Compound identification; Data processing; Docker; High resolution mass spectrometry; MetFrag; Non-targeted analysis; Shiny; Spectral data analysis; Visualisation; Computer Science Applications; Physical and Theoretical Chemistry; Computer Graphics and Computer-Aided Design; Library and Information Sciences
Abstract :
[en] Shinyscreen is an R package and Shiny-based web application designed for the exploration, visualization, and quality assessment of raw data from high resolution mass spectrometry instruments. Its versatile list-based approach supports the curation of data starting from either known or "suspected" compounds (compound list-based screening) or detected masses (mass list-based screening), making it adaptable to diverse analytical needs (target, suspect or non-target screening). Shinyscreen can be operated in multiple modes, including as an R package, an interactive command-line tool, a self-documented web GUI, or a network-deployable service. Shinyscreen has been applied in environmental research, database enrichment, and educational initiatives, showcasing its broad utility. Shinyscreen is available in GitLab ( https://gitlab.com/uniluxembourg/lcsb/eci/shinyscreen ) under the Apache License 2.0. The repository contains detailed instructions for deployment and use. Additionally, a pre-configured Docker image, designed for seamless installation and operation is available, with instructions also provided in the main repository. Scientific Contribution: Shinyscreen is a fully open source prescreening application to assist analysts in the high throughput quality control of the thousands of peaks detected in high resolution mass spectrometry experiments. As a vendor-independent, cross operating system application it covers an important niche in open mass spectrometry workflows. Shinyscreen supports quality control of data for further identification or upload of spectra to public data resources, as well as teaching efforts to educate students on the importance of data quality control and rigorous identification methods.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
KONDIC, Todor ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI
ELAPAVALORE, Anjana ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
KRIER, Jessy ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI
LAI, Adelene ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI ; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany
Taha, Hiba Mohammed ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
NARAYANAN, Mira ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI
Fonds National de la Recherche Luxembourg The European Union Research and Innovation program Horizon Europe for PARC
Funding text :
TK, AE, AL, HMT and ELS acknowledge funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. AE and HMT also acknowledge funding support from the European Union Research and Innovation program Horizon Europe for PARC, Grant No. 101057014.
A.K. Kuril Exploring the versatility of mass spectrometry: applications across diverse scientific disciplines Eur J Mass Spectrom 30 209 220 1:CAS:528:DC%2BB2cXisVCjtL%2FJ 10.1177/14690667241278110 [cito:citesAsAuthority]
J. Hollender E.L. Schymanski L. Ahrens et al. NORMAN guidance on suspect and non-target screening in environmental monitoring Environ Sci Eur 35 75 10.1186/s12302-023-00779-4 [cito:citesAsAuthority]
A. Elapavalore T. Kondić R.R. Singh et al. Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures Environ Sci Process Impacts 25 1788 1801 1:CAS:528:DC%2BB3sXhsVequrfO 10.1039/D3EM00181D 37431591 10648001 [cito:citesAsAuthority]
R. Matthiesen J. Bunkenborg R. Matthiesen Introduction to mass spectrometry-based proteomics Mass spectrometry data analysis in proteomics New York, NY Springer 1 58 10.1007/978-1-4939-9744-2 [cito:citesAsAuthority]
Thermo Scientific (2024) Xcalibur™ Software. https://www.thermofisher.com/order/catalog/product/OPTON-30967. Accessed 2 Dec 2024
P. Wenig J. Odermatt OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data BMC Bioinformatics 11 405 1:CAS:528:DC%2BC3cXpvFChtbc%3D 10.1186/1471-2105-11-405 20673335 2920884 [cito:citesAsAuthority]
M. Sturm A. Bertsch C. Gröpl et al. OpenMS—an open-source software framework for mass spectrometry BMC Bioinformatics 9 163 1:CAS:528:DC%2BD1cXlt1Omt70%3D 10.1186/1471-2105-9-163 18366760 2311306 [cito:citesAsAuthority]
D. Petras V.V. Phelan D. Acharya et al. GNPS dashboard: collaborative exploration of mass spectrometry data in the web browser Nat Methods 19 134 136 1:CAS:528:DC%2BB3MXis1OisrbK 10.1038/s41592-021-01339-5 34862502 8831450 [cito:citesAsAuthority]
Fischer B, Neumann S, Gatto L, Kou Q (2017) mzR: parser for netCDF, mzXML, mzData and mzML and mzIdentML files (mass spectrometry data). http://bioconductor.org/packages/mzR/. Accessed 2 Dec 2024 [cito:citesAsAuthority]
