figure 4.1b. The
threshold can be defined as,

0 = Ao (Xi—kt+k), (4.3)

where X;_ppvr = {Xi—k, Xt—g+1, -, Xe1x ) IS the signal corresponding to the temporal win-

dow centered on ¢. The function o(.) refers to the standard deviation operator and A € R**.

Pattern-wise anomalies

Pattern-wise anomalies refer to anomalous sub-sequences which typically showcase dis-
cords or irregularities. These anomalies are defined by Lai et al. [146] by modeling a time-

series X with spectral structural analysis [167] as follows,
X = p(27wT) + 7(T), (4.4)
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such that p(2nwT) = ", [Asin(27w,T) + B cos(2nwyT")] corresponds to the base shapelet
function which can be interpreted as the characteristic shape of X. The seasonality, which
describes a pattern occurring at specific regular intervals in a time-series, is modeled with
w = {wy,ws, ..., wy }. Finally, a trend function denoted by 7 defines the global direction of X.
In particular, a sub-sequence X;.; of a time-series X with 1 < i < j < N can be formulated

using a shapelet function such that,

Xij = p2rwT; ;) + 7(Ty ), (4.5)

with p, w, 7, and T; ; respectively being the shape, the seasonality, the trend, and the time-
stamps of the sub-sequence. The analysis of the shapelet, the seasonality as well as the

trend functions allow distinguishing the three following outliers:

Shapelet outliers. They represent the anomalous sub-sequences enclosing shapelets that
are different from the expected ones, as shown in Figure 4.1c. The following condition can

be used to define shapelet outliers as follows,

dp(p(.),p()) > 6, (4.6)

with d, being a dissimilarity measure computed between two sets of shapelets. 5(.) corre-
sponds to the expected shapelets in a given sub-sequence and ¢ is the threshold.
Seasonal outliers. They can be defined as sub-sequences with unexpected seasonalities

with respect to the full sequence, as illustrated in Figure 4.1d.

do(w, @) > 6, (4.7)

with d,, being a dissimilarity measure between two seasonality, & being the expected sea-
sonality in the sub-sequence, and ¢ being the threshold.
Trend outliers. They refer to sub-sequences with an importantly altered trend. Conse-

quently, a shift in the mean data can be observed, as shown in Figure 4.1e. Mathematically,
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trend outliers can be defined by,

d(T,7) > 6 (4.8)

where d, is a dissimilarity measure computed between two trends, 7 is the expected trend
of the sub-sequence, and ¢ is the threshold.

4.2.2 Paradigms for anomaly detection in times-series

Existing anomaly detection methods in time-series mainly employ five different paradigms,

namely, clustering-based, density estimation-based, distance-based, reconstruction-based
and forecasting-based methods.

Clustering Probabilistic Distance
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Figure 4.2: Overview of the different paradigms for anomaly detection in time-series: in

contrast to clustering and probabilistic approaches, distance-based, reconstruction-based,
and forecasting-based approaches take into account the temporal aspect.
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Figure 4.3: An example of time-series from the UCR dataset, where the discord was calcu-
lated using DAMP [168].

Clustering-based methods

Let S™ be the feature space of multivariate time-series of dimension n. Let N be the
estimated sub-space of normal time-series of dimension n such that N C S". Let f be a
feature extractor function which maps an input time-series X € R to S™. An anomaly is

detected if,

F(X) ¢ N™. (4.9)

Note that the classification of X as an anomaly or not can also be determined with the use of
a distance that is compared to a threshold. This is the case, for example, of Support Vector

Data Description (SVDD) [69], which measures the distance from the centroids.

Density estimation-based methods

Density estimation-based methods mainly aim to estimate the probability density function of
normal time-series denoted as py. Given a time-series X, the likelihood function £ of § and

a threshold 7, an anomaly is detected if,
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LX) > T. (4.10)

Distance-based methods

Distance-based methods rely on the definition of an adequate distance between two tempo-
ral sequences. This distance should measure the dissimilarity between them. Let X and R
be, respectively, a given time-series and a reference normal time-series. Let us denote by

D a distance for time-series. Given a predefined threshold §, an anomaly is detected in X if,
D(X,R) > 4. (4.11)

Reconstruction-based methods

Reconstruction-based approaches aim at learning a model for the accurate and full recon-
struction of a normal time-series. The assumption is that the learned model will fail when
reconstructing abnormal sequences. Let X and X be respectively the original and the re-

constructed time-series. Given a predefined threshold §, an anomaly is detected in X if,
X — X||> 6. (4.12)

Forecasting-based methods

Forecasting-based approaches are based on the prediction of future states given previous
observations. Similar to reconstruction-based methods, they assume that the prediction will
be less accurate in the presence of an anomaly. Let X = {Xj, X, ..., Xy} be a time-series
where X; refers to an observation of X at an instant i. Given a threshold ¢, an anomaly is
detected at an instant « if,

X — X;|> 6, (4.13)

where Xti corresponds to the predicted state given the observation Xy, = {Xo, X1, ..., Xi—1}.
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4.3 State-of-the-art on time-series anomaly detection

Over the last two decades, the research community has widely explored the field of anomaly
detection [169], including anomaly detection in time-series. The latter can be addressed
from five different perspectives. As reported in Section 4.2, we distinguish between clustering-
based, density-estimation-based, distance-based, reconstruction-based, and forecasting-
based techniques. Earlier techniques have investigated these five different paradigms by
exploiting traditional machine learning [156, 170] and statistical tools [159]. Nevertheless,
as mentioned in [145], these approaches have shown a drop in performance when deal-
ing with high-dimensional time series. Given the recent advances in DL, DNNs have been
considered as an alternative [142, 163, 162, 164], mainly taking inspiration from traditional
methods. In the following, we review these five categories of approaches, starting with con-

ventional techniques, then moving to current DL methods.

4.3.1 Clustering-based methods

Clustering-based methods are discriminative approaches aiming to estimate explicitly or im-
plicitly decision boundaries for detecting anomalies [68, 170, 69] as depicted in Eq. 4.9.
One-Class Support Vector Machine (OC-SVM) [68] is probably one of the most popular al-
gorithms for anomaly detection. Its goal is to estimate the support of a high-dimensional
distribution. This one-class classification method has been mainly used for detecting time-
independent anomalies [171, 172] but has also been employed for isolating outliers in time-
series [173]. Inspired by Support Vector Machines (SVM), Support Vector Data Description
(SVDD) [69] is another well-known method that is often used in the context of anomaly de-
tection [174]. Similar to SVM, kernels that map data representations to a higher dimensional
space can be used. However, instead of relying on the estimation of a hyperplane, SVDD
computes spherically shaped boundaries.

Shallow clustering-based approaches necessitate the hand-crafting of discriminative fea-
tures and often require the selection of an appropriate kernel. Recently, with the advances

in DL, there have been attempts to extend these classical approaches. Most of these meth-
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ods, such as Deep SVDD [70] variants, extend traditional methods by learning a kernel that
maps data to a discriminative high-dimensional feature space. This is usually carried out by
optimizing a Neural Network. These approaches have shown promising results when deal-
ing with non-sequential data. Unfortunately, the temporal modeling of time-series is often
disregarded, mainly relying on a simple sliding window. As a solution, [175] suggest fusing
multi-scale temporal features and employing a Recurrent Neural Networks (RNN) to model

temporal dependencies.

4.3.2 Density-estimation methods

As described in Section 4.2.2, these probabilistic approaches detect anomalies by estimat-
ing the normal data density function. For example, [176] proposed a method referred to as
Local Outlier Factor (LOF) to detect anomalies by computing the local density. [177] calcu-
late the local connectivity for determining anomalies instead. In [178] and [179], a Gaussian
Mixture Model (GMM) and Kernel Density Estimation (KDE) are respectively used for esti-
mating the density of normal representations. Over the last years, efforts have been made
to introduce DNN-based probabilistic methods. For instance, [180] proposed to train an
auto-encoder for extracting relevant representations before fitting a GMM. Nevertheless, as
for clustering-based methods, probabilistic approaches usually do not model the temporal

aspect restricting their effectiveness in the context of time-series anomaly detection.

4.3.3 Distance-based methods

Distance-based methods usually define explicitly a distance between a time-series and a ref-
erence to detect anomalies [181, 182, 183, 184], as described in Section 4.2.2. Among the
most used distance-based algorithms, one can refer to Dynamic Time Warping [185], which
aims at finding the optimal match between two ordered sequences. Earlier distance-based
methods are mostly characterized by a relatively high complexity induced by the optimal
matching and the need for defining a reference time-series [181]. To address those issues,

some methods such as [65] reduce the computational cost by only using a small initial snip-

65



pet instead of a full reference. Alternatively, the DAMP algorithm introduced by Lu et al.
[168] can efficiently handle datasets with trillions of data points, by implementing strategies
like iterative doubling for backward nearest neighbor search, forward processing for pruning

non-discord subsequences and relying on parallel vectors to reduce the computation cost.

4.3.4 Reconstruction-based methods

Reconstruction-based methods aim at reconstructing the entire time-series, as presented in
Section 4.2.2. Shallow reconstruction-based time-series anomaly detection methods [186,
187, 188] have mainly adopted Principal Component Analysis [71] (PCA) or its variants such
as kernel PCA (kPCA) [189]. These approaches estimate an orthogonal projection, then
compute a reconstruction error between the original and reconstructed time-series. Lately,
Auto-Encoders (AE) [190] have been introduced as the deep learning-based counterpart
of PCA. Unsurprisingly, the latter has been adopted in the context of anomaly detection in
time-series [191]. For example, [192] introduce a Long-Short Term Memory Variation Auto-
Encoder (LSTM-VAE) architecture. While the Variation Auto-Encoder architecture (VAE) is
used for learning robust representations, a Long Short-Term Memory (LSTM) network allows
modeling temporal dependencies. Generative Adversarial Networks (GAN) have also been
proposed as a reconstruction-based method. In [162], Audibert et al. attempted to take
the best of both worlds. In particular, they introduced adversarially trained autoencoders for

detecting anomalies in time-series.

4.3.5 Forecasting-based methods

As discussed in Section 4.2.2, traditional forecasting-based anomaly detection methods are
primarily based on auto-regression-based models such as AutoRegressive Integrated Mov-
ing Average (ARIMA) [193]. With the recent advances in deep learning, LSTM has been
used to replace auto-regression models [163]. This architecture allows modeling short-term
as well as long-term temporal dependencies. [160] have recently proposed a graph-based

deep learning model with an attention mechanism for capturing multivariate correlations.
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4.3.6 Hybrid methods

As discussed by Zhao et al. [194], reconstruction and forecasting-based approaches have
shown to be, so far, the best candidates for anomaly detection in time-series. While reconstruction-
based methods allow modeling inconsistencies within the global distribution of time series,
forecasting-based approaches are more appropriate for capturing local anomalies. For
that reason, [194] have introduced a hybrid method leveraging these two complementary
paradigms. Specifically, they design a two-stream attention-based graph network that simul-

taneously optimizes forecasting and reconstruction losses.

4.4 Datasets and Evaluation protocol

In this section, the datasets, the evaluation criteria, the pre-processing and post-processing

algorithms as well as the considered methods for the experiments are presented.

4.4.1 Datasets

A total of five datasets have been considered for evaluating recent methods for anomaly
detection in time-series. Table 4.2 details the different characteristics of each dataset. The
considered benchmarks are:

Secure Water Treatment (SWaT). It is a dataset collected from a testbed water treatment
for 11 days proposed by Goh et al. in [195]. During the last 4 days, 36 attacks of different
duration and natures have been introduced. The data collected over the seven first days
have been used for training in all our experiments. During this period, the water treatment
was carried out under normal conditions. In contrast, the data gathered during the last 4
days were exposed to multiple attacks. The latter were only considered for testing.

Mars Science Laboratory (MSL). It is formed by 27 telemetry signals collected from the
Curiosity Rover spacecraft on Mars. Each signal consists of a multivariate time-series of
dimension 55. The first dimension encloses telemetry data, while the remaining 54 corre-

spond to a one-hot encoded command. The publicly available dataset has been released by
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NASA [196]. The training and testing data are separated, and anomalies are annotated.
Nevertheless, it can be noted that the experimental protocol varies from one reference
to another. In particular, some studies such as [197] ignore the one-hot encoded vector
considering only telemetry data. In addition, other approaches such as [160] combine the
telemetric data from 27 signals assuming that it forms a unique dataset. Nevertheless, in
most cases, authors do not provide sufficient information about their experimental protocol,
making a direct comparison not straightforward. In this chapter, we follow the experimental
protocol of [198]. Each signal is considered to be a separate and independent multivariate
sub-dataset. This means that the training and testing phases are performed each time on
one single sub-dataset. Finally, the average performance is reported.

Soil Moisture Active Passive dataset (SMAP). This dataset contains telemetry data and
one-hot encoded vectors similar to the MSL dataset. It has also been released by NASA [196].
However, in this case, the dataset is formed by 53 signals received from the Soil Moisture
Active Passive satellite. The annotated training and testing data are provided. Nevertheless,
as for the MSL dataset, similar inconsistencies regarding the experimental protocol can be
remarked. For that reason, we propose using the protocol of [198], where each signal is
considered to be a separate and independent multivariate sub-dataset. This leads to train
and test on 53 different sub-datasets and reporting the obtained average performance.
UCR time series anomaly archive (UCR). It has been recently proposed by Wu and Keogh
[133]. In this work, the authors claim that most of the existing anomaly detection datasets are
trivial. By trivial, they mean that an anomaly can be detected with a single line of MATLAB
code. They also criticize the lack of realism and annotation precision in current datasets.
As an alternative, they introduce the UCR dataset, which gathers 250 realistic sub-datasets.
This dataset is collected from various fields, including medicine, sports, and robotics. The
training and test sets are well-defined.

Automated Time-series Outlier Detection System (TODS). It is a collection of 5 synthet-
ically generated multivariate datasets. The dataset was generated using the source code
from [146], therefore producing different types of anomalies following the taxonomy of [146].

The dimension of the generated time-series is 10. Training datasets contain only normal
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values, while testing datasets incorporate 5 different types of anomalies. The annotation of

the outlier types is provided, therefore allowing a per-type analysis.

SWaT [195]  MSL [198] SMAP [196] UCR[133]  TODS [146]

Number of datasets 1 27 55 250 5
Variables 52 55 25 1 10
Percentage of anomalies 12.14 10.48 12.82 0.38 5
Training data points 495000 58317 138004 5302449 10000
Testing data points 449919 73729 435826 12919799 10000
Type of data Real Real Real Real Synthetic
Type of anomalies Artificially forced Natural Natural Natural/Synthetic ~ Synthetic

Table 4.2: Summary of the five datasets considered in the experiments. The percentage of
anomalies in the testing set is reported.

Method Type of paradigm Nature
OC-SVM [68] Clustering Shallow
iForest [170] Clustering Shallow
ARIMA [193] Forecasting Shallow
DAMP [168] Distance-based Shallow
DA-GMM [180] Density-estimation Deep
THOC [175] Clustering Deep
USAD [162] Reconstruction Deep
GDN [160] Forecasting Deep

MTAD-GAT [194] Hybrid (Forecasting & Reconstruction)  Deep

Table 4.3: Paradigm type and nature of evaluated methods

4.4.2 Evaluation criteria

In this section, we present the used evaluation criteria. Precision, Recall and F1-scores.
The most common metrics used to evaluate the performance of time-series anomaly detec-

tion algorithms are the precision computed as follows,

True positives
True positives + False positives’

Precision = (4.14)
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the recall is calculated as below,

True positives

Recall = — .
True Positives + False Negatives

(4.15)

and the F1-score corresponding to,

2 - Precision - Recall
F1-score = recision - Recal (4.16)
Precision 4 Recall

It is worth noting that some methods, such as the work of Wu and Keogh [133], generally
opt for other evaluation metrics. For instance, in [133] the authors argue that time-series
datasets should only have a single anomalous sequence per series. Under such a setting
they propose using accuracy to assess whether an anomaly has been correctly identified.
Such a binary score is often simple to interpret and to use and can be used for introducing
more flexibility. On the other hand, standard methods provide a more comprehensive and ex-
plainable assessment of performance across multiple instances, namely true positives, false
positives, and false negatives. They can handle more than a single anomaly subsequence
in a given time-series, and are therefore adapted to data with different anomaly ratios such
as most of the considered benchmarks (SWaT, MSL, SMAP).

