Bose-Einstein condensates; Coulomb gas; Gross-Pitaevskii equation; Mean field dynamics; Number density; Point vortices; Spatial dimension; Time dependent; Two-dimensional; Vortex-vortex interaction; Physics and Astronomy (all)
Résumé :
[en] In two spatial dimensions, vortex-vortex interactions approximately vary with the logarithm of the inter-vortex distance, making it possible to describe an ensemble of vortices as a Coulomb gas. We introduce a duality between vortices in a quasi-two-dimensional (quasi-2D) scalar Bose-Einstein condensates (BEC) and effective Maxwell's electrodynamics. Specifically, we address the general scenario of inhomogeneous, time-dependent BEC number density with dissipation or rotation. Starting from the Gross-Pitaevskii equation (GPE), which describes the mean-field dynamics of a quasi-2D scalar BEC without dissipation, we show how to map vortices in a quasi-2D scalar BEC to 2D electrodynamics beyond the point-vortex approximation, even when dissipation is present or in a rotating system. The physical meaning of this duality is discussed.
Disciplines :
Physique
Auteur, co-auteur :
Shinn, Seong-Ho ; Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
DEL CAMPO ECHEVARRIA, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Electrodynamics of vortices in quasi-two-dimensional scalar Bose-Einstein condensates
It is a pleasure to thank Michael V. Berry, Ashton Bradley, Bogdan Damski, \u00CD\u00F1igo L. Egusquiza, Uwe R. Fischer, \u00C9tienne Fodor, Andr\u00E1s Grabarits, Woo Jin Kwon, Matteo Massaro, Kazutaka Takahashi, Mithun Thudiyangal, and Masahito Ueda for insightful comments and discussions. The authors acknowledge financial support from the National Research Fund of Luxembourg under Grant No. C22/MS/17132060/BeyondKZM.
T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A: Math. Gen. 9, 1387 (1976) 0305-4470 10.1088/0305-4470/9/8/029.
T. W. B. Kibble, Some implications of a cosmological phase transition, Phys. Rep. 67, 183 (1980) 0370-1573 10.1016/0370-1573(80)90091-5.
W. H. Zurek, Cosmological experiments in superfluid helium Nature (London) 317, 505 (1985) 0028-0836 10.1038/317505a0.
W. H. Zurek, Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions, Acta Phys. Pol. B 24, 1301 (1993).
A. del Campo and W. H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A 29, 1430018 (2014) 0217-751X 10.1142/S0217751X1430018X.
N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51, 591 (1979) 0034-6861 10.1103/RevModPhys.51.591.
N. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2004).
Y. Kawaguchi and M. Ueda, Spinor bose-einstein condensates, Phys. Rep. 520, 253 (2012) 0370-1573 10.1016/j.physrep.2012.07.005.
D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge University Press, Cambridge, 2002).
A. L. Fetter and A. A. Svidzinsky, Vortices in a trapped dilute bose-einstein condensate, J. Phys.: Condens. Matter 13, R135 (2001) 0953-8984 10.1088/0953-8984/13/12/201.
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge, 2008).
H.-B. Zeng, C.-Y. Xia, and A. del Campo, Universal breakdown of kibble-zurek scaling in fast quenches across a phase transition, Phys. Rev. Lett. 130, 060402 (2023) 0031-9007 10.1103/PhysRevLett.130.060402.
M. Thudiyangal and A. del Campo, Universal vortex statistics and stochastic geometry of bose-einstein condensation, Phys. Rev. Res. 6, 033152 (2024) 2643-1564 10.1103/PhysRevResearch.6.033152.
C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature (London) 455, 948 (2008) 0028-0836 10.1038/nature07334.
L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Beugnon, and J. Dalibard, Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional bose gas, Nat. Commun. 6, 6162 (2015) 2041-1723 10.1038/ncomms7162.
J. Goo, Y. Lim, and Y. Shin, Defect saturation in a rapidly quenched bose gas, Phys. Rev. Lett. 127, 115701 (2021) 0031-9007 10.1103/PhysRevLett.127.115701.