L. Gatto S. Gibb J. Rainer MSnbase, efficient and elegant R-based processing and visualization of raw mass spectrometry data J Proteome Res 20 1063 1069 1:CAS:528:DC%2BB3cXhsl2jt7bP 10.1021/acs.jproteome.0c00313 32902283 [cito:citesAsAuthority]
Laurent Gatto JR (2017) MSnbase. https://bioconductor.org/packages/MSnbase. Accessed 24 May 2025 [cito:citesAsAuthority]
Colin A. Smith RTC (2024) Xcms: LC-MS and GC-MS Data Analysis. https://bioconductor.org/packages/xcms. Accessed 6 Dec 2024 [cito:citesAsAuthority]
Gatto L, Gibb S, Rainer J (2024) R for mass spectrometry. https://www.rformassspectrometry.org/. Accessed 6 Dec 2024
R. Helmus T.L. ter Laak A.P. van Wezel et al. patRoon: open source software platform for environmental mass spectrometry based non-target screening J Cheminform 13 1 1:CAS:528:DC%2BB3MXhtFShs7zM 10.1186/s13321-020-00477-w 33407901 7789171 [cito:citesAsAuthority]
C. Ruttkies E.L. Schymanski S. Wolf et al. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation J Cheminform 8 3 1:CAS:528:DC%2BC2sXmtVKltL0%3D 10.1186/s13321-016-0115-9 26834843 4732001 [cito:citesAsAuthority]
Stravs M, Schymanski E, Neumann S, et al (2020) RMassBank: workflow to process tandem MS files and build MassBank records. https://bioconductor.org/packages/RMassBank/. Accessed 20 Jan 2020 [cito:citesAsAuthority]
M.A. Stravs E.L. Schymanski H.P. Singer J. Hollender Automatic recalibration and processing of tandem mass spectra using formula annotation: recalibration and processing of MS/MS spectra J Mass Spectrom 48 89 99 1:CAS:528:DC%2BC3sXnt1Wmtg%3D%3D 10.1002/jms.3131 23303751 [cito:citesAsAuthority]
J. Krier R.R. Singh T. Kondić et al. Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches Environ Int 158 1:CAS:528:DC%2BB3MXitVyrsrfO 10.1016/j.envint.2021.106885 34560325 106885 [cito:citesAsAuthority]
Wikipedia (2025) Modular programming. In: Wikipedia. https://en.wikipedia.org/wiki/Modular_programming. Accessed 24 May 2025
Cheng J, Sievert C, Schloerke B, et al (2024) Htmltools: tools for HTML. https://cran.r-project.org/web/packages/htmltools/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
Hester J, Henry L, Müller K, et al (2024) Withr: run code ‘With’ temporarily modified global state. https://cran.r-project.org/web/packages/withr/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
Barrett T, Dowle M, Srinivasan A, et al (2024) Data.table: extension of ’data.frame’. https://cran.r-project.org/web/packages/data.table/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
Garbett SP, Stephens J, Simonov K, et al (2024) Yaml: methods to convert R data to YAML and back. https://cran.r-project.org/web/packages/yaml/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
Neuwirth E (2022) RColorBrewer: ColorBrewer Palettes. https://cran.r-project.org/web/packages/RColorBrewer/index.html. Accessed 17 Nov 2024 [cito:citesAsAuthority]
Xie Y, Cheng J, Tan X, et al (2024) DT: a wrapper of the JavaScript library ’DataTables’. https://cran.r-project.org/web/packages/DT/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
M. Loos C. Gerber F. Corona et al. Accelerated isotope fine structure calculation using pruned transition trees Anal Chem 87 5738 5744 1:CAS:528:DC%2BC2MXnsVeit70%3D 10.1021/acs.analchem.5b00941 25929282 [cito:citesAsAuthority]
Wickham H (2016) ggplot2. http://link.springer.com/ https://doi.org/10.1007/978-3-319-24277-4. Accessed 13 Nov 2024 [cito:citesAsAuthority]
Wilke CO (2024) Cowplot: streamlined plot theme and plot annotations for ’ggplot2 ’. https://cran.r-project.org/web/packages/cowplot/index.html. Accessed 18 Nov 2024 [cito:citesAsAuthority]
D. Weininger SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules J Chem Inf Comput Sci 28 31 36 1:CAS:528:DyaL1cXnsVeqsA%3D%3D 10.1021/ci00057a005 [cito:citesAsAuthority]
H. Bengtsson A unifying framework for parallel and distributed processing in R using futures R J 13 208 10.32614/RJ-2021-048 [cito:citesAsAuthority]
E.L. Schymanski T. Kondić S. Neumann et al. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag J Cheminform 13 19 1:CAS:528:DC%2BB3MXhs1GktLbP 10.1186/s13321-021-00489-0 33685519 7938590 [cito:citesAsAuthority]
A. Elapavalore D.H. Ross V. Grouès et al. PubChemLite plus collision cross section (CCS) values for enhanced interpretation of nontarget environmental data Environ Sci Technol Lett 10.1021/acs.estlett.4c01003 39957787 11823450 [cito:citesAsAuthority]
Elapavalore A (2025) Shinyscreen container registry. In: GitLab. https://gitlab.com/uniluxembourg/lcsb/eci/shinyscreen/container_registry. Accessed 19 Mar 2025 [cito:citesAsAuthority]
R.R. Singh A. Lai J. Krier et al. Occurrence and distribution of pharmaceuticals and their transformation products in luxembourgish surface waters ACS Environ Au 1 58 70 1:CAS:528:DC%2BB3MXhs1GhurnM 10.1021/acsenvironau.1c00008 37101936 10114791 [cito:citesAsAuthority]
IPB Halle (2024) MetFrag web. https://msbi.ipb-halle.de/MetFrag/. Accessed 3 Dec 2024
IPB Halle (2024) MetFrag command line (CL). http://ipb-halle.github.io/MetFrag/projects/metfragcl/. Accessed 3 Dec 2024