Revisited precision, recall and F1-scores for time-series. In addition to conventional
performance metrics, more recent and elaborate performance metrics tailored to time-series
introduced by Tatbul et al. [144] are considered. These metrics extend classical precision,
recall, and F1-score from point-based to range-based anomaly detection. Figure 4.4 high-
lights the distinction between point-based and range-based anomalies. Contrary to the case
of point-based approaches, a prediction in a time-series can be both a true positive (TP)
and a false negative (FN) due to partial overlap with the ground truth as shown in Fig-
ure 4.4 b. Therefore, as discussed by Tatbul et al. [144], a more informative time-series
evaluation process should (1) quantify the size of the partial overlap; (2) identify the overlap
position, and; (3) take into account its cardinality, i.e., with how many anomalous ground

truth sub-sequences it overlaps. More specifically, given a set of real anomaly sequences
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R = {Ry,..., Ry, } and a set of predicted anomaly sequences P = { P, ..., Py, } the recall
is expressed with respect to the number of real anomalies N, in a dataset [144]. It seeks
to reward a detector when it predicts a TP and penalizes it when the prediction is an FN as

follows,

N,
1 T

Recallr (R, P) = A E Recallr(R;, P), (4.17)
" i=1

and, )
Recallr (R, P) = a - 1w a

+—‘SC Ri7P7 418
EAIROBIEL T S R0 Byl e -

where 0 < o < 1 is a scaling factor that rewards the detector when it detects the existence of
the anomaly R; and 1 is an indicator function. Finally, S.(R;, P) which quantifies the overlap
size is computed based on the cumulative overlap size w as follows,
Np
Se(Ri, P) = w(R;, RN P;,6), (4.19)
j=1
where § returns a score depending on the overlap location between R; and a prediction
P; (flat bias, front bias, middle bias, and back bias). Further details could be found in the
original manuscript of [144]. The precision is similarly defined. It seeks to assess the quality
of the predictions by rewarding a detector in the presence of a TP and penalizing it when

facing an FP. It is computed as follows,

N,
1 P
Precisiony = — ) " Precisiony (R, P;), (4.20)
Pi=1
and,
1
Precisionr(R, P;)) = —+———— - S(R, P), (4.21)
>R N Py

where S.(R, P;) quantifies the cumulative overlap between the considered prediction P; and

all the ground truths in R as explained in Equation 4.19. It is expressed as,
N,
SR, P)=> w(P,PiNR;0). (4.22)
j=1
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Figure 4.4: The evaluation process of (a) point-based anomalies versus (b) range-based
anomalies. Range-based anomalies are characterized by partial overlap(s) with the ground
truth. A more accurate evaluation for time-series should quantify the overlap in terms of
size, position, and cardinality.

Finally, the F1-score is redefined as follows,

2 - Precisiony - Recally

F1-scorer = —
r Precision + Recally

(4.23)

Model stability. We define model stability as the ability of a machine/deep learning algo-
rithm to reproduce similar results when retrained under the same conditions. While OC-SVM
ensures stability because of its deterministic nature, most of the considered methods rely
on a random parameter initialization which may impact the final performance of the model.
Ideally, the model should achieve the same results regardless of this initialization. To assess
the stability, each experiment is carried out five times. Then, the mean and standard devia-
tion of those five runs are reported. A lower standard deviation reflects higher stability. To
the best of our knowledge, we are among the first to analyze this aspect experimentally in
the context of anomaly detection in time-series.

Generalization to different types of anomalies. We propose reporting the performance
according to the anomaly type encountered. This analysis can help identify the most suit-

able algorithm for a given application. To that aim, the TODS benchmark, which encloses the
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annotation of 5 different types of outliers depicted in Section 4.1 is used. Although the defini-
tion of different anomaly types has been reported in several references, very few works have
carried out an experimental study with respect to the anomaly type. A rare example we can
mention is the work of [146]. Nevertheless, it can be noted that in this chapter, recent DL-
based state-of-the-art approaches such as GDN [160], USAD [162], and MTAD-GAT [194]
are not evaluated. For each anomaly type, the percentage of well-detected anomalies is
reported.

Model size. In a real-world context, deploying algorithms on specific hardware with a lim-
ited memory capacity can be challenging. Therefore, being aware of the model size, which
directly impacts the memory consumption, is a crucial component often neglected. For that
purpose, we report the number of parameters and the size in MegaBytes (MB) of the trained

deep learning models considered for this evaluation.

4.4.3 Post-processing and Pre-processing

Data Normalization. Normalizing the data is a common practice in machine learning, par-
ticularly in anomaly detection. Hence, for the sake of fairness, a data normalization pre-
processing was applied in all our experiments. More specifically, the data are normalized
using the maximum and minimum values in the training data as in [194].

Point Adjustment. Point adjustment initially introduced by Xu et al. [161] is a protocol that
adjusts the predictions before computing performance metrics. It acts as follows: if at least
one point is classified as an anomaly in an outlier segment, all the predictions in that seg-
ment are set to anomalous. The idea behind this protocol is that an algorithm triggering an
alert for any point in a contiguous anomaly segment might be sufficient for a timely reaction.
Figure 4.5 illustrates the point adjustment protocol by showing the ground truth, the original
predictions, and the predictions after point adjustment of a given time-series. After apply-
ing the point adjustment protocol, the F1-Score goes from 0.32 to 0.85. This significant gap
has therefore raised some concerns in the literature regarding the use of point adjustment.
For example, [147] claim that by using this protocol, a randomly generated anomaly score

might outperform several recently proposed time-series anomaly detection algorithms. In
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Figure 4.5: Application of the Point Adjustment (PA) on a given time-series: the Ground
Truth (GT), the original prediction (Pred) and the prediction after Point Adjustment (PA) are
reported. In this example, the performance of the algorithm without and with point adjust-
ment is, respectively: Precision = 0.75, Recall = 0.2, F1-Score = 0.32, and Precision = 0.92,
Recall = 0.79, F1-Score = 0.85. Best viewed in colors.

this chapter, we report the performance of existing methods with and without point adjust-

ment.

4.4.4 Evaluated methods

We consider in total nine anomaly detection methods. Table 4.3 summarizes the character-
istics of each evaluated method.

Four shallow standard methods are evaluated, namely, OC-SVM [68], iForest [170],
ARIMA [193] and DAMP [168]. In addition, five recent DL-based methods have been con-
sidered: DA-GMM [180], THOC [175] USAD [162], GDN [160] and MTAD-GAT [194]. The
latter has been selected according to the following criteria: (1) Relevance of the topic: all the
chosen anomaly detection algorithms are unsupervised and have been specifically designed
for detecting anomalies in time-series. (2) Publication date: all the DL-based algorithms are
recent. In particular, they have been introduced between 2018 and early 2022. (3) Impact:
the chosen algorithms have been published in top-tier conferences and are highly cited pa-
pers from the field. (4) Code availability: the official codes of the selected algorithms are
publicly available. (5) Diversity: methods from different paradigms have been considered.
The only paradigm that was ignored is the distance-based since we were not able to find a

deep learning approach falling in this category.
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Method SWaT MSL SMAP UCR TODS Avg. F1

P | 0.28+002 | 0.15+001 | 0.18 £0.01 | 0.01 £ 0.00 | 0.05 +0.00
USAD R | 0.74 +0.01 | 0.57 +005 | 0.49 +0.01 | 0.48 £0.00 | 0.54 +0.02
F1| 0.41+002 | 0.21+002 | 0.21+£001 | 0.02+0.00 | 0.10+0.00 | 0.19+0.13

P | 0.34+003 | 0.31+001 | 0.25+000 | 0.12+0.00 | 0.07+0.01
GDN R | 0.72+0.04 | 0.64+0.02 | 0.55+004 | 0.42+000 | 0.59+0.16
F1| 0.46+0.03 | 0.35+0.01 | 0.33+0.01 | 0.12+0.00 | 0.11+0.00 | 0.27+0.14

P | 0.62+0.16 | 0.22+0.01 | 0.16+0.01 | 0.01+0.01 | 0.05+0.01
THOC R | 0.46+0.13 | 0.46+£0.02 | 0.27+0.01 | 0.00+0.01 | 0.19+0.03
F1| 0.52+0.14 | 0.25+0.01 | 0.12+0.01 | 0.00+0.00 | 0.08+0.14 | 0.19+0.18

P | 0.85+004 | 0.57+004 | 0.58+003 | 0.10+0.00 | 0.16+0.08
MTAD-GAT | R | 0.90+0.03 | 0.79+003 | 0.87+0.03 | 0.28+0.01 | 0.01+0.02
F1| 0.87+0.01 | 0.60+0.03 | 0.65+0.03 | 0.13+0.01 | 0.02+0.03 | 0.45+0.32

P | 0.43+000 | 0.12£0.01 | 0.11+0.01 | 0.01£0.00 | 0.12+0.00
DAGMM R | 0.71+0.00 | 0.19+0.00 | 0.17+0.01 | 0.20+0.00 | 0.49+0.00
F1| 0.54+0.00 | 0.12+0.00 | 0.10+0.01 | 0.01+0.00 | 0.19+0.00 | 0.19+0.18

P | 0.24+000 | 0.15+000 | 0.12+0.00 | 0.01+0.00 | 0.05+0.00
OC-SVM R | 0.85+000 | 0.66+000 | 0.66+000 | 0.73+0.00 | 0.85+0.00
F1| 0.37+0.00 | 0.24+0.00 | 0.20+0.00 | 0.02+0.00 | 0.09+0.00 | 0.18+0.12

P | 0.23+0.10 | 0.18+0.04 | 0.10+0.01 | 0.05+0.01 | 0.05+0.01
iForest R | 0.83+0.10 | 0.16+005 | 0.04+0.01 | 0.12+0.01 | 0.04+0.01
F1| 0.36+0.10 | 0.17+0.03 | 0.08+0.00 | 0.07+0.00 | 0.04+0.01 | 0.14+0.12

P | 0.13+000 | 0.28+0.00 | 0.17+0.00 | 0.01+0.00 | 0.05+0.00
ARIMA R | 0.99+000 | 0.83+£0.00 | 0.82+0.00 | 0.85+0.00 | 0.69+0.00
F1| 0.23+0.00 | 0.28+0.00 | 0.19+0.00 | 0.02+0.00 | 0.09+0.00 | 0.16+0.09

P |- - - 0.33+0.00 | —
DAMP R | - - - 0.34+0.00 | —
F1| - - - 0.28+0.00 | — -

Table 4.4: Results in terms of traditional performance metrics of evaluated state-of-the-
art methods (precision P, recall R, F1-score) on the 5 considered datasets without Point
Adjustment (PA). The experiments have been performed 5 times for each algorithm and
dataset. The mean and standard deviation are reported. The bold and underlined results
correspond to the first and second-best F1-Score, respectively.
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Method SWaT MSL SMAP UCR TODS Avg. F1

P | 0.32+0.02 | 0.22+£0.02 | 0.26+0.01 | 0.02+0.00 | 0.07+0.00
USAD R | 0.89+0.03 | 0.99+0.03 | 0.95+001 | 0.95+000 | 0.71+0.02
F1| 0.47+0.02 | 0.33+0.01 | 0.34+£0.02 | 0.04+0.00 | 0.13+0.00 | 0.26+0.16

P | 0.40+005 | 0.39+002 | 0.36+0.01 | 0.31+0.01 | 0.10+0.02
GDN R | 0.72+0.04 | 1.00+0.00 | 1.00+000 | 0.99+0.00 | 0.75+0.12
F1| 0.57+0.05 | 0.50+0.02 | 0.46+0.01 | 0.39+0.01 | 0.16+0.02 | 0.42+0.14

P | 0.77+0.08 | 0.31+001 | 0.26+0.01 | 0.06+0.02 | 0.09+0.01
THOC R | 0.86+0.02 | 0.87+0.02 | 0.84+0.02 | 0.06+0.02 | 0.35+0.06
F1| 0.81+0.05 | 0.41+0.02 | 0.34+0.01 | 0.06+0.02 | 0.14+002 | 0.35+0.26

P | 0.86+004 | 0.60+004 | 0.59+003 | 0.17+0.00 | 0.16+0.08
MTAD-GAT | R | 0.96+0.03 | 0.86+003 | 0.91+0.03 | 0.57+0.02 | 0.01+0.02
F1| 0.90+0.01 | 0.64+0.04 | 0.67+0.03 | 0.25+0.01 | 0.02+0.03 | 0.50+0.32

P | 0.49+0.00 | 0.20+£0.00 | 0.16+0.00 | 0.03+0.00 | 0.15+0.00
DAGMM R | 0.90+0.00 | 0.44+000 | 0.41+000 | 0.78+0.00 | 0.63+0.00
F1| 0.64+0.00 | 0.25+000 | 0.19+0.00 | 0.06+0.00 | 0.24+0.00 | 0.28+0.19

P | 0.26+000 | 0.25+0.00 | 0.15+0.00 | 0.02+0.00 | 0.05+0.00
OCSVM R | 0.95+000 | 0.95+000 | 0.85+000 | 0.85+0.00 | 0.85+0.00
F1| 0.41+0.00 | 0.40+0.00 | 0.26+0.00 | 0.04+0.00 | 0.09+0.00 | 0.24+0.15

P | 0.26+0.12 | 0.47+0.04 | 0.10+0.01 | 0.16+0.01 | 0.17+0.06
iForest R | 0.97+000 | 0.66+006 | 0.04+0.01 | 0.45+001 | 0.17+0.02
F1| 0.40+0.13 | 0.55+0.04 | 0.36+0.01 | 0.24+0.01 | 0.17+0.02 | 0.34+0.13

P | 0.13+0.00 | 0.31+0.00 | 0.18+0.00 | 0.01+0.00 | 0.06+0.00
ARIMA R | 1.00+0.00 | 1.00+£0.00 | 0.96+000 | 0.97+0.00 | 0.87+0.00
F1| 0.23+0.00 | 0.39+0.00 | 0.24+0.00 | 0.02+0.00 | 0.11+0.00 | 0.20+0.13

P |- - - 0.35+041 | —
DAMP R | - - - 0.51+050 | —
F1| - - - 0.40+043 | — -

Table 4.5: Results in terms of traditional performance metrics of evaluated state-of-the-art
methods (precision (P), recall (R), F1-score (F1)) on the 5 considered datasets with Point
Adjustment (PA). The experiments have been performed 5 times for each algorithm and
dataset. The mean and standard deviation are reported. The bold and underlined results
correspond to the first and second-best F1-Score, respectively.
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4.5 Results

4.5.1 Performance using standard metrics

Best performing approach. Table 4.4 reports the performance of the evaluated methods
using standard metrics (precision, recall, and F1-score) on the five considered datasets.
The performance is first averaged over the data of every dataset, which in turn is averaged
over 5 runs. For a more intuitive visualization of the results, Figure 4.6 shows the F1-score
with and without Point Adjustment (PA). In general, MTAD-GAT [194] is the best-performing
approach, surpassing other methods on three datasets, namely, SWaT, MSL, SMAP. This
can be explained by the fact that this approach is hybrid as it is based on forecasting and
reconstruction losses. Indeed, this allows the simultaneous detection of local and global
anomalies. Nevertheless, it can be remarked that the results obtained on TODS contra-
dict this statement. Indeed, MTAD-GAT registers inferior performance on this benchmark as
compared to other methods, including DL and conventional methods. Two hypotheses might
justify this drop: (i) the TODS dataset encloses complex anomalies that are moderately lo-
cal and are hardly captured by a simple forecasting and/or reconstruction approach, favoring
probabilistic modeling as in DAGMM [180]. However, the higher performance obtained for
GDN [160] and USAD [162] partly disprove this assumption; and (ii) the synthetic data in
TODS are not realistic, making them hardly predictable. Another observation that can be
made is that GDN [160] presents the second-best performance on two datasets, namely
MSL, SMAP. This confirms the relevance of using graph representations for modeling time-
series. Surprisingly, graph-based approaches (GDN and MTAD-GAT) remain relatively ef-
fective on a univariate dataset (UCR), although modeling the connectivity between variables
is unnecessary.

DL vs conventional methods. As reported in Table 4.4 and Figure 4.6, DL methods, specif-
ically MTAD-GAT and GDN, generally outperform conventional methods. For example, the
superiority of DL approaches is extremely noticeable when comparing GDN and ARIMA,
which are both forecasting techniques. This increase in performance can be explained by

the fact that ARIMA struggles to model the dependencies between variables. However, the
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gap in performance between DL and traditional methods is less visible in some cases, sup-
porting the assumption of [133] and contradicting [145], which argues that DL methods are
more effective in the presence of high-dimensional time-series. For instance, DAMP [168]
) beats all DL methods by a large margin showing an average F1-score of 0.28 against
only 0.13 for the best-performing DL-techniques, OC-SVM shows comparable performance
with several DL-based anomaly methods such as THOC and USAD on high-dimensional
datasets. More precisely, OC-SVM achieves an F1-score of 0.24 and 0.2 on MSL and
MSAP against 0.21 and 0.21 for USAD and 0.25 and 0.2 for THOC, respectively. Another
observation that can be made is that conventional approaches, except iForest, seem to be
suitable for applications where recall is more important than precision. An example of such
an application could be the detection of debris among other objects in space [199]. On the
contrary, DL approaches are overall more precise.

Impact of point adjustment. From the results of Table 4.5, and Figure 4.6, it can be noted
that the Point Adjustment (PA) process significantly boosts the performance. In particular,
the highest performance gain can be observed for iForest on the MSL dataset, where the
F1-score increases from 17% to 55%. This can be explained by the fact that PA adjusts the
predictions before computing the metrics. The adjustment is made in a way that rewards
a detector when detecting at least one instance of an anomalous segment. The intuition
behind that is that finding one anomaly in a segment is sufficient for a timely reaction. Such
an intuition closely impacts the recall since it increases the number of False Positives (FP).
However, as discussed in [147], using PA can induce a misleading ranking of the perfor-
mance. This is confirmed in Table 4.4 where the results obtained for USAD, THOC and
DAGMM are comparable and contradict the performance metrics reported in Table 4.5. In
addition, before applying PA, all DL approaches seem to be in general, more effective than
conventional approaches. However, after PA, this is no longer the case. For example, iFor-
est achieves comparable performance with THOC. Overall, PA seems to bias the analysis
as it treats range-based data as punctual, neglecting the overlap size and the location of
anomalies. Consequently, this blurs the applicability of detectors in real-life setups.