J. Goo, Y. Lee, Y. Lim, D. Bae, T. Rabga, and Y. Shin, Universal early coarsening of quenched bose gases, Phys. Rev. Lett. 128, 135701 (2022) 0031-9007 10.1103/PhysRevLett.128.135701.
P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Driving bose-einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87, 210403 (2001) 0031-9007 10.1103/PhysRevLett.87.210403.
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in bose-einstein condensates, Science 292, 476 (2001) 0036-8075 10.1126/science.1060182.
A. L. Fetter, Rotating trapped bose-einstein condensates, Rev. Mod. Phys. 81, 647 (2009) 0034-6861 10.1103/RevModPhys.81.647.
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a bose-einstein condensate, Phys. Rev. Lett. 83, 2498 (1999) 0031-9007 10.1103/PhysRevLett.83.2498.
A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W. Ketterle, Imprinting vortices in a bose-einstein condensate using topological phases, Phys. Rev. Lett. 89, 190403 (2002) 0031-9007 10.1103/PhysRevLett.89.190403.
J. F. S. Brachmann, W. S. Bakr, J. Gillen, A. Peng, and M. Greiner, Inducing vortices in a bose-einstein condensate using holographically produced light beams, Opt. Express 19, 12984 (2011) 1094-4087 10.1364/OE.19.012984.
D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson, Vortex formation by merging of multiple trapped bose-einstein condensates, Phys. Rev. Lett. 98, 110402 (2007) 0031-9007 10.1103/PhysRevLett.98.110402.
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred bose-einstein condensate, Phys. Rev. Lett. 84, 806 (2000) 0031-9007 10.1103/PhysRevLett.84.806.
C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred bose-einstein condensate, Phys. Rev. Lett. 87, 210402 (2001) 0031-9007 10.1103/PhysRevLett.87.210402.
B. Damski, K. Sacha, and J. Zakrzewski, Stirring a bose-einstein condensate, J. Phys. B: At., Mol. Opt. Phys. 35, 4051 (2002) 0953-4075 10.1088/0953-4075/35/19/308.
E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and V. S. Bagnato, Emergence of turbulence in an oscillating bose-einstein condensate, Phys. Rev. Lett. 103, 045301 (2009) 0031-9007 10.1103/PhysRevLett.103.045301.
G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. A. Baker, T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely, Giant vortex clusters in a two-dimensional quantum fluid, Science 364, 1264 (2019) 0036-8075 10.1126/science.aat5718.
T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson, Observation of vortex dipoles in an oblate bose-einstein condensate, Phys. Rev. Lett. 104, 160401 (2010) 0031-9007 10.1103/PhysRevLett.104.160401.
T. W. Neely, G. Gauthier, C. Glasspool, M. J. Davis, and M. T. Reeves, Melting of a vortex matter wigner crystal, arXiv:2402.09920.
B. I. Halperin, Superfluidity, melting, and liquid-crystal phases in two dimensions, in Proceedings of Kyoto Summer Institute 1979-Physics of Low Dimensional Systems (Publication Office, Progress of Theoretical Physics, Kyoto University, 1979), p. 53.
V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Dynamics of superfluid films, Phys. Rev. B 21, 1806 (1980) 0163-1829 10.1103/PhysRevB.21.1806.
H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989).
H. Kleinert, Multivalued Fields (World Scientific, Singapore, 2008).
J. C. Neu, Vortices in complex scalar fields, Physica D 43, 385 (1990) 0167-2789 10.1016/0167-2789(90)90143-D.
J. C. Neu, Vortex dynamics of the nonlinear wave equation, Physica D 43, 407 (1990) 0167-2789 10.1016/0167-2789(90)90144-E.
U. R. Fischer, Motion of quantized vortices as elementary objects, Ann. Phys. 278, 62 (1999) 0003-4916 10.1006/aphy.1999.5969.
T. Simula, Gravitational vortex mass in a superfluid, Phys. Rev. A 101, 063616 (2020) 2469-9926 10.1103/PhysRevA.101.063616.
