[en] Crop production is a crucial ecosystem service that requires a combination of natural and anthropogenic contributions to high and stable yields, which is a coproduction process. We analysed this coproduction based on nationally aggregated data for 15 major crops for 67 countries and the European Union with data for four time steps (2000, 2006, 2010, 2014). We found strong increases in fertilizer use, net capital stock and manure use intensity for lower-middle-income countries and stagnation or decrease of these for high-income countries. We used a multiple linear regression model predicting yield to distinguish the effect of anthropogenic contributions (crop-specific fertilizer use intensity, net capital stock intensity, manure use intensity) and natural contributions (crop-specific agricultural suitability, including soil characteristics, topography and climate). We found that in particular fertilizer use intensity, manure use intensity and agricultural suitability explained variation in yields to a considerable degree (R2 = 0.62).
Centre de recherche :
Luxembourg Centre for Socio-Environmental Systems (LCSES)
Disciplines :
Agriculture & agronomie Sciences de l’environnement & écologie
Auteur, co-auteur :
Schröter, Matthias
Egli, Lukas
Brüning, Lilith
SEPPELT, Ralf ; University of Luxembourg > Luxembourg Centre for Socio-Environmental Systems (LCSES)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Distinguishing anthropogenic and natural contributions to coproduction of national crop yields globally
Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. U. S. A. 115(10), 2335–2340 (2018). DOI: 10.1073/pnas.1717072115
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3(1), 1293 (2012). DOI: 10.1038/ncomms2296
Palomo, I., Felipe-Lucia, M. R., Bennett, E. M., Martín-López, B. & Pascual, U. Chapter six—disentangling the pathways and effects of ecosystem service co-production. In Advance Ecology Research (eds Woodward, G. & Bohan, D. A.) 245–283 (Academic Press, 2016).
Lavorel, S., Locatelli, B., Colloff, M. J. & Bruley, E. Co-producing ecosystem services for adapting to climate change. Philos. T. Roy. Soc. B. 375(1794), 20190119 (2020). DOI: 10.1098/rstb.2019.0119
Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54(2), 358–370 (2017). DOI: 10.1111/1365-2664.12696
Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016). DOI: 10.1016/j.ecoser.2015.10.023
Jones, L. et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 52, 151–162 (2016). DOI: 10.1016/j.landusepol.2015.12.014
Barot, S., Yé, L., Abbadie, L., Blouin, M. & Frascaria-Lacoste, N. Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol. Eng. 99, 486–495 (2017). DOI: 10.1016/j.ecoleng.2016.11.071
Remme, R. P., Edens, B., Schröter, M. & Hein, L. Monetary accounting of ecosystem services: a test case for Limburg province, the Netherlands. Ecol. Econ. 112, 116–128 (2015). DOI: 10.1016/j.ecolecon.2015.02.015
Gaiser, T. & Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere (eds Lal, R. et al.) 407–418 (Springer, 2013). DOI: 10.1007/978-94-007-6455-2_17
FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015).
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019). DOI: 10.1126/sciadv.aax0121
Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4), 230–238 (2013). DOI: 10.1016/j.tree.2012.10.012
Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(9), e107522 (2014). DOI: 10.1371/journal.pone.0107522
Pelletier, N. et al. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 36(1), 223–246 (2011). DOI: 10.1146/annurev-environ-081710-161014
Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015). DOI: 10.1016/j.cosust.2014.11.002
Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20(1), 31–37 (2017). DOI: 10.1007/s10021-016-0049-0
Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. Energy and the food system. Philos. T. Roy. Soc. B. 365(1554), 2991–3006 (2010). DOI: 10.1098/rstb.2010.0172
Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005). DOI: 10.1126/science.1111772
Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19(4), 50 (2014). DOI: 10.5751/ES-07039-190450
Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018). DOI: 10.1016/j.gloenvcha.2018.08.006
Fitter, A. H. Are ecosystem services replaceable by technology?. Environ. Res. Econ. 55(4), 513–524 (2013). DOI: 10.1007/s10640-013-9676-5
Cohen, F., Hepburn, C. J. & Teytelboym, A. Is natural capital really substitutable?. Annu. Rev. Environ. Resour. 44(1), 425–448 (2019). DOI: 10.1146/annurev-environ-101718-033055
Ekins, P., Simon, S., Deutsch, L., Folke, C. & De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 44(2–3), 165–185 (2003). DOI: 10.1016/S0921-8009(02)00272-0
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9(10), 105011 (2014). DOI: 10.1088/1748-9326/9/10/105011
Levers, C., Butsic, V., Verburg, P. H., Müller, D. & Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 58, 380–393 (2016). DOI: 10.1016/j.landusepol.2016.08.013
Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2(1), 22–28 (2019). DOI: 10.1038/s41893-018-0200-3
Fuglie, K. R&D capital, RD spillovers, and productivity growth in world agriculture. Appl. Econ. Perspect. Policy 40(3), 421–444 (2018). DOI: 10.1093/aepp/ppx045
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012). DOI: 10.1038/nature11420
German, R. N., Thompson, C. E. & Benton, T. G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92(2), 716–738 (2017). DOI: 10.1111/brv.12251
Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016). DOI: 10.1016/j.ecolind.2016.02.004
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011). DOI: 10.1126/science.1204531
Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5(5), 464–470 (2013). DOI: 10.1016/j.cosust.2013.07.010
Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12(6), 356–361 (2014). DOI: 10.1890/130157
Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019). DOI: 10.1016/j.tree.2018.11.002
Stirzaker, R., Biggs, H., Roux, D. & Cilliers, P. Requisite simplicities to help negotiate complex problems. Ambio 39(8), 600–607 (2010). DOI: 10.1007/s13280-010-0075-7
Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484–493 (2013). DOI: 10.1016/j.cosust.2013.06.002
Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909–5914 (2011). DOI: 10.1073/pnas.1012431108
Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40(S1), 45–55 (2015). DOI: 10.1111/een.12247
Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. 10.1016/j.tree.2020.06.012 (2020). DOI: 10.1016/j.tree.2020.06.012
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360(6392), 987–992 (2018). DOI: 10.1126/science.aaq0216
Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25(6), 1941–1956 (2019). DOI: 10.1111/gcb.14606
Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32(1), 68–80 (2017). DOI: 10.1016/j.tree.2016.10.001
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22(1), 1–19 (2008). DOI: 10.1029/2007GB002947
IFA, IFDC, IPI, PPI, FAO. Fertilizer Use by Crop (FAO, 2002).
IFA. Assessment of Fertilizer Use by Crop at the Global Level 2006/07–2007/08 (IFA, 2009).
IFA. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/11 (IFA, 2013).
IFA and IPNI. Assessment of Fertilizer Use by Crop at the Global Level (IFA and IPNI, 2017).