Benchmark complexity. All tested methods fail to detect effectively anomalies in UCR,
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Figure 4.6: Average F1-Score on the five datasets comparing the non-PA and PA protocols.
The non-hatched and hatched bars correspond to the mean F1-Score with and without Point
Adjustment (PA), respectively. The vertical black line represents the standard deviation over
five runs.
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although it is a univariate dataset. This might be due to its low ratio of anomalies. As
discussed in Section 4.1, UCR is among the first benchmarks to mimic a more realistic con-
figuration, highlighting the difficulty of detecting rare anomalies. The rate of anomalies might
have a significant role in defining the complexity of a given dataset. For natural anomalies,
two observations could be made. First, the average performance on MSL and SMAP is
comparable despite having a significantly different number of variables. Second, natural but
induced/forced anomalies seem easy to detect, given that all methods perform well on the
SWaT dataset. Unfortunately, such a scenario is unrealistic in most real-world settings as
the anomalies are generally infrequent. This point was also raised by[133], highlighting that

several benchmark datasets have unrealistic anomaly densities.
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Figure 4.7: The mean performance per method on all datasets using the range-based met-
rics of [144], with different location biases.

4.5.2 Performance using revisited metrics for time-series

Conventional metrics vs revisited metrics. Table 4.7 shows the results of evaluation using
the revisited F1-score for time-series calculated using Recall; and Precisiony proposed
by Tatbul et al. [144].

It can be remarked that there exists a significant gap in performance between the results
based on conventional and revisited metrics. One main reason is that the revisited metrics
consider the overlap size between the predicted sequences and the ground truth. In contrast,

the traditional metrics do not take into account the sequential aspect nor quantify the overlap
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between the predictions and the ground truth. Moreover, it can be noted that the results
of the revisited metrics are not in full accordance with the conventional ones except for
DAMP on UCR. On the one hand, GDN and USAD achieve more competitive results as
compared to other approaches. On the other hand, the assumption about the superiority
of the hybrid method no longer holds. Overall, both classical and DL forecasting-based
techniques give the highest performance. This perspective suggests that the majority of
anomalies in benchmarked datasets are local. Finally, DAGMM seems to be among the
least effective methods, suggesting its inability to model the distribution of anomalies. This
can be explained by the fact that anomalies do not necessarily follow a multimodal Gaussian
distribution. Some observations can be made regarding the difficulty of each dataset. First,
MSL seems slightly less challenging than SWaT. Second, in line with the results based on
conventional metrics, the obtained performance suggests that natural anomalies are more
straightforward to detect than synthetic ones. Two reasons could potentially explain that: (1)
the datasets with natural anomalies have a high percentage of anomalies, and (2) synthetic
datasets do not reliably reflect reality and do not include a sufficient number of anomalies.
Location bias. Herein, we analyze the results for different location biases. Table 4.7, Ta-
ble 4.8, Table 4.9, and Table 4.10 show the results using flat, front, middle and back bias,
respectively. As mentioned in Section 4.4.2, taking into account the size, the cardinality and
the location of the overlap between a predicted sequence and its corresponding ground truth
is crucial. Therefore, the location bias weights every predicted time-stamp given its location
in the sequence.

Figure 4.7 depicts the overall performance for each method under different bias settings.
Two observations can be made: (i) Although the idea of location bias seems theoretically
interesting and flexible for different domain-specific applications, it does not practically bring
more information in our experiments, as the average F1-score does not change importantly.
However, the most notable results are registered for the middle and back biases as com-
pared to the flat and front biases. This can be attributed to the uneven distribution of anoma-
lies in datasets like SMAP and MSL. As noted by Wu and Keogh [133], most anomalies in

these datasets occur towards the end of the sequences. This may explain the improved
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performance of all the evaluated methods on MSL and SMAP, particularly for middle and
back location biases. This also suggests that most detectors are less mature for applica-
tions necessitating an early anomaly detection such as real-time intrusion detection [200],
cyberattack attempts via network activity [201] or cancer detection [137]. (i) Additionally,
all range-based metrics results are less impressive than the ones obtained using standard
metrics. This drop in performance may suggest that most approaches perform poorly in
identifying the overlap size and cardinality between a predicted sequence and its corre-
sponding ground truth. In other words, a predicted sequence does not perfectly align with
its corresponding ground truth sequence, as the boundaries of anomaly sequences are not
well predicted.

DL vs conventional methods. Although the top-three best-performing methods are DL
models (according to the conventional metrics), it can be seen that classical approaches
such as DAMP can outperform DL-methods by a large margin, with advantage of a stable
model. Similarly, OC-SVM can achieve comparable performance with its counterpart cluster-
ing DL approach, namely THOC. This suggests that conventional methods are not obsolete
and that, depending on the application, they can be considered for anomaly detection [133].
Univariate vs multivariate. The results of Table 4.4 and Table 4.7 seem to be in accor-
dance. Indeed, all methods except DAMP [168] seem to have poor performance on UCR,
which is univariate, while on other multivariate datasets such as MSL, the performance is

relatively higher.

4.5.3 Model stability

Besides reporting the precision, recall, and F1-score, it is interesting to observe the behavior
of detectors when trained with different initializations. Table 4.4 and Figure 4.6 report the
performance average and standard deviation for every approach after five runs. Undoubtedly
the most stable methods are the deterministic ones which are ARIMA, OC-SVM, and DAMP.
Among DL approaches, DAGMM seems to be the most stable. This could be explained by
the fact that it is a density-based approach that relies on estimating the density of normal

data. In contrast, THOC and iForest achieve less stable results, especially on SWaT.
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Figure 4.9: The ratio of true anomalies detected for each tested method when varying the
anomaly types. All methods succeeded in partially detecting each anomaly type, except
MTAD-GAT which was unable to detect any collective trend anomaly.
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4.5.4 Model size and memory consumption

Tables 4.6 (a) and (b) depict the number of parameters and the model sizes in MegaBytes
(MB) of the tested DL methods, respectively. GDN seems to have the lowest number of
parameters when tested on all the datasets. In fact, the number of parameters in USAD
is around 300 times higher than GDN. This is explained by the fact that the architecture of
USAD is complex and is composed of two adversarially trained auto-encoders. In Figure 4.8,
it can also be seen that contrary to other models, which vary almost linearly, the number
of parameters increases at a considerably higher rate. Additionally, despite the significant
difference in parameter number, GDN still achieves better results than USAD. This highlights
the relevance of using graph representations not only for modeling time-series but also for

building less complex model architectures.

Number of Parameters Model Size (MB)
Method SWaT MSL  SMAP  UCR  TODS Method  SWaT MSL SMAP UCR TODS
USAD 1.256.871 1.414.755 441.225 12321 136.710  USAD 479 540 1,68 005 0,54
GDN 4.225 4.481 2561  1.025  1.601 GDN 002 002 001 001 001
THOC 104768 105792 98.112 91.968 94272  THOC 041 042 039 036 037
MTAD-GAT 373.637  384.145 314.695 274.687 288.070  MTAD-GAT 1,62 1,66 139 105 1,05
DAGMM 266.930  270.542 243452 221.780 288.070  DAGMM 150 1,50 1,40 130 1,40
(a) Per dataset number of model parameters (b) Per dataset model size (MB)

Table 4.6: Number of parameters and model size (MB) of the trained models on different
datasets

4.5.5 Generalization to different types of anomalies

Figure 4.9 shows the percentage of detected anomalies per type for all the tested methods.
In general, it can be noted that for the majority of tested techniques, collective trend anoma-
lies are probably the most challenging to detect. ARIMA and GDN, which are predictive
approaches, show the best generalization capacity to different types of anomalies. OC-SVM
easily detects global point and collective shapelet anomalies but still presents decent re-
sults for other anomaly types. The results obtained for USAD suggest that it is more robust

to collective outliers (e.g., collective shapelet and seasonality), which can be explained by
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Dataset USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

Pr | 5.83 210 7.03+173 | 29.05+11.13 | 3.31+082 10.32 +022 | 3.12+0.00 0.38 +0.14 3.95 +0.00 -
SWaT Ry | 32.84 +396 | 25.05+2.90 2.04+108 | 39.46+385 | 18.89+022 | 85.66+000 | 90.21 +0.14 | 80.85 +0.00 -

F1p| 9.76 +29 | 10.81 188 | 3.81+196 | 6.07+133 | 13.34+026 | 6.02+000 | 0.77 029 | 7.53 +0.00 -

Pr | 1210 +079 | 24.94 +174 | 15.92 +1.43 7.68 +0.45 11.09 +025 | 5.28 +0.00 3.89+1.23 8.43 +0.00 -
MSL Ry | 20.14 +263 | 2293 +2.17 | 22.34+213 | 18.46+045 | 3.79+025 | 83.16+000 | 58.46 +1.23 | 41.06 +0.00 -

F1;| 6.66 030 | 15.35+133 | 7.70 +0.44 3.19+023 1.61+004 | 8.56+000 | 6.25+138 | 9.37 £0.00 -

Pp | 12.04 +0.95 | 15.00 +0.32 8.14 + 047 14.01 +0.00 | 07.09 +0.94 | 06.56 +0.00 | 01.78 +0.64 | 14.01 +0.00 -
SMAP Ry | 25.01 +0.70 | 20.23 +1.60 8.07 +0.81 52.72 +0.00 | 3.79+094 | 83.65+000 | 37.28 +064 | 52.72 +0.00 -

F171 6.34 032 | 7.93+033 2591018 | 11.79 000 | 0.91 009 | 10.40 £ 000 | 2.85+064 | 11.79 £ 0.00 -

Pr | 1.06 +0.02 7.49 + 032 1.06 +0.40 1.183+0.17 7.09 +0.94 0.83 +0.00 2.55+034 0.74 +0.00 | 32.49 +0.00
UCR Rr | 23.20 +0.23 | 25.01 +1.18 | 00.11 +040 | 01.89+0.17 | 03.79+094 | 83.56 +0.00 | 40.89 +0.34 | 29.07 +0.00 | 34.20 +0.00

F1p) 1.68+003 | 4.73+0.13 0.16+005 | 0.54+005 | 0.91+009 | 1.34+000 | 3.52+031 | 1.19+000 | 28.47 +0.00

Pr | 4.20+0239 5.37 +1.30 6.17 + 047 8.06 +9.70 7.09 +0.94 1.97 +0.00 9.75 + 862 6.85 +0.00 -
TODS Ry | 47.96 +0.15 | 55.46 +17.13 | 17.66+047 | 0.19+970 | 03.79+094 | 80.54 +0.00 | 6.45+862 | 63.95+0.00 -

F1y| 7.67 t065 | 8.43 147 8.87 +073 0.27 +035 | 0.91+009 | 3.82+000 | 4.35+041 | 12.33 £0.00 -

Avg.F1y | 6.42:266 | 9.45+353 | 4.63+323 | 4371426 | 3542401 | 6.03+324 | 355180 | 8444402 | -

Table 4.7: The flat-bias performance (in %) of the tested methods on the five benchmarks
using the metrics proposed by Tatbul et al. [144]. The average and the standard deviation of
five runs are reported.

the fact that it is a reconstruction approach that can essentially capture global inconsisten-
cies. DAGMM effectively detects collective seasonal anomalies but shows less impressive
results for collective shape outliers. Again, this might return to the probabilistic nature of
DAGMM, which is coupled with a sliding window. Finally, MTAD-GAT fails in detecting col-

lective anomalies, despite being hybrid.

4.5.6 Discussion

In the following, we summarize the main findings of the present evaluation study:

(7) It is generally difficult to vote for a best-performing approach or paradigm and the per-
formance of an approach highly depends on the considered use case and the nature of the
encountered anomalies. For instance, although the hybrid approach MTAD-GAT seems to
outperform most other methods, they also exhibit limitations, such as their unsuitability for
detecting collective shapelet and trend anomalies. This highlights the need for researchers
to explicitly discuss the specific settings or applications under which their algorithms are

effective, ensuring that practitioners understand the circumstances in which these methods
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Dataset USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

Pr | 5.90+213 7.05+173 | 29.05+11.14 | 3.12+0.76 10.46 +0.23 | 3.31 +0.00 0.39 +0.14 4.04 +0.00 -
SWaT Ry | 32.01 +£348 | 25.04+296 | 2.21+113 | 46.32+4.80 | 18.16+023 | 85.71 £ 0.00 | 90.28 +0.14 | 81.19 + 0.00 -

F1y| 9.81+296 | 10.84+189 | 4.09+204 | 5.80+129 | 13.27 026 | 6.38+000 | 0.79+0290 | 7.71 +0.00 -

Pp | 1210 +081 | 2494 +176 | 16.31+150 | 7.58+046 | 11.10+025 | 5.27 +0.00 | 4.07 +1.32 6.90 + 0.00 -
MSL Ry | 2114 +262 | 2293 +217 | 19.96+192 | 18.71 +046 | 2.91+025 | 81.25+0.00 | 55.42 +1.32 | 42.30 +0.00 -

F1y{ 6.71+023 | 15.35+133 | 8.06+047 | 3.08+029 | 1.56+005 | 8.13+000 | 6.27 £1.40 | 7.27 £0.00 -

Pp | 12.02 +0.95 | 15.09 +0.31 8.17 + 048 11.02 +£0.00 | 07.08 + 094 | 3.63 +0.00 1.92+071 | 11.02 +0.00 -
SMAP Rr | 26.34 £079 | 19.13 +1.64 6.90 +1.23 54.10+000 | 3.88+094 | 82.838+0.00 | 35.29+0.71 | 54.10 +0.00 -

F17| 6.42+025 | 7.61+030 2.27 +013 | 8.43+000 | 0.90+011 | 6.48+000 | 2.96+061 | 8.43+000 -

Pr | 1.06 +0.02 7.53 +£0.30 1.06 +0.40 1.13+0.17 7.08 +0.94 0.79 +0.00 2.70 +0.35 0.76 +0.00 | 33.12+0.00
UCR Ry | 22.95+0.29 | 25.10 +1.09 0.11 +0.40 1.90 +0.17 3.88+094 | 82.86+0.00 | 38.95+035 | 29.11 +0.00 | 33.30+0.00

F1y 1.67 +002 | 4.96+010 | 0.15+005 | 0.51+0038 | 0.90+011 | 1.45+000 | 3.62+032 | 1.21 +000 | 25.88 +0.00

Pr | 4.18 +0.42 5.32+1.22 6.20 + 0.42 8.01 +97 7.08 +£0.94 2.47 +0.00 9.79 + 865 6.79 + 0.00 -
TODS Ry | 47.95+1.15 | 55.49 + 1724 | 17.75+042 | 0.19+9.70 3.88+094 | 80.28+0.00 | 6.56+865 | 63.96 +0.00 -

F1y| 7.67 t065 | 8.37 +1.36 8.86+075 | 0.23+035 | 0.90+011 | 4.72+000 | 4.37 £035 | 12.22 +0.00 -

Avg. Fi1p ‘ 6.46 £ 267 ‘ 9.43 1 351 ‘ 4.69 £333 ‘ 3.61 £3.14 ‘ 3.51 £ 489 ‘ 5.43 £226 ‘ 3.60+£1.79 ‘ 7.37 +354 ‘

Table 4.8: The front-bias performance (in %) of the tested methods on the five benchmarks
using the metrics proposed by Tatbul et al. [144]. The average and the standard deviation of
five runs are reported.