E. G. Johansen, A correspondence between maxwell-einstein theory and superfluidity, arXiv:2405.18090.
V. L. Ginzburg and L. P. Pitaevskii, On the theory of superfluidity, ZhETF 34, 1240 (1958)
V. L. Ginzburg and L. P. Pitaevskii, [Sov. Phys. JETP 7, 858 (1958)].
P. J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, D. J. Frantzeskakis, and P. Kevrekidis, Vortex interaction dynamics in trapped bose-einstein condensates, Commun. Pure Appl. Math. 10, 1589 (2011) 1534-0392 10.3934/cpaa.2011.10.1589.
A. Richaud, V. Penna, and A. L. Fetter, Dynamics of massive point vortices in a binary mixture of bose-einstein condensates, Phys. Rev. A 103, 023311 (2021) 2469-9926 10.1103/PhysRevA.103.023311.
A. Richaud, G. Lamporesi, M. Capone, and A. Recati, Mass-driven vortex collisions in flat superfluids, Phys. Rev. A 107, 053317 (2023) 2469-9926 10.1103/PhysRevA.107.053317.
T. C. Corso, G. Kemlin, C. Melcher, and B. Stamm, Numerical simulation of the gross-pitaevskii equation via vortex tracking, arXiv:2404.02133.
Y. Castin and R. Dum, Low-temperature bose-einstein condensates in time-dependent traps: Beyond the (Equation presented) symmetry-breaking approach, Phys. Rev. A 57, 3008 (1998) 1050-2947 10.1103/PhysRevA.57.3008.
L. P. Pitaevskii, Phenomenological theory of superfluidity near the λ-point, ZhETF 35, 408 (1959)
L. P. Pitaevskii [Sov. Phys. JETP 8, 282 (1959)].
C. W. Gardiner, P. Zoller, R. J. Ballagh, and M. J. Davis, Kinetics of bose-einstein condensation in a trap, Phys. Rev. Lett. 79, 1793 (1997) 0031-9007 10.1103/PhysRevLett.79.1793.
S. Choi, S. A. Morgan, and K. Burnett, Phenomenological damping in trapped atomic bose-einstein condensates, Phys. Rev. A 57, 4057 (1998) 1050-2947 10.1103/PhysRevA.57.4057.
K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating bose-einstein condensate, Phys. Rev. A 67, 033610 (2003) 1050-2947 10.1103/PhysRevA.67.033610.
P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and C. W. Gardiner, Dynamics and statistical mechanics of ultra-cold bose gases using c-field techniques, Adv. Phys. 57, 363 (2008) 0001-8732 10.1080/00018730802564254.
B. Damski and W. H. Zurek, Soliton creation during a bose-einstein condensation, Phys. Rev. Lett. 104, 160404 (2010) 0031-9007 10.1103/PhysRevLett.104.160404.
A. S. Bradley, S. J. Rooney, and R. G. McDonald, Low-dimensional stochastic projected gross-pitaevskii equation, Phys. Rev. A 92, 033631 (2015) 1050-2947 10.1103/PhysRevA.92.033631.
I.-Kang Liu, J. Dziarmaga, S.-C. Gou, F. Dalfovo, and N. P. Proukakis, Kibble-zurek dynamics in a trapped ultracold bose gas, Phys. Rev. Res. 2, 033183 (2020) 2643-1564 10.1103/PhysRevResearch.2.033183.
S. Rica and E. Tirapegui, Interaction of defects in two-dimensional systems, Phys. Rev. Lett. 64, 878 (1990) 0031-9007 10.1103/PhysRevLett.64.878.
Z. Mehdi, J. J. Hope, S. S. Szigeti, and A. S. Bradley, Mutual friction and diffusion of two-dimensional quantum vortices, Phys. Rev. Res. 5, 013184 (2023) 2643-1564 10.1103/PhysRevResearch.5.013184.
L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, International Series of Monographs on Physics (Clarendon Press, Oxford, 2003).
E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento 20, 454 (1961) 0029-6341 10.1007/BF02731494.
L. P. Pitaevskii, Vortex lines in an imperfect bose gas, ZhETF 40, 646 (1961)
L. P. Pitaevskii, [Sov. Phys. JETP 13, 451 (1961)].
D. Bohm and B. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory, Physics, philosophy (Routledge, Oxford, 1995).
C. Trahan and R. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Interdisciplinary Applied Mathematics (Springer New York, 2005).
