[en] The exponential growth of herbicide-resistant weeds poses enormous challenges to the sustainability of food systems. While great efforts in weed management are being performed at the plot level, the influence of the landscape context on the presence of herbicide-resistant weeds remains largely unknown. We tested these ideas through a large-scale sampling on two of the most important crops globally: maize and soybean. In Argentina, we co-developed with farmers the sampling of 2846 soybean and 1539 maize fields (covering an area of 159 million ha) and measured the presence of herbicide-resistant weeds, landscape context (field size, edge density, natural habitat size), management variables (e.g. fertilization), crop variety, farm identity and region. We found that smaller fields, with higher edge density, and neighboring larger natural habitats were associated to a lower presence of herbicide-resistant weeds. These results were not confounded with the influence of some other management variables (e.g. fertilization), crop variety, farm or region. Landscape design is an important, but underrepresented, management tool that could help to achieve a sustainable control of weeds.
Research center :
Luxembourg Centre for Socio-Environmental Systems (LCSES)
Disciplines :
Agriculture & agronomy Food science Entomology & pest control Environmental sciences & ecology
Author, co-author :
Garibaldi, Lucas A.
Goldenberg, Matías G.
Burian, Alfred
Santibañez, Fernanda
Satorre, Emilio H.
Martini, Gustavo D.
SEPPELT, Ralf ; University of Luxembourg > Luxembourg Centre for Socio-Environmental Systems (LCSES)
External co-authors :
yes
Language :
English
Title :
Smaller agricultural fields, more edges, and natural habitats reduce herbicide-resistant weeds
de Abelleyra, D., Banchero, S., Verón, S., Mosciaro, J., Volante, J., 2019. Mapa Nacional de Cultivos. Campaña 2018/2019., Colección. ed. Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina.
Bartón, K., 2019. MuMIn: Multi-model inference. R package version 1.43.15.
Bourgeois, B., Gaba, S., Plumejeaud, C., Bretagnolle, V., Weed diversity is driven by complex interplay between multi-scale dispersal and local filtering. Proc. R. Soc. B Biol. Sci., 2020, 287, 10.1098/rspb.2020.1118.
Brooks, M.E., Kristensen, K., Benthem, K.J., van, Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9 (2017), 378–400.
Dauer, J.T., Mortensen, D.A., Vangessel, M.J., Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol. 44 (2007), 105–114, 10.1111/j.1365-2664.2006.01256.x.
Dauer, J.T., Luschei, E.C., Mortensen, D.A., Effects of landscape composition on spread of an herbicide-resistant weed. Landsc. Ecol. 24 (2009), 735–747, 10.1007/s10980-009-9345-9.
Dixon, A., Comont, D., Slavov, G.T., Neve, P., Population genomics of selectively neutral genetic structure and herbicide resistance in UK populations of Alopecurus myosuroides. Pest Manag. Sci. 77 (2021), 1520–1529, 10.1002/ps.6174.
Gage, K.L., Krausz, R.F., Walters, S.A., Emerging challenges for weed management in herbicide-resistant crops. Agric 9 (2019), 1–11, 10.3390/agriculture9080180.
Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D., Robinson, B.S., Hodgson, D.J., Inger, R., A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018 (2018), 1–32, 10.7717/peerj.4794.
Hartig, F., 2021. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.4.
Heap, I., Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 70 (2014), 1306–1315, 10.1002/ps.3696.
Heap, I., Duke, S.O., Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 74 (2018), 1040–1049, 10.1002/ps.4760.
Hicks, H.L., Comont, D., Coutts, S.R., Crook, L., Hull, R., Norris, K., Neve, P., Childs, D.Z., Freckleton, R.P., The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2 (2018), 163–176.
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L.H., Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69 (2018), 789–815, 10.1146/annurev-arplant-042817-040256.
Scursoni, J.A., Vera, A.C.D., Oreja, F.H., Kruk, B.C., De La Fuente, E.B., Weed management practices in Argentina crops. Weed Technol. 33 (2019), 459–463, 10.1017/wet.2019.26.
Seppelt, R., Arndt, C., Beckmann, M., Martin, E.A., Hertel, T.W., Deciphering the biodiversity–production mutualism in the global food security debate. Trends Ecol. Evol. 35 (2020), 1011–1020, 10.1016/j.tree.2020.06.012.
Vila-Aiub, M.M., Fitness of herbicide-resistant weeds: current knowledge and implications for management. Plants 8 (2019), 1–11, 10.3390/plants8110469.