Dataset USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

Pr | 5.92+214 7.05+173 | 29.05+11.13 | 3.44+085 | 10.40+022 | 3.37+000 | 0.40+015 | 3.82+0.00 -
SWaT Ry | 33.82+4.32 | 25.23+3.01 217+1.31 43.91+431 | 20.18+0.22 | 85.71+0.00 | 90.28+0.15 | 80.57+0.00 -

F17] 9.93+303 | 10.841+ 188 | 4.01+£236 6.34+1.40 | 13.72+025 | 6.48+x000 | 0.80+£030 | 7.31x0.00 -

Pp | 12.08+0.81 | 25.18+1.80 | 15.90+ 1.41 7.60+ 0.46 11.09+025 | 5.67+000 | 4.10+1.33 8.31+0.00 -
MSL Rr | 22.21+£330 | 25.47+222 | 23.79+248 | 18.46+0.46 4.05+025 | 84.91+0.00 | 60.78+1.33 | 40.78+0.00 -

F17| 6.66+037 | 16.52+176 | 7.41+043 | 3.01+023 | 1.52+004 | 9.27+000 | 6.55+1.49 | 8.91+0.00 -

Pr | 12.04+096 | 15.06+032 | 8.00+050 | 13.63+000 | 7.08+094 | 5.82+000 | 1.89+070 | 13.63+0.00 -
SMAP Rr | 26.08+0.96 | 22.54+1.79 8.13+0.47 54.03+0.00 | 4.16+094 | 84.84+0.00 | 38.90+0.70 | 54.03+ 0.00 -

F17| 6.56+039 | 8.47+025 | 02.38+0.18 | 11.46+000 | 0.89+0.10 | 9.62+000 | 3.01+069 | 11.46+0.00 -

Pr | 1.04+0.02 7.59+ 0.29 1.06+0.40 1.14+0.17 7.08+0.94 0.90+ 0.00 2.69+0.35 0.75+0.00 | 33.25+0.00
UCR Ry | 28.75+ 024 | 25.24+1.23 0.15+ 040 2.01+0.17 4.16+094 | 84.21+0.00 | 42.58+ 035 | 29.20+0.00 | 36.07+0.00

F14 1.65+£003 | 4.39+0.19 0.19+0.08 0.54+0.06 0.89+0.10 | 1.51+000 | 3.71+x032 | 1.21+£000 | 29.40=0.00

Pr | 4.26+0.40 5.41+1.31 6.22+ 0.46 8.02+9.70 7.08+094 | 2.04+000 | 9.72+862 | 6.82+0.00 -
TODS Rr | 47.91+£1.16 | 55.57+17.02 | 17.72+0.46 0.18+9.70 4.16+094 | 80.65+0.00 | 6.45+862 | 64.05+0.00 -

Flp| 7.77+066 | 8.471+1.44 8.941073 0.23+035 0.89x0.10 | 3.97+x000 | 4.34+£039 | 12.27+0.00 -

Avg. F1p ‘ 6.51+272 ‘ 9.76+3.97 ‘ 4.59+ 321 ‘ 4.32+ 419 ‘ 3.58+5.07 ‘ 6.17+3.10 ‘ 3.68+1.87 ‘ 8.23+3.93 ‘

Table 4.9: The middle-bias performance (in %) of the tested methods on the five benchmarks
using the metrics proposed by Tatbul et al. [144]. The average and the standard deviation of
five runs are reported.
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Dataset USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

Pr | 5.76 +2.08 7.01+174 | 29.05+11.13 | 3.51 +087 10.18 022 | 2.92 +0.00 0.37 +0.14 3.85 +0.00 -
SWaT Ry | 33.67 449 | 25.05+286 | 1.88+1.03 | 32.61+291 | 19.61+022 | 85.61+0.00 | 90.14 +0.14 | 80.50 + 0.00 -

F1p] 9.69+29 | 10.78+187 | 3.52+189 | 6.28+135 | 13.40+026 | 5.65+000 | 0.75+029 | 7.34 +0.00 -

Pr | 1231 +073 | 24.94+172 | 1553 +1.37 7.78 +0.44 11.07 +025 | 5.28 +0.00 3.72+1.14 9.96 +0.00 -
MSL Ry | 19.14 + 264 | 24.05+201 | 24.71 +245 | 18.20+044 | 4.67+025 | 85.07+000 | 61.51 +1.14 | 39.82 +0.00 -

F1;| 6.48 037 | 15.58 +130 | 7.06 037 3.25+016 | 1.64+164 | 8.87+000 | 6.13+1.37 | 10.76 £0.00 -

Pp | 12.06 +0.25 | 14.91 +0.33 8.11 + 047 16.99+000 | 7.11+094 9.49 + 0.00 1.64 +057 | 16.99 +0.00 -
SMAP Ry | 23.67 +0.70 | 21.33 +157 9.283 + 0.42 51.33+000 | 3.69+094 | 84.91+000 | 39.27 +057 | 51.33 +0.00 -

F171 6.12+025 | 8.07 +033 2.75+022 | 13.75+000 | 0.92+008 | 13.30+000 | 2.70+065 | 13.75+0.00 -

Pr | 1.06 +0.02 7.44 + 035 1.06 +0.40 114 £ o017 7.11 £ 094 0.87 +0.00 2.39 +0.32 0.73 +000 | 31.86+0.0
UCR Rr | 23.45+020 | 24.92 +1.26 0.11 +0.40 1.88 +0.17 3.69+094 | 84.26+0.00 | 42.83+032 | 29.03 +0.00 | 35.09 +0.0

F17{ 1.67 +003 | 4.11+018 | 0.17+006 | 0.54+006 | 0.92+008 | 1.21+000 | 3.37+031 | 1.16+000 | 26.68 +0.0

Pr | 4.21 +039 5.42 +1.40 6.14 + 063 8.12+970 711 £ 094 1.47 +0.00 9.70 + 859 6.92 +0.00 -
TODS Ry | 47.96 +1.16 | 55.43 +17.02 | 17.57 +063 | 0.18 +9.70 3.69+094 | 80.80+000 | 6.34+859 | 63.93+0.00 -

Fl1y| 7.69+065 | 8.48 1158 8.82 +084 0.29+037 | 0.92+008 | 2.89+000 | 4.32+046 | 12.43 £0.00 -

Avg.F1y | 6.33:264 | 9.40:376 | 4461310 | 482149 | 3564493 | 6.38+43s | 3451178 | 9.09+451 |

Table 4.10: The back-bias performance (in) %) of the tested methods on the five benchmarks
using the metrics proposed by Tatbul et al. [144]. The average and the standard deviation of
five runs are reported.

should be considered [133].

(7¢) The considered forecasting approaches tend to have the most consistent range-based
performance with respect to standard metrics.

(747) Traditional approaches are not necessarily obsolete; in some cases, they can achieve
performances that are comparable to DL methods. This supports the claim of [133] to ques-
tion the assumption that deep learning is the definitive solution for time-series anomaly de-
tection. Since they are usually recall-oriented, they usually detect most types of anomalies
but at the cost of a higher false positive rate.

(7v) The Point Adjustment (PA) protocol is unreliable as it overestimates the detector per-
formance, and in the case of traditional approaches that are already recall-oriented, this
triggers an even higher false positive rate.

(v) Multivariate time-series are challenging due to the high dimensionality of data. On the
other hand, univariate time-series can be challenging when the anomaly ratio is very low.
(vi) Most models achieve low performance using range-based metrics, highlighting the diffi-

culty of detecting the anomaly boundaries.
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(vit) Model stability and memory consumption can vary importantly from one method to an-
other. Hence, depending on the end-goal application, these metrics can be essential for

selecting the most suitable model in accordance with the hardware specifications.

4.6 Conclusion

This chapter proposes an extensive evaluation study of recent time-series anomaly detection
methods. To the best of our knowledge, we are the first to analyze these algorithms based on
a more elaborate experimentation protocol. In contrast to previous evaluation studies, which
only consider the standard performance metrics, we take into account revisited performance
criteria specifically designed for time series in our analysis. In addition, the model stability,
the model size as well as the robustness to different types of anomalies are also investigated.
All these additional elements give a more complete picture of the current state-of-the-art.
Moreover, the proposed protocol is timely and could be beneficial for future investigations,
providing more insights regarding their applicability in a real-world context. In particular, the
insights in this study are leveraged in the next chapter, which presents an unsupervised
deepfake detector that extends the UAD formulation to the video level detection with the aim

of improving generalization.
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Chapter 5

Facial Region-Based Ensembling for
Unsupervised Temporal Deepfake

Localization

This chapter addresses the challenge of temporal deepfake localization. Instead of classify-
ing entire videos as real or fake, the goal is isolating forged frames in untrimmed videos that
might be partially manipulated. Recently, few deepfake localization methods have emerged.
They are mostly supervised, therefore relying on costly annotations and suffering from a
lack of generalization to unseen manipulations. Similar to image-based deepfake detection,
we propose reformulating deepfake localization as an unsupervised time-series anomaly
detection problem. Hence, to investigate the relevance of the proposed formulation, recent
state-of-the-art techniques in anomaly detection for time-series are evaluated in the context

of deepfake localization.

5.1 Introduction

The rise of deepfake technology, involving the creation of realistic facial media using Deep

Neural Networks (DNN), calls into question the credibility of digital content [12, 13]. One
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major risk is the misuse of these manipulated data for spreading misinformation. Conse-
quently, the development of effective deepfake detection methods has become crucial. Cur-
rent deepfake detection strategies [23, 28] generally rely on binary classification, focusing
on the prediction of one label for an entire video. Hence, these approaches simplify the
problem by assuming that forged videos are temporally segmented. This, however, hinders
their application in a real-world scenario, especially if real-time performances are required.
A more plausible approach would be to localize deepfakes in an untrimmed video stream
that can be locally forged. Recently, a few methods have been proposed for temporal local-
ization [202, 26, 203, 204]. The latter are trained in a supervised manner, thereby inheriting
two major shortcomings. First, a large set of annotated data is needed, which can be costly
and hard to obtain. Second, as discussed in [23, 35], overfitting issues can occur, causing a

poor generalization to unseen manipulations.

oz Fake = Real
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(a) Example of extracted facial 0 100 200 300 400 500
landmarks and their identifiers (b) Histogram of the standard deviation of landmark dis-
(IDs). placements for real and fake images.

Figure 5.1: Comparison of landmark displacement statistics extracted from fake and real
videos in ForgeryNet [26].

Building on our pioneering work on unsupervised deepfake detection [35], we propose
to reformulate the problem of deepfake localization as an unsupervised anomaly detection
problem in multivariate time-series. In other words, we suggest learning a time-series model
using only real videos and considering out-of-distribution frames as deepfakes at inference.

Specifically, we represent each video by the position trajectories of facial landmarks. These
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trajectories can be seen as a multivariate time-series, which can be prone to temporal in-
consistencies in the case of forged videos. As experimentally demonstrated in Figure 5.1,
a noticeable discrepancy exists between the standard deviation of landmark displacements
of real and fake videos. Furthermore, such a geometric representation has the advantage
of being low-dimensional, resulting in more compact models. It is also universal across all
datasets as it is robust to illumination changes and image content, thereby reducing overfit-
ting risks. Hence, we propose to study the suitability of recent time-series anomaly detection
for the concrete use case of landmark-based deepfake localization. Furthermore, we pro-
pose a simple, yet effective, region-based ensembling strategy for deepfake localization re-
lying on autoencoder (AE) architectures. Extensive experiments and analysis demonstrate
the relevance of the proposed formulation as well as the introduced ensembling methods,
suggesting a promising direction for future research in deepfake temporal localization.

In short, our contributions can be summarized as follows: (1) The formulation of temporal
deepfake localization as an unsupervised anomaly detection problem in time-series. (2) An
ensemble of lightweight autoencoders focusing on facial regions, trained only on real videos.
(3) A comprehensive analysis and comparison of recent anomaly detection techniques on
time-series in the context of deepfake localization.

This chapter is structured as follows: Section 5.2 formulates temporal deepfake localization
as a time-series anomaly detection problem. Section 5.3 details the proposed region-based
ensembling approach. Section 5.4 describes the experiments and analyzes the results.

Finally, Section 5.5 concludes this work.

5.2 Unsupervised Anomaly Detection in Time Series for Deep-
fake Localization using Geometric Representations

An untrimmed video V can be defined as a temporally-ordered sequence of 7" images de-

noted as V = {I;}1<;<7 with I; € R"¥*¢ and h, w and ¢ being the height, width and the

number of channels of I;, respectively. We assume that | = {i;},<;<7 corresponds to the

ground-truth label vector of V, with I, € {0,1} representing the label of V at an instant ¢.
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(a) Input videos pre-processing into landmark sequences
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Figure 5.2: Overview of the proposed facial region-focused ensembling. (a) Extraction of
facial landmark sequences to be used for training several individual Autoencoders (AEs),
each trained on a specific facial region trajectories (i.e., nose and mouth). (b) Inference from
the per-facial regions Autoencoders (AEs) and aggregation of the individual results via a

voting strategy to produce the finale frame prediction.
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Note that I, = 1 in the presence of a forgery and I; = 0 otherwise. We denote by V, the sub-
sequence of V formed by (I;—~, L;i—7, +1, .., Ity oo, Ly —1, Ly ) With mmand m» two integers
defining the position and the size of a sliding window and T being its length. The goal of

deepfake localization is estimating a function f : RP*wxexTs . £0 1} for all ¢,

(Vi) =1l (5.1)

Existing localization methods mostly learn f in a supervised manner using deep learning
architectures [26, 203, 204]; thereby relying on costly annotations. Moreover, supervision
leads to a lack of generalization to unseen manipulations, as this was demonstrated in the
context of deepfake detection [23, 35]. To address this issue, we propose reformulating the
problem of deepfake localization as an unsupervised anomaly detection task. Thus f can
be viewed as a composition of two functions f = ® o ¥ where ¥ : R»*wxexTs . ¥ models
normal time-series and is learned using only real data and ® : X — {0, 1} is a thresholding
function only used at inference.

Another aspect that should be considered is the model size. In fact, existing multivariate
time-series anomaly detection architectures have been initially designed for relatively low
dimensional data [205]. Hence, directly modelling videos as time-series might results in
cumbersome models. As a solution, we propose the use of geometric representations,
e.g., 2D facial landmarks. As shown in [206], in the context of deepfake detection, they
can be used for obtaining more compact models, while demonstrating more robustness to
illumination changes and noise. In other words, ¥ can be defined as ¥ = ¥, o ¥; such
that &, : RixwxexTs _, R2xnxTs maps a video subsequence to its corresponding 2D facial

landmark subsequence and ¥, : R2X"¥Ts 5y,
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5.3 Facial region-based ensembling for unsupervised deepfake

localization

As unsupervised anomaly detection for time-series approaches were not originally proposed
for deepfake temporal localization, they do not explicitly focus on artifact-prone facial regions.
Those regions, however, have been proven to be extremely effective in capturing deepfake
artifacts [207, 35] from different deepfake generation methods. Hence, as illustrated in Fig-
ure 5.2, we propose an ensembling strategy of different models that are focused on localized
regions. For that purpose, we train an ensemble of K autoencoders, each one trained on
a subset of landmarks belonging to a manually-selected facial region such as the mouth or
the nose. Then, a voting strategy is applied for building the final predictions.

More specifically, given an input video V; € R¥>*wxexTs processed as a 2D landmark
sequence denoted by X; = ¥ (V,) € R?*"*Ts we select K specific regions. We denote
the position of the set of the n; landmarks belonging to the region of index & € {1,..., K}
as XF =c R>*™xTs For each k € {1,..., K}, an autoencoder that aims at learning the
distribution of authentic region-specific landmark trajectories is considered. To this end,
given an encoder Ency(.) and a decoder Decy(.), for all windowed sequences X%, our model
is trained as,

z = Ency (X)), 52)

X% = Decy(z),
with z € RTs*? peing the d-dimensional latent representation. The learning is optimized
using the mean squared distance formulated as,

Ny

1 ~
> OIXF - X515, (5.3)
t=0

[:Tzﬁb

with IV, being the total batch samples and ||-||2 denoting the L2-norm. Similarly to [208, 209],
a statistical model termed Peak Over Threshold (PoT) [210] is used to automatically select
an adequate threshold \ based on the training sequences. Such an approach identifies a

suitable value at risk by fitting the distribution of the training data with a Generalized Pareto
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Distribution. Hence, given A and a window X%, the prediction I} associated with the frame ¢

is expressed as,
2ng, Ty

1 .
lf =g ZZHsz] - Xﬁi,j‘|§> A). (5.4)

2xXng X T
J

with 1(.) being an indicator function. Finally, given the K predictions I} from different au-

toencoders, the final prediction is built via the soft majority voting rule.

5.4 Experiments

5.4.1 Experimental settings
Dataset

We used the ForgeryNet dataset [26], a comprehensive benchmark for temporal forgery
localization. It is formed by 2,896,062 images and 221,247 partially manipulated videos.
Nevertheless, we select only the data that contain one person per video. In total, we consider
9866 real videos from the official training set and 1,516 videos from the validation set for
testing (as annotations for the test set are not yet available). Note that our test set comprises

six different forgery methods.

Baselines

In addition to the proposed ensembling approach, we evaluate seven recent anomaly detec-
tion methods for time-series. As discussed in [43], these approaches adopt different learning
paradigms. First, four reconstruction-based methods are considered, namely TranAD [209],
USAD [162], OmniAnomaly [208] and MAD-GAN. TranAD and USAD are respectively
based on transformer and AE architectures that are trained adversarially. OmniAnomaly
uses a stochastic Recurrent Neural Network (RNN) and a planar normalizing flow to gen-
erate reconstruction probabilities. Finally, MAD-GAN is a GAN-inspired approach using an
RNN as a base model for modeling spatio-temporal dependencies. Second, forecasting ap-

proaches are also tested for the use case of deepfake localization, including CAE-M [205],
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DAGMM [180] and GDN [160]. CAE-M feeds a reconstruction error and the learned feature
representations to an auto-regressive network that predicts future feature values. DAGMM
constrains the feature space to follow Gaussian mixture model distribution. Then, an RNN is
employed for predicting a future data point. Last but not least, GDN models the relationships
between data features as a graph coupled with an attention mechanism. For comparing with
supervised deepfake localization methods [26, 204, 203, 202], only MDS [202], a multimodal
technique with decoupled audio-video networks, is compatible with our setting. It maximizes
the similarity of real audio and real visual features and minimizes it otherwise. The other

baselines either require audiovisual input data or are not accessible.