E. Madelung, Quantentheorie in hydrodynamischer form, Z. Phys. 40, 322 (1927) 1434-6001 10.1007/BF01400372.
D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. i, Phys. Rev. 85, 166 (1952) 0031-899X 10.1103/PhysRev.85.166.
T. Takabayasi, On the formulation of quantum mechanics associated with classical pictures∗, Prog. Theor. Phys. 8, 143 (1952) 0033-068X 10.1143/ptp/8.2.143.
B. I. Halperin, Statistical Mechanics of Topological Defects, in Physics of Defects, Les Houches 1980 Session XXXV (North-Holland, Amsterdam, 1981), p. 813.
R. P. Feynman, Application of quantum mechanics to liquid helium, Prog. Low Temp. Phys. 1, 17 (1955) 0079-6417 10.1016/S0079-6417(08)60077-3.
P. W. Anderson, Considerations on the flow of superfluid helium, Rev. Mod. Phys. 38, 298 (1966) 0034-6861 10.1103/RevModPhys.38.298.
H. Kleinert, Theory of fluctuating nonholonomic fields and applications: Statistical mechanics of vortices and defects and new physical laws in spaces with curvature and torsion, in Formation and Interactions of Topological Defects: Proceedings of a NATO Advanced Study Institute on Formation and Interactions of Topological Defects, held August 22-September 2, 1994, in Cambridge, England, edited by A.-C. Davis and R. Brandenberger (Springer US, Boston, MA, 1995), pp. 201-232.
G. F. Mazenko, Vortex velocities in the (Equation presented) symmetric time-dependent ginzburg-landau model, Phys. Rev. Lett. 78, 401 (1997) 0031-9007 10.1103/PhysRevLett.78.401.
D. Hernández-Rajkov, N. Grani, F. Scazza, G. Del Pace, W. J. Kwon, M. Inguscio, K. Xhani, C. Fort, M. Modugno, F. Marino, and G. Roati, Connecting shear flow and vortex array instabilities in annular atomic superfluids, Nat. Phys. 20, 939 (2024) 1745-2473 10.1038/s41567-024-02466-4.
J. J. García-Ripoll, G. Molina-Terriza, V. M. Pérez-García, and L. Torner, Structural instability of vortices in bose-einstein condensates, Phys. Rev. Lett. 87, 140403 (2001) 0031-9007 10.1103/PhysRevLett.87.140403.
G. Biroli, L. F. Cugliandolo, and A. Sicilia, Kibble-zurek mechanism and infinitely slow annealing through critical points, Phys. Rev. E 81, 050101 (2010) 1539-3755 10.1103/PhysRevE.81.050101.
P. M. Chesler, A. M. García-García, and H. Liu, Defect formation beyond kibble-zurek mechanism and holography, Phys. Rev. X 5, 021015 (2015) 2160-3308 10.1103/PhysRevX.5.021015.
I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, F. Dalfovo, and N. P. Proukakis, Dynamical equilibration across a quenched phase transition in a trapped quantum gas, Commun. Phys. 1, 24 (2018) 2399-3650 10.1038/s42005-018-0023-6.
M. V. Berry and P. Shukla, Quantum curl forces, J. Phys. A: Math. Theor. 56, 485206 (2023) 1751-8113 10.1088/1751-8121/ad04a3.
J. Rønning and L. Angheluta, Precursory patterns to vortex nucleation in stirred bose-einstein condensates, Phys. Rev. Res. 5, 023108 (2023) 2643-1564 10.1103/PhysRevResearch.5.023108.
V. Skogvoll, J. Rønning, M. Salvalaglio, and L. Angheluta, A unified field theory of topological defects and non-linear local excitations, npj Comput. Mater. 9, 122 (2023) 2057-3960 10.1038/s41524-023-01077-6.
L. D. Landau, The theory of superfuidity of helium II, J. Phys. USSR 5, 301 (1941) 10.1016/B978-0-08-010586-4.50051-1.
K. Watanabe, Integral Transform Techniques for Green's Function, Lecture Notes in Applied and Computational Mechanics (Springer International Publishing, Switzerland, Cham, 2015).