Evaluation metrics

For evaluating the proposed ensembling strategy as well as state-of-the-art methods, we
report the following metrics: the standard Precision, Recall, and F1-score metrics. Note
that the results are reported with and without the Point Adjustment protocol, referred to as
(PA) and (non-PA), respectively. The PA protocol proposed in [161] is commonly used for
evaluating unsupervised anomaly detection in time-series [209, 162, 208]. It assumes that if
a single point within an anomalous segment is detected, then the entire segment is correctly
predicted as anomalous. Furthermore, we compute the t-Precision, the t-Recall, and the
t-F1-scores [144], which are metrics tailored for time-series by taking into account factors
like the location of detected anomalies and the cumulative overlap between predicted and
ground-truth segments. Finally, similar to deepfake detection methods, we also report the
Area Under the Curve (AUC) metric. In all our experiments, Bold and underline report the

best and second best results, respectively.

Implementation details

For each video, we detect and crop the faces. Then, we extract from each frame a total of 98
landmarks using SPIGA [211]. The landmark values are normalized between 0 and 1. The

average lengths of training and testing sequences are respectively equal to 160 and 119
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Method Paradigm AUC Precision Recall F1-score

‘% MDS [202] - 0.4943 0.4704 0.6931 0.5604
TranAD [209] Reconstruction 0.7177  0.8018  0.4878 0.6066
USAD [162] Reconstruction 0.7779 0.8330 0.5000 0.6046
DAGMM [180] Probabilistic ~ 0.7573  0.8314  0.5644 0.6724

S GDN[160] Forecasting  0.7837 0.8397 0.6187 0.7125

g MAD-GAN [164] Reconstruction 0.8497  0.7980 0.7859  0.7919
OmniAnomaly [208]  Probabilistc ~ 0.7068  0.7998  0.4642 0.5874
CAE-M [205] Reconstruction 0.9182  0.8385 0.9130 0.8742
Ours Reconstruction  0.9302 0.8090 0.9538 0.8754

Table 5.1: Results in terms of standard performance metrics on ForgeryNet under the PA
protocol.

frames. We use the same autoencoder architecture as proposed in CAE-M [205] from this
repository'. The models are trained 5 epochs, one sequence at a time on an NVIDIA RTX
A4000 GPU. We use the AdamW [212] optimizer with a learning rate of 10~2 and weight
decay of 107°.

5.4.2 Results
Performance using standard metrics

Table 5.1 and Table 5.2 report the obtained results in terms of Precision, Recall, and F1-
score with and without the PA protocol, respectively. In the former, it can be noted that
the proposed ensemble generally outperforms other approaches including the supervised
baseline. This confirms the adequacy of following a region-based strategy for spatially
modelling deepfake artifacts. It can also be seen that except CAE and MAD-GAN, most
approaches unsupervised achieve comparable results. Hence, it remains unclear whether
reconstruction-based on forecasting methods are more suitable for the complex scenario
of deepfake localization. This might also suggest that both reconstruction and forecasting
approaches are able to capture discrepancies. In the latter case, when the predictions are

not adjusted, it can be observed that all approaches suffer from an expected significant

'https://github.com/imperial-qore/TranAD/
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Method Paradigm AUC  Precision Recall F1-score

‘% MDS [202] - 0.4663  0.5104  0.3325  0.4027
TranAD [209] Reconstruction  0.4967 0.2757 0.0459 0.0787
USAD [162] Reconstruction  0.5080 0.3657 0.0647 0.1100
DAGMM [180] Probabilistc ~ 0.5015 0.3155 0.0527 0.0904

g’ GDN [160] Forecasting  0.5153 0.4097 0.0820 0.1367

g MAD-GAN [164] Reconstruction  0.5425 0.4629 0.1715 0.2503
OmniAnomaly [208]  Probabilistic ~ 0.4933 0.2417 0.0370 0.0641
CAE-M [205] Reconstruction 0.5314 0.4720 0.1222 0.1941
Ours Reconstruction  0.5491 0.4597 0.1916 0.2704

Table 5.2: Results in terms of standard performance metrics on ForgeryNet under the non-
PA protocol.

performance drop. Nevertheless, our ensemble still surpasses unsupervised state-of-the-
art methods, including CAE-M with an increase of 1.77% and 7.63% in terms of AUC and
F1-score, against 1.2% and 0.12% under the PA protocol, respectively. In comparison with
MDS, although they reach better precision, recall and F1-score under the non-PA protocol,
we achieve a higher AUC of 93.02% and 54.91% with the PA and non-PA protocols respec-
tively. This suggests that with our approach the forged and real frames are more separable
than with the supervised baseline. Additionally, contrary to MDS, our method is trained us-
ing a single modality and does not require annotated deepfake data. Notably, MDS presents
overfitting signs since it achieves significantly higher AUC under the in-dataset setting re-
ported in [202], with more than 90% against 46.63% under the cross-dataset setting (see

Table 5.2 ).

Performance using range-based metrics

Table 5.4 and Table 5.3 report the obtained results on ForgeryNet in terms of range-based
metrics including the t-Precision, the t-Recall, and the t-F1-score proposed in [144], under
the PA and the non-PA protocols, respectively. It can be observed from Table 5.3 that the
obtained results with range-based metrics are consistent with the standard metrics results

shown in Table 5.2 and Table 5.1. In fact, the proposed ensemble achieves the highest
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Method Paradigm t-Precision t-Recall t-Fi-score

‘% MDS [202] - 0.3039 0.3348 0.2376
TranAD [209] Reconstruction 0.3424 0.0552 0.0815
USAD [162] Reconstruction 0.4101 0.0763 0.1110

~ DAGMM [180] Probabilistic 0.3730 0.0639 0.0937

S GDN[160] Forecasting 0.4226 0.0933 0.1229

g MAD-GAN [164] Reconstruction 0.5066 0.2068 0.2239
OmniAnomaly [208]  Probabilistic 0.3130 0.0434 0.0657
CAE-M [205] Reconstruction 0.4683 0.1546 0.2041
Ours Reconstruction 0.4354 0.2362 0.2706

Table 5.3: Results in terms of range-based metrics (t-Precision, t-Recall and t-F1-score)
proposed in [144] on ForgeryNet under the non-PA protocol.

t-F1-score, followed by MAD-GAN and CAE-M. This demonstrates the robustness of our
strategy as compared to unsupervised state-of-the-art techniques, suggesting that it can
detect consecutive anomalies rather than random point anomalies. However, in Table 5.4,
we observe that our method is no longer the best performing. This can be explained by the
fact that the adjustment harms our performance, by boosting the t-Recall at the expense of
the t-Precision. Notably, PA does not always yield a reliable comparison. As shown in [147],
it can boost the performance a random detector making it comparable to a well-trained one.
Furthermore, the compatibility of this protocol with range-based metrics is debatable. In fact,
by treating an anomalous segment and a single point equally, the temporal information that
range-based metrics aim to capture, based on the predicted anomaly location and cumula-

tive overlap, is dissipated. Hence, we report only non-PA results in the following experiments.

Selection of facial regions

Since we propose a facial region-focused ensemble, we report in Table 5.5 the performance
of our AE trained on different facial regions. The best performance is achieved using the
jawline and eyebrows models. This can be explained by the fact that during the blending

stage, deepfake generation methods fail to perfectly align the foreground and background
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Method Paradigm t-Precision t-Recall t-Fi-score

MDS [202] - 0.2321 0.6521 0.3034
TranAD [209] Reconstruction 0.3357 0.4537 0.3653
USAD [162] Reconstruction 0.3926 0.5582 0.4281

~ DAGMM [180] Probabilistic 0.3564 0.5303 0.3959
S GDNJ160] Forecasting 0.3847 0.5852 0.4226
g MAD-GAN [164] Reconstruction 0.4214 0.7591 0.4842
OmniAnomaly [208]  Probabilistic 0.3039 0.4361 0.3364
CAE-M [205] Reconstruction 0.3465 0.8635 0.4635
Ours Reconstruction 0.2487 0.9369 0.3695

Table 5.4: Results using range-based metrics proposed in [144] on ForgeryNet under the
PA protocol.

Facial regions #lLandmarks AUC Precision Recall F1-score

Pupils (P) 2 0.5186 0.4109 0.0916 0.1498
Left Eye (LE) 8 0.5182 0.4064 0.0923 0.1505
Right Eye (RE) 8 0.5060 0.3409 0.0602 0.1023
Eyes (E) 16 0.5216 0.4265 0.0976 0.1588
Left Brow (LB) 9 0.5257 0.4451 0.1065 0.1718
Right Brow (RB) 9 0.5115 0.3733 0.0756 0.1258
Brows (B) 18 0.5346 0.4796 0.1257 0.1992
Nose (N) 9 0.5104 0.3603 0.0786 0.1290
Mouth (M) 20 0.5092 0.3587 0.0710 0.1185
Jawline (J) 33 0.5296 0.4672 0.1121 0.1808

Table 5.5: Results using individual facial regions on ForgeryNet in terms of standard perfor-
mance metrics under the non-PA protocol.

faces, resulting in noisy landmarks within those facial areas. It is also interesting to observe
the mismatch between the left and right facial areas. Specifically, a difference in terms F1-
score of 4.70% and 4.77% can be observed between the right and the left eyebrows, and

the left and right eye respectively.

Role of the ensembling

Table 5.6 gives the obtained results by considering different combinations of the three most

relevant regions. Mainly, we compare the simple concatenation of the region-based geomet-
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Brows Eyes Jawline Ensembled AUC Fi-score

X v v v 0.5388  0.2446

X v v X 0.5309 0.1869
v X v v 0.5491 0.2704
v X v X 0.5173 0.1497
v v X v 0.5392 0.2368
v v X X 0.5301 0.1854
v v v v 0.5513 0.2913
v v v X 0.5374 0.2088

Table 5.6: Feature combination versus ensembling strategy of the three most relevant facial
regions under the non-PA protocol. Experiments are performed on ForgeryNet.

ric features against the proposed ensemble strategy. It can be noted that the ensembling
consistently enhances the performance as compared to the direct concatenation of region-
based features within a single model. This might be explained by the fact that implicitly
learning region-based features with a single model is challenging. As discussed in [100],
capturing local artifacts using a CNNs is not straightforward as successive convolution lay-

ers tend to eliminate low-level features.

Model size

Finally, Table 5.7 reports the number of parameters of each method. It can be seen that our
method as well as CAE-M have a significantly lower number of parameters in comparison
to state-of-the-art techniques, including the supervised baseline MDS (with 7.229 against
122.777.092 parameters).

5.4.3 Discussion

Figure 5.3 illustrates a challenging case that may impact the performance of our method,
which originates from the use of geometric representations, specifically, the facial landmarks
under unconstrained conditions. In fact, faces captured in the wild may be subject to motion

blur, extreme poses, or occlusions, which leads to unreliable face and landmark detection,
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Method Paradigm #Parameters

ug:} MDS [202] - 122.777.092
TranAD [209] Reconstruction 3197004
USAD [162] Reconstruction 50.109
DAGMM [180] Probabilistic 50.016

S GDN[160] Forecasting 20.074

£ MAD-GAN [164] Reconstruction 48.613
OmniAnomaly [208]  Probabilistic 38.872
CAE-M [205] Reconstruction 7.229
Ours Reconstruction 7.229

Table 5.7: Number of model parameters

as seen in the blurry image of Figure 5.3. This case highlights the importance of robust face

and landmark detection in ensuring consistent deepfake detection performance.

Figure 5.3: Landmark detection fails on blurry images, despite the subject being real.

5.5 Conclusion

In this chapter, temporal deepfake localization has been formulated as an unsupervised
time-series anomaly detection problem. To assess the suitability of the proposed formu-
lation, state-of-the-art methods in the general field of time-series anomaly detection have
been benchmarked under the complex scenario of deepfake localization. Instead of using
raw videos, a geometric representation is used, namely, the trajectories of facial landmarks,
enabling the use of relatively lightweight architectures. Furthermore, to better model local-

ized artifacts, a facial region-based ensembling strategy has been introduced. The obtained
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results have not only demonstrated the relevance of the proposed formulation but have also
shown the superiority of the introduced ensembling method as compared to state-of-the-art

techniques. However, our approach might be sensitive to compression and noisy landmark

extraction.
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Chapter 6

When Unsupervised Domain
Adaptation meets One-class
Anomaly Detection: Addressing the
Two-fold Unsupervised Curse by

Leveraging Anomaly Scarcity

The previous chapters introduced frameworks for type-agnostic image and video deepfake
detection, formulated as unsupervised anomaly detection tasks. Despite their relevance,
these methods rely on deep learning models, which makes them sensitive to variation in
domain-specific factors unrelated to the forgery, such as subject identity or acquisition con-
ditions. This issue is often mitigated using unsupervised domain adaptation (UDA), which
motivates the investigations presented in this chapter, which in turn introduces the first fully
unsupervised domain adaptation framework for unsupervised anomaly detection (UAD) in
generic image classification.

Although UDA has been effective in binary and multi-class classification, extending it to

UAD remains a difficult task due to the lack of supervision in both the source and target
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domains. We formally define this challenge as the two-fold unsupervised curse. To address
it, we propose a novel approach that assumes anomalies are rare in the target domain. It
leverages clustering to identify the dominant cluster in the target feature space, assumed to
represent normal data, and aligns it with the source normal features. More specifically, it
fits a hypersphere around the source features while jointly aligning them with the dominant
target-domain feature cluster. Extensive experiments on standard UAD adaptation bench-
marks demonstrate the effectiveness of the proposed framework and validate the relevance
of this new paradigm. These findings lay the foundation for further investigation into domain-
invariant unsupervised anomaly detection techniques for improving the generalization of

deepfake detectors.

6.1 Introduction

Anomaly Detection (AD) can be seen as the identification of outliers deviating from a usual
pattern. The growing interest in AD in both academia and industry is mainly due to its rel-
evance in numerous practical scenarios, such as early disease detection in medical imag-
ing [213, 214] and industrial inspection [215, 43, 216, 217, 218]. By definition, anomalies
rarely occur. Annotating anomalous data is, therefore, often difficult and costly [219, 215,
220], hindering the collection of large-scale datasets. As a result, state-of-the-art methods
mostly tackle AD as an unsupervised problem [169, 63], where the objective is to learn only
from the normal class.

Despite achieving promising results, recent approaches in AD [70, 216, 221, 222, 219]
typically assume that training and inference data are drawn from the same distribution. This
assumption does not always hold in unconstrained scenarios, where a domain shift [34]
between training and testing data can naturally arise due to varying setups, such as different
lighting conditions and variations in object pose [220]. As a result, a model trained on a
dataset sampled from a given domain, usually called source dataset, will show degraded
performance when tested on a dataset from a different domain, generally termed target

dataset. For instance, an AD model for medical imaging trained on images acquired using a
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Source only Before Adaptation Direct Adaptation

(No adaptation) (Source-target alignment) (Alignment results)
(a) (b)
Labeled normal source data /77 Unlabeled normal/anomaly data
One-class learned decision boundary Domain alignment

Figure 6.1: lllustration of the two-fold unsupervised curse: (a) The decision boundary
learned from the source set without any adaptation does not allow generalization to the tar-
get domain. (b) Direct alignment of the unlabeled target with the one-class source features
leads to the confusion of normal and abnormal samples.

given Magnetic Resonance Imaging (MRI) device can fail to generalize to samples captured
with a different MRI system.

To reduce such a domain gap while avoiding costly annotation efforts, Unsupervised
Domain Adaptation (UDA) [223, 224] has proven to be an effective solution in binary and
multi-class classification tasks [225, 224]. UDA aims at learning domain-invariant features
by relying on labeled source and unlabeled target data at the same time. However, the
task of unsupervised domain adaptation for unsupervised anomaly detection (UAD) is
ill-posed as the goal is to: align the source and the target feature distributions using only
normal source data and unlabeled target data formed by both normal and anomalous sam-
ples (see Figure 6.2 (c)). Hence, a direct extension of standard UDA techniques developed
for binary/multi-class classification [224, 223] would not be applicable as these methods
usually aim at minimizing the distance between the estimated distributions from the entire
source and target training sets. Indeed, this would lead to the erroneous alignment of both
normal and anomalous target samples with normal source samples, as illustrated in Fig-
ure 6.1 (b). Given the learned decision boundary, this would lead to the confusion of normal

and abnormal samples from the target set. As it requires addressing two unsupervised tasks
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simultaneously, we refer to this described problem as the two-fold unsupervised curse.

To the best of our knowledge, no prior work has tried to address this two-fold unsuper-
vised challenge, i.e., , unsupervised domain adaptation for one-class image anomaly detec-
tion described in Figure 6.2 (c). Indeed, related works have mainly simplified the problem
by either (1) assuming the availability of labeled abnormal and normal source data, result-
ing in UDA for a binary classification setting [226] (see Figure 6.2 (a)), or (2) maintaining
the source one-class setup while accessing only few normal target data referred to as few-
shot supervised adaptation for unsupervised anomaly detection [226, 227, 228, 229, 230]
(see Figure 6.2 (b)). Nevertheless, annotating even a few samples might still be constraining,
particularly in the field of anomaly detection, where expert knowledge is often needed, such
as for tumor annotation in medical images [213, 214] or for industrial inspection [216, 221,
218]. Moreover, few-shot adaptation approaches are known to be prone to overfitting issues
since few shots cannot fully represent the normal target distribution [231]. This calls for a
fully unsupervised domain adaptation approach that leverages the diversity of the available
large, unlabeled target datasets.

In this chapter, we investigate whether the rare occurrence of anomalies could be ex-
ploited to address the two-fold unsupervised curse. We herein propose the first unsuper-
vised domain adaptation framework for unsupervised image anomaly detection. Our solu-
tion starts by identifying a dominant cluster assumed to be formed by normal target data
and then aligning it with normal source samples. Specifically, our method utilizes a train-
able ResNet-based [123] feature extractor to process both the source and target features.
A frozen CLIP visual encoder [232] is also used to generate corresponding target features,
which are then clustered using K-means to identify the samples of the dominant cluster.
These samples are mapped into the ResNet-based [123] feature space and aligned with the
source features. For the domain adaptation task, a contrastive strategy [232, 233] ensures
the similarity between the dominant target cluster and normal source samples, while for the
anomaly detection task, a Deep Support Vector Data Description (DSVDD) [70] objective
enforces feature compactness on the normal source data. Our framework is modular, allow-

ing for flexible component changes, and supports various adaptation strategies, including
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statistical and adversarial alignment. Experiments on standard UDA benchmarks [234, 235,
236, 237] for semantic anomaly detection [222] demonstrate its effectiveness. Our method
achieves state-of-the-art (SoA) performance, even against few-shot adaptation methods.
Contributions. The main contributions of this work can be summarized as follows: (1) The
two-fold unsupervised curse of UDA for one-class anomaly detection is formalized, and the
induced challenges are outlined. (2) A solution to the two-fold unsupervised problem is
proposed by leveraging an intrinsic property of anomalies, i.e., , their scarcity. (3) A UDA
method for one-class semantic anomaly detection is introduced, leveraging a Vision Lan-
guage Model, namely CLIP [232], for dominant cluster identification and alignment using
a contrastive strategy. (4) Extensive experiments and analysis are conducted on several
benchmarks [234, 235, 236, 237], demonstrating the relevance of the proposed framework
under both fully unsupervised and few-shot adaptation settings.

chapter organization. Section 6.2 reviews UAD works under domain shift. Section 6.3 de-
fines the two-fold unsupervised curse, while Section 6.4 and Section 6.5 detail one possible
solution for solving it. Section 6.6 and Section 6.7 cover the experiments and limitations of

this method. Section 6.8 concludes and outlines future work.

6.2 Related Works: Anomaly detection under domain shift

Unsupervised image anomaly detection is a well-established research area [169, 63, 219,
70, 216, 221, 222] where the aim is to learn a function ¢ using a single class corresponding
to normal data from the normal-only dataset D" = {(X;, v:); v; = 0}, to classify whether
an input image X is normal (y = 0) or not (y = 1). This is achieved by optimizing the
objective,

mCiH Ex; yi)~pn [£(C(Xi),y: = 0)], (6.1)

where L is a loss enforcing feature compactness as in DSVDD [70] or a reconstruction loss
typically used in autoencoders-based methods [216, 221]. Although achieving impressive
performance on standard benchmarks, the majority of AD methods [169, 63, 219, 70, 216,

221, 222] overlook the domain gap problem where training and testing data denoted as
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Source: normal + Source: normal Source: normal

anomalous Target: normal Target: normal +
Target: normal (few-shot) anomalous
(a) (b) (©
Labeled source Unlabeled source Normal data
Labeled target Unlabeled target Anomaly data
One-class source decision boundary Domain Alignment

Figure 6.2: Comparison of our setting with previous works: (a) supervised source
anomaly detection with supervised domain adaptation [226], (b) unsupervised one-class
source anomaly detection with few-shot domain adaptation [228, 230, 229], (¢) our consid-
ered setting: unsupervised one-class source anomaly detection with unsupervised domain
adaptation.

Ds and Dt respectively, follow different distributions due to uncontrolled variations in the
acquisition setting [220, 238]. This domain shift induces, therefore, a significant drop in per-
formance. To solve this issue, a handful of Domain Generalization (DG) methods for UAD
have been proposed recently [239, 238, 220]. Cohen, Kahana, and Hoshen [239] propose a
domain-disentanglement approach that removes predefined nuisance attributes (e.g., pose,
lighting) from the source features using contrastive loss, preventing these factors from inter-
fering with the anomaly task, improving the performance on unseen domains. However, with-
out an actual target set, this method requires defining and labeling nuisance factors within
the source dataset, which is challenging, as mentioned in their chapter. In [238], multiple
source domains are considered for learning domain-invariant features, thereby assuming the
availability of diverse large-scale datasets, which is not always guaranteed. To avoid relying
on multiple domains during training, a self-supervised strategy is adopted in [220]. Neverthe-
less, the success of this approach heavily depends on the similarity between the augmented

data and target samples. As a result, it necessitates tailoring augmentation techniques to
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unseen target datasets, if at all possible. Given its effectiveness, Domain Adaptation has
also been explored to address the domain shift problem in AD [227, 240, 226, 228, 229].
Those techniques usually adopt a few-shot adaptation paradigm by having access to a lim-
ited number of annotated target samples. While these methods offer innovative solutions
for aligning source and target normal data, they still rely on costly annotations [219] and
are exposed to overfitting risks [231]. This emphasizes the need for a fully unsupervised
domain adaptation for UAD. However, addressing this problem remains difficult due to the
unsupervised nature of both anomaly detection and domain adaptation, as detailed in the

next section.

6.3 The Two-fold Unsupervised Curse

Let us denote as D* = {(Xf,yf)}f\’;1 a labeled dataset from a given domain called source
formed by N, samples, where a sample X3 € R"**“*¢ and its associated label y§ € {0, 1},
Vi ={1,..., Ns}. Let D! be a second unlabeled dataset from a different domain, i.e., , target,
denoted as D' = {X!}*, and formed by N; samples where X! € R"*®x¢ i = {1, ..., N;}.
In the following, we assume that D! shares the same label space as D* and that there
exists a domain gap between D* and D!. The goal of Unsupervised Domain Adaptation
(UDA) for anomaly detection (whether formulated as a binary or one-class classification
problem), is to learn a model ¢ : R"*®x¢ — {0, 1} using both D* and D! that generalizes to
the target domain. In other words, it aims at learning a domain invariant feature extractor
f:Rixwxe ¥ suchthat ¢ = go f with g : X — {0, 1} being the classifier and X the feature
space given by f. This objective is achieved by minimizing the following adaptation upper
bound [241],

¢ <& +d(f(D*), f(DY) + A, (6.2)

where ¢! and ¢ are the expected classification errors on the target and source domains,
respectively; d(f(D*), f(D')) estimates the discrepancy between the feature distributions
from the two domains, and X accounts for the joint error on source and target of an ideal

detector.
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While strategies for minimizing this upper bound are feasible in the context of binary or
even multi-class classification [224, 225, 223], the non-availability of anomalous data dur-
ing training makes it difficult in the context of one-class classification, where d(f(D?), f(D'))
cannot be estimated. In fact, we can only use a subset D*" C D?® formed by normal data
for training. For that reason, existing works on domain adaptation for one-class anomaly
detection [227, 228, 230] revisit the formulation given in Eq (6.2) by slightly simplifying the
problem. They pose it as a few-shot domain adaptation setting (instead of a fully unsu-
pervised scenario). This means that they assume having access to a small labeled subset

Dt ¢ D! composed of normal samples only. As a result, they reformulate Eq (6.2) as,
€ < e d(f(DM), (D) + A, (6.3)

where " and ¢"" represent the source and target expected classification errors related to
the normal class, respectively, since ¢° is not measurable in this context.

Nevertheless, in a fully unsupervised setup, we have access to D! = Db¢ U DV where
D% represents the subset of D! formed by anomalies, without any prior information regard-
ing the labels. Hence, directly aligning the feature distributions estimated from the source
and target data by approximating d(f(D*"), f(D!)) would lead to obtaining a classification
boundary that is completely obsolete for target data, as shown in Figure 6.1 (b). We call this
problem the two-fold unsupervised curse as it is a consequence of a lack of supervision:
(1) in the task of anomaly detection, as it is formulated as a one-class problem where only
normal source data are used; and (2) in the task of domain adaptation which is fully unsu-
pervised where only an unlabeled target set is available. Given that the problem is ill-posed,

it remains a significant challenge that has not been addressed in the existing UAD literature.

6.4 Rare Anomalies to the Rescue

To tackle the two-fold unsupervised curse described in Section 6.3, we introduce a key

assumption and the main hypothesis it entails for enabling UDA for one-class anomaly de-
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tection.

Assumption (anomaly scarcity). For an unlabeled target dataset D' = D" U D"%, we
assume that the number of anomalous samples is significantly smaller than the number of

normal samples, i.e., |D%|< |D"|, with |-| refers to the cardinality.

Hypothesis (dominant cluster existence). Considering a target unlabeled anomaly de-
tection dataset D' = D" U D" under the anomaly scarcity assumption, where D" and
D4 are respectively the normal and abnormal subsets, we hypothesize that there exists
a feature extractor ¢ : RI'’wx¢ — X that generates from D' a compact dominant cluster

C € X predominated by normal samples.

The anomaly scarcity assumption often holds as it reflects most real-world scenarios where
anomalies are rare compared to normal instances. Our main objective is therefore to find a
feature extractor that verifies the dominant cluster existence hypothesis. We emphasize that
this hypothesis is not granted and remains challenging. Nevertheless, it is a core component
of the proposed method discussed in Section 6.5, as it enables the introduction of a novel
paradigm to approach UDA for one-class UAD. The paradigm consists of the following steps:
(1) finding a feature exactor « that can generate a compact dominant cluster of features
C corresponding to normal samples within an unlabeled target dataset D!, (2) identifying
the subset of samples D" corresponding to this cluster in the feature space of v, and (3)
aligning the identified subset D" with the source normal samples D*" in the feature space

of the source feature extractor f. Formally, we revisit Eq (6.3) as follows,
e < M 4 d(f(DM), f(DVY) 4 A (6.4)

where D' = {X! | ¢(X%) € C}. Note that ¢ can be obtained by focusing on learning
compact cross-domain features from which C can be identified through feature grouping and
selection techniques such as clustering or filtering. As such, the proposed paradigm for UDA
in one-class UAD lays the foundation for future research, where various technical choices

can be explored at each stage.
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Figure 6.3: Our Solution: The top branch uses a trainable feature extractor with a DSVDD
objective for one-class source data. The bottom branch clusters the features using a frozen
CLIP visual encoder to identify the dominant feature cluster and align it with normal source
features. ¢ are normals and % are anomalies .

6.5 Methodology

Building on the assumption and hypothesis formulated in Section 6.4, we present our method-
ology for introducing UDA to unsupervised visual semantic one-class anomaly detection, as
one possible solution for tackling the two-fold unsupervised curse under this setting. Note
that this choice was motivated by the available baselines [228, 230, 240, 226, 227].

Our approach has two branches. The upper branch depicts a trainable backbone f that
learns from both source and target domain data. The source features are optimized using a
Deep Support Vector Data Description (DSVDD) objective [70]. The lower branch focuses
on visual feature extraction from the unlabeled target domain, through a frozen CLIP visual
encoder [232], defined as the v feature extractor. Clustering is applied to these visual fea-
tures to estimate the dominant cluster C. Samples identified within C in the v visual encoder’s
representation space are then selected within the space of the feature extractor f and then

aligned with the normal source features.
Training. Specifically, given source and target image datasets D*" and D!, we apply
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DSVDD on the source data, enforcing feature compactness by minimizing the radius of a
hypersphere to encapsulate the normal source representations. This is done by solving the

following optimization problem,

2,VX$ € D3, (6.5)

N,
1 S
min £ 4p = min — X3 — pu®"

where p®™ is the mean of the source features. For clustering, we use a K-means algorithm.
Note that v can be f itself in a self-training fashion or any frozen visual encoder such as

CLIP [232] or DINO-v2 [242]. The dominant cluster is identified as,
C= argn(lzax|Ck| for k€ {1,...,K}, (6.6)
k

where |Cy| is the size of the k-th cluster Ci, and K is a hyperparameter defining the number
of expected components in the space of 1(D!). When clustering is applied to f(D!), the
selected features for alignment are D" = C. When clustering is applied to (D!), the

selected samples are:

D = {f(X})) | ¢(X}) € C} VX| € D' (6.7)

Alignment between source and target features is achieved using a contrastive strategy,

where UDA loss is computed as:

exp(L-SIM(£(X2),£ (X)) (6.8)

_ 1 N Dt . i L
Lupa= Zis1 2g=r gy Wit fij = —log Spti Lixg ot oxp(F-SIM(F(X5). /(X))

Ngx|Dtn|

where sim(-, -) denotes the cosine similarity, and 7 is the temperature.
Finally, the overall loss is:
L =M Lap+ X2 Lupa, (6.9)

where A1 and \, are hyperparameters for L p and Lypa.
Inference. Note that the visual encoder v is discarded at inference and only the feature

extractor f is used to determine whether the input data is anomalous by calculating whether
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it falls inside or outside the hypersphere estimated by the DSVDD model. The pseudo-code

of our methodology is given in Algorithm 2.

Algorithm 2: Training Procedure of UDA for UAD
Input : Source dataset D*", target dataset D!, cluster count K, epochs Nepochs>
iterations Niir, encoder f, frozen model
Output: Updated encoder 6¢

1 s_feats_center < mean(f(D*")) ; // Initialize DSVDD center
2 for epoch = 110 Ngpochs dO // Epoch loop
3 for iter = 1 to Ny, do // Iteration loop
4 s_feats,t_feats <+ f(s_batch,t_batch);

5 t_clip_feats < 1(t_batch);

6 t_clusters < KMeans(t_clip_feats, K);

7 indices <— dom_cluster_indices(t_clusters) ; // Eq (6,7)
8 t_dominant_feats < t_feats[indices];

9 t_non_dominant_feats < t_feats[—-indices];

10 pos_pairs < pair(s_feats,t_dominant_feats);

11 neg_pairs < pair(s_feats,t_non_dominant_feats);

12 Lypa « contrast(pos_pairs, neg_pairs) ; // Eqg (8)
13 Lyap ¢ DSVDD(s_feats, s_feats_center) ; // Eq (5)
14 L+ M Lyap + A2LupA ; // Eg (9)
15 L.backward();
16 0 < update(fy);

6.6 Experimental Results

6.6.1 Experimental Setting

This section describes the datasets, the baselines used and the implementation details of
our experiments. We report the performance using Area Under the ROC Curve (AUC) using

bold and underline for the best and second performances, respectively.

Datasets. We evaluate our approach on four standard UDA benchmark datasets, Office-
Home [234], Office31 [234],VisDA [236], and PACS [237]. For the AD task, we adopt a

standard one-vs-all protocol, since we focus specifically on the one-class setting, where a
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(a) OfficeHome [235]

(b) Office31 [234]

Normal Source only Few-shot adaptation Unsup. adapt. Normal Source only Few-shot adaptation Unsup. adapt.
class DSVDD class DSVDD -

BiOST TSA ILDR IRAD MsRA Ours Ours BiOST TSA ILDR IRAD MsRA Ours Ours

Clip Art — Product (C — P) Webcam — Amazon (W — A)
Bike 97.48 43.00 69.10 89.90 90.30 94.30 98.34 85.71 Backpack| 86.48 59.90 76.30 91.90 90.20 95.20 95.40 97.62
Calculat| — 83.47 69.00 72.20 84.90 82.20 98.70 97.76 97.70 Bookcasg  35.77 56.60 59.60 78.40 82.20 84.50 76.25 91.16
Drill 81.57 66.40 66.20 75.30 73.00 84.50 74.19 96.64 Bottle 70.00 60.80 66.80 74.50 72.10 74.00 72.48 77.32
Hammer  83.32 50.10 77.40 74.70 84.50 80.10 89.55 82.63 Chair 56.92 57.60 63.40 85.30 80.90 87.20 85.50 92.06
Kettle 87.74 63.00 63.10 77.50 75.80 85.50 94.08 89.16 Lamp 82.26 50.50 60.90 72.60 67.50 70.00 82.38 81.50
Knives 78.09 48.80 51.90 5520 63.90 64.40 79.25 76.63 Headpho|  88.91 57.60 75.90 88.90 81.60 92.20 92.53 95.06
Pan 74.00 57.70 63.70 72.20 76.00 80.50 93.08 91.07 Keyboard| ~ 79.83 58.20 69.90 88.30 93.20 95.40 95.40 93.36
Paperclip  53.04 27.40 74.70 78.70 67.40 79.70 71.18 67.98 Laptop 51.79 59.10 63.00 86.20 98.10 99.00 95.63 79.97
Scissors  86.45 56.40 64.70 79.50 68.90 85.50 87.71 88.43 Mouse 83.95 65.80 53.40 84.90 79.60 89.90 96.65 92.97
Soda 51.21 50.20 57.40 70.30 53.30 72.40 61.16 92.37 Pen 48.54 68.50 69.10 75.50 71.40 73.90 72.72 71.20
Avg. 77.64 53.20 66.04 75.82 73.53 82.56 84.63 86.83 Avg. 68.45 59.46 65.83 82.65 81.68 86.13 86.49 87.22
+std +14.04 |+11.65 +7.36 +8.81 +10.24 +9.33 +11.93 +8.66 +std +17.84 | +470 +6.86 +6.46 +9.37 +9.72 +9.44 +8.48
Product — Clip Art (P — C) Amazon — Webcam (A — W)

Bike 82.55 52.70 65.80 83.10 85.70 86.60 82.06 92.99 Backpackl  79.42 47.90 59.00 81.60 91.20 97.50 99.28 97.59
Calculat|  62.82 65.20 63.40 87.20 79.20 91.90 91.59 89.88 Bookcasd  60.68 49.90 72.30 88.90 89.40 93.10 85.23 94.29
Drill 71.81 47.00 57.10 63.90 71.20 73.50 70.58 77.54 Bottle 40.94 66.00 69.80 86.90 95.30 96.20 93.65 94.95
Hammen ~ 68.02 43.70 68.60 60.20 77.00 73.00 84.33 65.42 Chair 71.66 67.00 66.20 76.10 90.30 90.10 93.67 99.08
Kettle 71.85 47.70 61.50 68.80 70.00 73.40 75.38 78.19 Lamp 94.63 55.50 68.60 73.10 81.30 83.90 94.57 97.61
Knives 57.22 63.10 57.50 65.30 70.30 73.10 77.74 71.99 Headpho|  70.99 68.30 72.40 93.70 91.60 96.00 96.54 96.04
Pan 71.44 49.30 63.50 69.30 72.80 80.00 83.72 82.46 Keyboard| ~ 77.90 66.00 76.90 91.10 95.70 98.10 90.62 76.59
Paperclip  26.19 45.10 49.90 69.70 61.80 69.00 67.05 55.93 Laptop 91.61 62.10 72.20 85.70 97.10 98.20 94.32 97.67
Scissors| 63.42 38.60 70.10 66.20 70.00 72.30 86.35 77.63 Mouse 7217 69.10 69.40 82.20 85.40 86.50 96.35 81.41
Soda 66.82 56.90 55.80 60.20 63.29 59.40 69.08 62.63 Pen 4426 | 79.10 86.10 97.60 98.90 99.60 97.09 99.99
Avg. 64.21 50.93 61.32 69.39 7213 75.22 78.79 7547 Avg. 70.43 | 63.09 71.29 85.69 91.62 93.92 94.13 93.52
+std £14.22 | £8.11 594 +8.55 +6.76 862 +7.74 £11.13 +std +16.81 4+9.08 +6.66 +7.26 +5.15 +511 +3.72 +7.52

Table 6.1: Ten-run average and standard deviation of AUC (%) on the Office datasets [235,

234].
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single class is available as normal and the remaining are anomalies. We adopt the exper-
imental protocol of previous DA works [228, 230, 227] to allow for a fair comparison —that
is, we show results on ten classes from the ClipArt and Product domains for Office-Home,
ten classes from Webcam and Amazon for Office31, and twelve classes from the domains
of Computer Aided Designs (CAD) (synthetic objects) and real object photos of VisDA. On
PACS, like [220], we consider the Photo domain as source and the remaining three domains

as targets.

Baselines. As no other works on UDA for visual semantic UAD were previously introduced,
we compare our method with several few-shot adaptation SoA approaches. Specifically, we
consider BiOST [227] which is a one-shot approach, TSA [240], ILDR [226], IRAD [230],
and MsRA [228] that are few-shot adaptation methods. Furthermore, we introduce our few-
shot adaptation variant (Ours-Few-shot), which augments the target domain with normal
and pseudo-anomalous samples similar to [243]. This augmentation yields semantically
positive and negative pairs [243], useful for the contrastive alignment strategy described

in Section 6.5.

Implementation details. In all experiments, the source set has only one-class normal
data, while the unlabeled target set includes mostly normals with 10% randomly sampled
anomalies. Training uses SGD with a cosine-annealing scheduler, learning rate of 1073,
weight decay of 5 x 1077, batch size 256 and A\; and ), are set to 1. CLIP-ViT-B32 is
the frozen visual encoder v for feature clustering. Contrastive loss temperature 7 is 0.07.
To align with the setting of the baselines [228, 230, 227, 240], ResNet50 is the trainable
backbone f, initialized on ImageNet [244]. K-means clustering [245] uses 2, 10, and 5
components for Office, VisDA, and PACS, respectively. Like the baselines, the few-shot
adaptation experiments use 10 (Office, PACS) and 100 shots (VisDA) labeled as normal,

respectively.
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w/o adaptation w/ adaptation

Normal

Zero-shot Few-shot
class Source

Unsup.  Super-

finetuned . )
Rs0 CLIP | '"EUTS% BIOST MsRA Ours | ours | vised

CAD — Real

Aero. 41.05 74.97| 67.71 | 36.80 81.56 81.55 84.86 | 90.91
Bicycle | 67.35 90.28| 65.12 | 59.20 68.45 74.58| 81.45 | 81.73
Bus 28.58 42.27| 66.01 | 47.90 68.12 72.26| 82.17 | 72.16
Car 32.48 64.16| 78.65 | 53.80 69.44 82.78| 62.76 | 68.42
Horse | 68.81 75.48| 67.24 | 58.00 68.77 80.17| 83.52 | 88.70
Knife 67.78 95.28| 62.43 | 54.10 70.39 71.52| 68.82 | 78.90
Motor. | 60.07 82.25 69.45 | 58.10 65.64 80.16| 91.15 | 83.46
Person | 71.69 56.26| 42.11 58.70 59.18 51.24| 69.68 | 85.19
Plant 62.47 89.65| 57.77 | 42.10 65.81 71.46| 70.58 | 82.63
Skate. | 85.00 91.52| 60.70 | 41.60 61.30 63.17| 83.71 | 83.73
Train 30.13 57.74| 54.75 | 52.40 69.73 60.62| 69.98 | 85.11
Truck 26.05 45.08/ 62.08 | 43.10 59.05 73.67| 57.84 | 78.91

Avg. 53.45 72.08| 62.84 | 50.48 67.28 71.93| 75.54 | 81.65
+std +19.57+17.83 £8.556 | +7.55 +£5.79 £9.0§ +9.80 | +6.11

Table 6.2: AUC (%) on the target domain of our UDA anomaly detector on VisDA [236]
compared with various adaptation paradigms (from zero-shot, i.e., pretrained Visual en-
coders, few-shot, to supervised, i.e., Oracle).

6.6.2 Comparison against State-of-the-art.

Our method outperforms previous SoA on all benchmarks of our evaluation, as shown in Ta-
ble 6.1 and Table 6.2. More specifically, our fully unsupervised variant importantly improves
upon previous few-shot adaptation SoA on C — P and W — A of the Office-Home [235] and
Office31 [234] datasets. In addition, we observe an improvement of over 10% in the VisDA
dataset [236] with the fully unsupervised methodology over previous few-shot adaptation
approaches, despite being challenged by the two-fold unsupervised curse. These results
highlight the relevance of the proposed method, even in the presence of a large domain
gap, as in the case of synthetic CAD images and real-world photos.

In the P — C and A — W adaptation of the Office datasets, our few-shot adaptation
variant also registers SoA performance, closely followed by our model trained under the
fully unsupervised setting. These results highlight the flexibility of our framework, which can
leverage minimal labeled target data when available but remains highly effective in a fully
unsupervised setup.

Furthermore, we compare the performance of our model to two pretrained visual en-
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Figure 6.4: Assessing the validity of anomaly scarcity assumption.

coders [232], namely ResNet50 and CLIP-ViT-B32 in Table 6.2. While the CLIP-ViT-B32
architecture achieves an average AUC of 72.08%, our unsupervised method (75.54%),) still
outperforms it on the VisDA dataset [236]. In contrast, the ResNet50 shows a significantly
lower performance, with an average AUC of only 53.45%. These results demonstrate that
despite their strong performance, pretrained visual encoders are not specifically tailored for
the domain adaptation task; thus, they remain vulnerable to domain shift. Therefore, training
domain adaptation-specific models is still necessary to effectively bridge the gap between

two given domains.

6.6.3 Additional Experiments

Unless stated otherwise, all the following experiments are performed on VisDA [236].

Anomaly scarcity assumption. To evaluate the impact of anomaly scarcity, we vary the
anomaly ratio in the unlabeled target set from 10% to 90% and report our method’s perfor-
mance alongside clustering accuracy in Figure 6.4 for the Aeroplane class from VisDA. The
results indicate a strong correlation between AUC performance and clustering accuracy. As
the anomaly proportion increases, the AUC gradually degrades, with a drastic drop beyond
50%, where the dominant cluster assumption no longer holds. This is further evidenced by

a significant decrease in the clustering accuracy.
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Few-shot versus unsupervised adaptation paradigms. The results presented in Ta-
ble 6.2 compare pretrained visual encoders and source-only detectors with different adapta-
tion paradigms, i.e., few-shot, unsupervised, and supervised (oracle). The source-only fine-
tuned model improves slightly over the pretrained ResNet50 visual encoder [123] but still has
lower performance than the adaptation approaches, achieving an average AUC of 62.84%.
Among the few-shot methods, our few-shot adaptation variant outperforms BiOST [227] and
MsRA [228], achieving the highest AUC of 71.93%, which is comparable to the performance
of a pretrained CLIP-ViT-B32 visual encoder. However, our unsupervised adaptation method
surpasses all these models, with an average AUC of 75.54% indicating its ability to effectively
mitigate domain gaps without relying on labeled target data. This can be explained by the
fact that after clustering, our model has access to more representative normal target data
than few-shot models, hence better generalizing to the target normal class. On the other
hand, the Oracle, which has access to the target labels, achieves the highest performance
(81.65%). The small gap between our unsupervised method and the oracle demonstrates

the effectiveness of our approach even without supervision.

Ablation on the framework components. Ta- Table 6.3: Ablation on the compo-

ble 6.3 provides the results obtained when each com- nents of the proposed method.

ponent, namely the use of a adaptation loss, the ., agaptation

w/ Clustering | w/ CLIP ¢ | AUC (%)
dominant cluster identification through clustering, the x x x 62.84£8.55
use of an auxiliary visual encoder v(D") or the train- 7 X X | 64331642

" i v 4 X 68.47+8.30
able features f(D"). The results show that without , , s | 7554s080

adaptation, a model trained only on source data gen-

eralizes poorly to the target domain with only 62.84%. Direct adaptation of the source and
the unlabeled target without clustering leads to inconsistent results, indicating low general-
ization capabilities to the target domain. Introducing clustering results in a significant perfor-
mance boost. This can be seen when clustering is applied to the original representations of
the feature extractor, as the performance improves by +5.63%, highlighting the importance

of identifying the dominant cluster prior to alignment. Note that our method still outperforms
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the best few-shot adaptation baseline MsRA [228] (68.47% vs 67.28%) with just clustering
and alignment (i.e., w/o CLIP where ¢ is self-trained) across all the VisDA classes. Fi-
nally, the best results are achieved when all components are combined. This setup boosts
the average AUC to 75.54% on all VisDA classes. The substantial performance gains can
be attributed to CLIP’s rich visual features, which, together with clustering and alignment,
help achieve a more robust anomaly detector capable of better handling domain shift. This
remains valid when ¢ and ¢ are both CLIP (See Table 6.8 in the Appendix).

Clustering methods. We compare different clustering techniques on three UDA bench-
marks in Table 6.4. The first observation we make is that any type of clustering improves
the performance. K-means and GMM have comparable results, without one clearly and
consistently outperforming the other across datasets and adaptation directions. Meanshift
clustering offers a performance increase compared to source-only models. However, its per-
formance remains lower than that of the other clustering methods. In our experiments, we
chose K-means clustering as it achieves comparable performance to GMM while requiring
fewer parameters and simpler optimization. We further investigate the optimal number of
K-Means components, as shown in Figure 6.5. The figure indicates that using 8 to 10 com-
ponents yields the highest performance, with an AUC of approximately 75-76%. Decreasing
the number of components would gradually degrade the performance. This suggests that
a lower number of clusters may not capture the characteristics of the majority class, lead-
ing to inaccurate clustering and thus negatively impacting the generalization of the anomaly
detection model across domains.

Similar to [246, 239], it uses a kNN density estimator to detect anomalies. Our results
suggest that both methods benefit from the adaptation, as a consistent average improvement

of +12.7% and +8.23% is seen across all the twelve classes of VisDA.

Beyond DSVDD by using other AD objectives. To assess whether our alignment ap-
proach applies to other unsupervised AD methods, we replace DSVDD with Mean-shifted

Contrastive loss (MSC) [247] in Table 6.7. MSC adapts contrastive loss to the one-class
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Figure 6.5: K-Means[245] components variation on VisDA.

setting by shifting augmented representations of the normal samples toward the mean of
pretrained normal features, preserving their compactness. It can be seen that our unsuper-

vised adaptation improves the performance on average by +8.23 on the VisDA dataset.

Alignment strategies. By comparing several alignment strategies in Table 6.5, we ob-
serve that any alignment strategy, in general, improves the performance consistently for all
adaptation benchmarks. Contrastive alignment consistently outperforms other adaptation

losses, including statistical (MMD) [77] and adversarial (GRL) [248] strategies.

Dataset w/o Adapt. w/ Adaptation
(Src Only) .
KMeans [245] GMM [249] MeanShift [250] kNN [249]

VisDA  62.844+08.55 75.54+10.23 72.24+08.81 74.14+07.44  71.65+06.68
A—-W 72.57+18.69 94.82+07.52 96.45+05.43 87.32£12.53  82.73+10.96
W—A  67.70+18.32 87.72+12.63 87.00+13.60  86.68+08.53  83.63+06.04
C—P 77.31£15.13 90.54+14.06 90.85+11.18  85.95+10.94  78.67+£15.19
P—C 63.88+£15.60 70.92+11.36 76.15+£13.32  73.50+13.49  71.38+11.71

Table 6.4: Clustering ablation. GMM and K-means use 10 components for VisDA and 2 for
other datasets. k = 2 for VisDA and k = 1 for the remaining datasets.

Comparison against domain generalization methods. Table 6.6 compares the results
of GNL [220] with DA methods on the PACS dataset [237], with Photo as the source and

Art, Cartoon, and Sketch as the target domains. It can be seen that UDA consistently
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Dataset w/o Adapt. w/ Adaptation
|

(SrcOnly) " GRL[248] MMD[77] Contrastive [233]
VisDA  62.84:+0855 71.84+£10.89 73.12410.36  75.54:9.80
AW 725741869 90.43+10.68 86.86:+12.97  94.82:07.52
WA  67.70+18.32 83.49+11.04 83.92409.90  87.72+12.63
CoP  77.31£1513 83.40+12.35 82.10+12.16  90.54+14.06
P.C  63.88+15.60 66.78+15.02 67.00£14.41  70.92+11.35

Table 6.5: Performance in terms of AUC (%) using different domain adaptation losses on
VisDA, Office31 and OfficeHome.

outperforms GNL [220], particularly on Cartoon and Sketch domains. This suggests that,
unlike DG methods, which aim to generalize to any unseen domain solely by training on the
source domain, UDA can be more effective for semantic UAD since it exposes the model to

the target domain during training, even if it is unlabeled.

Adapt. Source domain: Photo —

tvpe Method Avg. + std

yp Art Cartoon Sketch
None Source only 64.06 64.08 57.35 61.83+3.17
DG GNL [220] 65.62 67.96 62.39 65.32+2.28
DA MsRA [228] (Few-shot) 71.43  69.89  61.87 67.73+4.19
Qurs (Unsup.) 67.20 75.35 74.04 72.20+3.57

Table 6.6: AUC (%) of Domain Generalization (DG) for anomaly detection, trained ONLY
on the source domain Photo (Ph.) and tested on unseen domains. DA means Domain
Adaptation.

f: ResNet50 + ¢: CLIP-ViT-B32

DSVDD [70] MSC [247]

ZS Src UDA ZS Src  UDA
53.45 62.84 7554 7439 72.87 81.10
(+12.71) (+8.231)

Table 6.7: Our UDA approach on two anomaly detection methods [70, 247]. ZS and Src
mean Zero-shot and Source only.
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Feature extractor. Table 6.8 compares several feature extractor backbones, showcasing
the effectiveness of the proposed UDA method against source-only and the robustness of
the methodology to the backbone used. Specifically, MobileNet-V2 [251], as the smallest
architecture, shows the weakest improvement, while ResNet18 [123] and ResNet50 [123]
show better performance. Transformer-based models like CLIP-ViT-B32 [232] show an even
higher performance. These results highlight the superiority of transformer models over CNN-
based architectures for domain adaptation tasks on challenging datasets like VisDA [236],

which comes at the cost of having a larger architecture.

Our framework backbone composition: v: CLIP-ViT-B32 (fixed)

Adapation setting ¢: MobileNet-V2 [251]  ¢: ResNet18 [123] ¢: Resnet50 [123] ¢: CLIP-ViT-B32 [232]

Source only (DSVDD) 55.63+06.06 56.80+10.90 62.83+8.60 81.89+17.38
Ours (UDA) 70.36+10.00 72.47+11.04 75.54+11.57 85.92+13.12

Table 6.8: AUC performance on VisDA [236] of different trainable feature extractors using
our method, in comparison against the source-only-trained model.

Pretrained visual encoders. As we are considering an artificial anomaly detection set-
ting, i.e., in the training datasets, only one object class is considered as "normal" while all
other classes are treated as "anomalies", our approach requires visual encoders that can
effectively capture global object-level features. Hence, in Figure 6.6b, we compare our un-
supervised model using various visual encoders against our source-only model, few-shot
baselines (BiOST, MsRA), and an oracle (supervised) model. Among the visual encoders,
CLIP [232] and CLIPSeg [252] exhibit the highest consistency and overall performance, with
medians ranging between 75% and 80% AUC. SigLIP [253] achieves comparable perfor-
mance, though with slightly more variability. In contrast, Dino-v2 [242] shows noticeably
lower performance, suggesting that its representations may be less effective at capturing
global object-level features. As expected, the source-only model performs the worst, while
the Oracle model reaches the highest and most stable performance. Compared to the base-
lines, our model with different visual encoders significantly outperforms the few-shot base-

lines, which have much lower performance.
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s Few-shot Unsupervised (Ours) ¢ : R50 (fixed)
rc

AUC
Only . w/o w/ w/ w/ w/
BIOST MsRA /b CLIP sSigliP DINO-v2 CLIPSeg

Avg | 62.84 50.48 67.28 68.47 75.54 72.64 65.71 76.85
+std | +855 4755 +5.79 +8.30 +9.80 +10.05 +13.71 +8.92

Table 6.9: VisDA performance with different visual encoders. w/o CLIP means the ¢ is self-
trained.

Performance using additional metrics. Table 6.10 presents the anomaly detection per-
formance on the VisDA [236] dataset using additional metrics, including Accuracy (Acc.),
Balanced Accuracy (B.acc.), Precision (P.), and Recall (R.). The results shown for our few-
shot and unsupervised variants align with those presented in Table 6.2, particularly in terms
of B.acc. and R.. Our few-shot variant outperforms MsRA [228], demonstrating superior
anomaly detection performance. This improvement may be attributed to using a contrastive
alignment strategy, which explicitly maximizes the similarity between normal data in both
source and target domains, as opposed to the implicit adversarial-based alignment used in
MsRA [228]. The complexity of the VisDA [236] dataset, with its diverse backgrounds and
resolutions in the target domain (Real), especially in comparison with other benchmarks,
may also be an impacting factor in this performance drop. In contrast, our unsupervised
approach benefits from the highest performance, underscoring the benefit of exposing the
model to larger amounts of unlabeled data, which may result in better adaptation in complex

datasets.

Sensitivity analysis. In Figure 6.6a, we investigate the impact of the two hyper-parameters
A1 and Aq controlling the one-class optimization and domain alignment, respectively. Specif-
ically, we set \; to 1 and vary \, to assess the impact of the adaptation loss. We find that the
best performance is reached when both \; and )\, are set to 1, indicating that the domain

alignment objective is as important as the one-class classification during model optimization.

Qualitative Results: Histograms of anomaly scores. The anomaly score distributions of
the four methods (Source-Only, MsRA, Ours-Few-shot, and Ours) tested on all VisDA [236]

125



Table 6.10: Anomaly detection performance on the VisDA [236] dataset for the setting f:R50
+ 1:CLIP-ViT-B32 using additional metrics, such as Accuracy (Acc.), Balanced Accuracy
(B.acc.), Precision (P), and Recall (R).

Normal Source only (DSVDD) ‘ Few-shot (MsRA) ‘ Few-shot (Ours) ‘ tjonlsj:f:)
class
Acc. B.acc. P R ‘ Acc. B.acc. P R ‘ Acc. B.acc. P R ‘ Acc. B.acc. P R
CAD — Real

Aeroplane 65.54 63.62 9566 65.86|62.17 66.09 96.44 61.51 |77.28 74.46 97.21 77.75|83.42 77.35 97.35 84.44
Bicycle 56.40 61.36 96.42 b55.74 | 4520 55.61 95.54 43.81 | 66.33 67.72 97.17 66.15 | 7249 73.61 97.87 72.34
Bus 53.91 62.83 9490 51.78|56.11 59.71 93.54 5526 | 59.82 67.26 95.86 58.04 | 75.59 75.30 96.59 75.66
Car 69.95 71.61 9594 69.52 | 33.57 51.14 90.65 29.14 | 79.50 75.35 96.02 80.55 | 73.59 60.21 9241 76.96
Horse 62.21 63.07 94.74 62.03 | 34.32 53.02 92.87 30.36 | 73.62 73.14 96.55 73.73 | 74.17 75.30 97.06 73.93
Knife 54.61 59.84 95.06 53.68 | 53.42 64.22 96.46 51.49 | 70.06 6596 95.69 70.79 | 56.87 63.97 96.08 55.60
Motorcycle 63.33 64.39 93.61 63.02 | 47.28 56.13 91.64 44.73 | 69.50 72.70 9592 68.58 | 79.56 77.61 96.24 80.13
Person 13.57 50.33 91.14 03.68 | 53.94 57.62 92.21 52.94 | 36.46 51.49 90.28 32.42 | 61.90 64.56 94.15 61.19
Plant 55.61 56.08 95.31 55.54 | 66.65 52.51 94.49 68.55 | 69.84 66.08 96.70 70.34 | 58.65 65.43 97.15 57.73
Skateboard 60.32 59.01 97.29 60.43 | 27.72 54.41 9747 2552 |64.21 59.97 97.33 64.56 | 73.23 76.46 98.92 72.97
Train 47.36 53.90 91.53 45.71 | 48.84 53.48 91.30 47.67 | 59.23 57.60 92.33 59.64 | 67.33 64.70 94.04 67.99
Truck 59.72 58.87 93.23 59.92 | 71.18 5256 91.23 7546 | 66.94 67.28 9525 66.86 | 74.84 58.05 91.82 79.07
Avg. 55.28 60.41 9457 5391 |50.03 56.38 93.65 48.87 | 66.07 66.58 95.53 65.78 | 70.97 69.38 95.81 71.50
+std 1441 0550 01.87 17.10 | 1342 0453 0476 1549 | 11.17 07.23 02.12 1240 | 08.18 07.21 0221 9.13

classes are given in Figure 6.7. Overall, our few-shot and unsupervised methods better
discriminate normal and anomalous target-domain samples compared to the Source-Only
model. The few-shot variant shows a flatter anomaly distribution, likely due to the use of
jigsaw-generated pseudo-anomalies, which closely resemble the original target normals.
This may have led the model to focus on local changes in actual anomalies, resulting in
a broader range of anomaly scores and less emphasis on global features. In contrast, our
unsupervised method exhibits a more peaked anomaly distribution. However, the incomplete
separation of normal and anomalous scores suggests clustering limitations and highlights

the need for filtering or noise removal mechanisms to better identify normal target samples.

6.7 Limitations and Future Work

Our method, presented in Section 6.5, is one possible solution for addressing the problem
of UDA for UAD. However, it is worth noting that it was tested in the context of semantic
anomaly detection [222], adopting a one-vs-all protocol, to facilitate the comparison with the

closest baselines, namely [228, 230]. These methods typically require the use of global
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Figure 6.6: (a) Sensitivity analysis. (b) AUC comparison for different visual encoders.

features in contrast to standard anomaly detection, where fine-grained representations are
usually targeted. For that reason, our method focuses mostly on global representations,
while local features would be conceptually more suitable for fine-grained anomaly detection.
In future works, we aim to extend our study to fine-grained anomaly detection by exploiting

more relevant local representations, such as industrial and medical UAD.

6.8 Conclusion

This work is the first to address unsupervised domain adaptation (UDA) for one-class-based
unsupervised anomaly detection (UAD), subject to what we refer to as the two-fold unsuper-
vised curse. To address this ill-posed problem, an inherent property of anomalies, namely,
their scarcity, is leveraged. This characteristic allows utilizing clustering, —as one possible
solution— for identifying a dominant cluster within the unlabeled target set. Assuming this
cluster to be predominantly composed of normal data, a contrastive alignment strategy is
then used to align its features with the normal source representations. Extensive exper-

iments on standard UDA benchmarks demonstrate that the proposed method effectively
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mitigates the domain gap and enhances anomaly detection performance across different
domains, outperforming other supervised adaptation approaches without requiring target
annotations. Finding the optimal feature extractor remains an open research question. In fu-
ture work, we intend to further explore compact representations across domains to improve

the proposed domain adaptation framework.
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Chapter 7

Conclusion

This final chapter provides a summary of the main findings from our research contributions
in the field of deepfake detection using unsupervised anomaly detection and discusses the

future directions of this thesis work.

7.1 Summary

In this thesis, we posited that the lack of generalization observed in current deepfake detec-
tors can be attributed to both forgery-related and forgery-unrelated factors. This guided our
investigation towards addressing generalization at two distinct levels: generalization across
different deepfake types, as well as generalization across domains.

In our first contribution, UNTAG, presented in Chapter 3, we addressed the problem of
forgery-related generalization for image-level deepfake detection. This was done by refor-
mulating the task as an unsupervised anomaly detection (UAD) problem. This formulation
enabled training only on genuine faces, which helped treat any deviations from their learned
distribution as a deepfake, regardless of their type. This resulted in a type-agnostic deepfake
detector using a single, unified solution. However, although this setting eliminated the need
for annotated fake training data, it remained challenging due to the absence of anomaly la-
bels and the lack of prior knowledge of the artifact types. This motivated the introduction of

a self-supervision mechanism that enhances the detector’s sensitivity to artifact-prone re-
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gions. Experimental results demonstrated that our UAD-based formulation is capable of de-
tecting various deepfake types, including unseen and stacked forgeries, while being trained
only on real faces.

While UNTAG successfully addressed generalization across different deepfake types, it
only considered image-level detection, which makes it inapplicable to deepfake videos. In-
deed, in real-world scenarios, deepfakes can occur as videos that are fully or partially manip-
ulated in specific frames. This motivated the extension of the UAD formulation to temporal
data for ensuring type-agnostic detection for videos. This led to a new task in deepfake
detection, referred to as unsupervised temporal deepfake localization. This task naturally
aligns with the goals of unsupervised time-series anomaly detection (TSAD), particularly
since videos can be interpreted as pixel trajectories evolving over time. Nevertheless, these
techniques have never been applied to deepfake detection, which motivated our second con-
tribution, presented in Chapter 4, which consists of an evaluation of existing state-of-the-art
multivariate unsupervised TSAD approaches. The aim of this study is to understand the un-
derlying paradigms, strengths, and limitations of these techniques. This assessment helped
determine their maturity for real-world applications such as deepfake temporal localization.

Our third contribution, presented in Chapter 5, built on the evaluation study of Chap-
ter 4. It introduced the first fully unsupervised method for localizing manipulated frames,
thereby accommodating more realistic scenarios where deepfakes occur as videos that can
be partially manipulated or fully manipulated. This approach is also based on the unsu-
pervised anomaly detection (UAD) formulation, where geometric representations (i.e., facial
landmarks) are used as time-series input. Since this unsupervised setting is challenging due
to the lack of supervision and prior knowledge on artifact types across deepfakes, we intro-
duced a facial-region-focused ensembling strategy that helped focusing on these regions
and enhanced detection.

Despite improving the forgery-related generalization capabilities of deepfake detectors
for both the image and video data through the UDA formulation, the learned distribution of
genuine faces remains sensitive to domain shift. This issue can be attributed to the one-

class model’s reliance on deep learning architectures. For instance, when this detector is
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evaluated on new genuine data from another domain where environmental conditions differ
from those seen during training, it may incorrectly classify them as deepfakes. To address
this challenge without relying on annotation efforts, we considered integrating unsupervised
domain adaptation (UDA) into a generic framework of unsupervised image-based anomaly
detection. Despite UDA being well-established in binary and multi-class classification, its
integration into unsupervised anomaly detectors is challenging, resulting in what we refer
to as the “two-fold unsupervised curse”; a byproduct of the absence of labels in both the
source and target domain data. This two-fold unsupervised challenge motivated our fourth
contribution presented in Chapter 6.

Finally, our fifth contribution is under preparation and extends our work on UDA for UAD
to fine-grained unsupervised image-based anomaly detection. In our earlier work, the UDA
benchmarks were object detection datasets. To apply a one-class protocol in this context,
we defined one object class as normal and treated all other object classes as anomalies.
Despite this protocol being common in semantic anomaly detection, it remains unrealistic,
as deepfakes often depict faces with fine-grained and localized inconsistencies. Therefore,
in this work, we considered a more challenging setup, aiming to detect instances where
anomalies occur locally in images depicting the same object as the one seen during training.
Experiments on fine-grained anomaly detection datasets, such as industrial benchmarks [64,
254], have demonstrated promising results, which opens the door for further investigations

in the context of unsupervised type-agnostic facial forgery detection.

7.2 Future work

While this thesis has addressed key challenges in deepfake detection, namely their gener-
alization issues, several important research directions remain open for further exploration.
These include domain-adaptive unsupervised deepfake detection, explainability, and content-
agnostic generalizable detection methods. Investigating these directions would, therefore,
improve the robustness, interpretability, and generalization of current deepfake detectors,

thereby moving closer to achieving detection systems appropriate for real-world settings.
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We outline these prospective avenues below:

7.2.1 Domain-adaptive unsupervised deepfake detection

Although our investigation of UDA for UAD showed promising results on common UDA
benchmarks, its direct application to facial deepfakes remains an open challenge. Several
factors contribute to this challenge:

First, the lack of fine-grained UAD with domain shift datasets led us to generate synthetic
shifts for fine-grained AD industrial benchmarks. Although we achieved competitive results
on these industrial datasets, the simulated domain shifts may not accurately reflect real-
world shifts, making it difficult to draw conclusions about the transferability of our proposed
setting to real-world tasks, such as deepfake detection. In fact, deepfakes are highly diverse
and complex, with subtle artifacts, which makes the domain adaptation less straightforward.
This highlights the need for collecting both generic and facial images UAD benchmarks that
incorporate real-world domain shifts.

Second, despite the UAD formulation enabling type-agnostic deepfake detection, it re-
mains challenging to learn discriminative representations from genuine data without access
to labeled anomalies. For instance, our investigations from Chapters 3 and 5 revealed that
one-class classification is insufficient in the absence of adequate mechanisms to guide the
one-class detector towards artifact-prone regions. This emphasizes the need for more com-
prehensive representation learning from the normal data, which can be achieved by explicitly
modeling multiple sources of prior knowledge to express the notion of normality across var-
ious levels of abstraction. More specifically, hierarchical representations can be constructed
by integrating low-level cues, such as texture consistency, frequency-domain residuals, and
local noise patterns around facial regions, with mid- to high-level semantic information, in-
cluding facial geometry, temporal dynamics, or identity features. This multi-level feature
encoding would express a more robust notion of normality, where deviations introduced by
deepfakes could be identified as outliers, at any level of abstraction, without requiring explicit

anomaly labels.
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7.2.2 Vision-language models for explainable deepfake detection

Most deepfake detectors rely on binary classification and often lack interpretability regarding
how their predictions are made. Recent advances in Vision-Language Models (VLMs) have
enabled the development of detectors capable of generating human-understandable textual
explanations that highlight inconsistencies associated with deepfakes. However, most cur-
rent research [255, 256, 257] remains in the early stages, primarily exploring the zero-shot
capabilities of VLMs for both detection and explanation. This opens up significant opportuni-
ties for fine-tuning and for investigating which artifacts are truly detectable by these models,

as well as how VLMs can model and explain the concept of normality.

7.2.3 Extension to content-agnostic forgery detection

A natural and plausible extension to the works of this thesis involves generalization beyond
facial content. This is particularly important, as digital forgeries are not limited to faces.
Generic forgeries often include (1) synthetic images targeting various fields such as science,
medicine, geography, or history (e.g., fake satellite [258] or medical [259] images), and (2)
fully synthetic videos, such as body reenactments [260] where individuals appear to perform
actions they never did. Similar to facial deepfakes, these forgeries pose serious risks of
misinformation and misuse, such as manipulating public opinion or distorting historical facts.
Detecting such content is therefore essential not only to mitigate these threats but also
to enable applications such as copyright protection, where verifying content authenticity is
required.

Nevertheless, adapting the methods proposed in this thesis to this broader setting intro-
duces new challenges, primarily due to the lack of consistent spatial or semantic structures
in general forged content. Unlike faces, generic manipulated scenes do not have predefined
regions that can serve as priors to guide detection. Artifacts may appear anywhere in the
image and affect any object, increasing the complexity of the task. One way to address
this is by learning hierarchical representations that capture a robust notion of normality at

multiple levels of abstraction as described earlier.
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However, since normal data in this context does not belong to a single class, as is
the case with faces, this would require extending anomaly detection beyond the traditional
one-class setting to an unsupervised multiclass anomaly detection formulation, as explored
in [261, 262].
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