D. Boito, L. N. S. de Andrade, G. de Sousa, R. Gama, and C. Y. M. London, On maxwell's electrodynamics in two spatial dimensions, Rev. Bras. Ensino Fís. 42, e20190323 (2020) 1806-9126 10.1590/1806-9126-rbef-2019-0323.
M. Gürses and Ö Sarloǧlu, Liénard-Wiechert potentials in even dimensions, J. Math. Phys. 44, 4672 (2003) 0022-2488 10.1063/1.1613040.
O. Reynolds, Papers on Mechanical and Physical Subjects, The Sub-Mechanics of the Universe (Cambridge University Press, Cambridge, 1903), Vol. 3.
P. Kundu, I. Cohen, and D. Dowling, Fluid Mechanics, 5th ed. (Academic Press, Cambridge, Massachusetts, 2012).
E. Kozik and B. Svistunov, Vortex-phonon interaction, Phys. Rev. B 72, 172505 (2005) 1098-0121 10.1103/PhysRevB.72.172505.
W. J. Kwon, G. Del Pace, K. Xhani, L. Galantucci, A. Muzi Falconi, M. Inguscio, F. Scazza, and G. Roati, Sound emission and annihilations in a programmable quantum vortex collider, Nature (London) 600, 64 (2021) 0028-0836 10.1038/s41586-021-04047-4.
M. Lazar, On the non-uniform motion of dislocations: the retarded elastic fields, the retarded dislocation tensor potentials and the liénard-wiechert tensor potentials, Philos. Mag. 93, 749 (2013) 1478-6435 10.1080/14786435.2012.732713.
L. Tsaloukidis and P. Surówka, Elastic liénard-wiechert potentials of dynamical dislocations from tensor gauge theory in (Equation presented) dimensions, Phys. Rev. B 109, 104118 (2024) 2469-9950 10.1103/PhysRevB.109.104118.
O. D. Jefimenko, Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields (Appleton-Century-Crofts, New York, 1966).
D. J. Griffiths, Introduction to Electrodynamics, 4th ed. (Cambridge University Press, Cambridge, 2017).
J. Fröhlich, Quantized "sine-gordon" equation with a nonvanishing mass term in two space-time dimensions, Phys. Rev. Lett. 34, 833 (1975) 0031-9007 10.1103/PhysRevLett.34.833.
J. Fröhlich, Quantum sine-gordon equation and quantum solitons in two space-time dimensions, in Renormalization Theory, edited by G. Velo and A. S. Wightman (Springer Netherlands, Dordrecht, 1976), pp. 371-414.
S. Coleman, Quantum sine-gordon equation as the massive thirring model, Phys. Rev. D 11, 2088 (1975) 0556-2821 10.1103/PhysRevD.11.2088.
S. Samuel, Grand partition function in field theory with applications to sine-gordon field theory, Phys. Rev. D 18, 1916 (1978) 0556-2821 10.1103/PhysRevD.18.1916.
V. L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. ii. quantum systems, ZhETF 61, 1144 (1972)
V. L. Berezinskii, [Sov. Phys. JETP 34, 610 (1972)].
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6, 1181 (1973) 0022-3719 10.1088/0022-3719/6/7/010.
L. Šamaj and I. Travěnec, Thermodynamic properties of the two-dimensional two-component plasma, J. Stat. Phys. 101, 713 (2000) 0022-4715 10.1023/A:1026489924895.
A. del Campo, F. J. Gómez-Ruiz, and H.-Q. Zhang, Locality of spontaneous symmetry breaking and universal spacing distribution of topological defects formed across a phase transition, Phys. Rev. B 106, L140101 (2022) 2469-9950 10.1103/PhysRevB.106.L140101.
G. Akemann, A. Mielke, and P. Päßler, Spacing distribution in the two-dimensional coulomb gas: Surmise and symmetry classes of non-hermitian random matrices at noninteger (Equation presented), Phys. Rev. E 106, 014146 (2022) 2470-0045 10.1103/PhysRevE.106.014146.
M. Massaro and A. del Campo, Spatial form factor for point patterns: Homogeneous poisson point process and coulomb gas, arXiv:2410.04816.
M. C. Tsatsos, P. E. Tavares, A. Cidrim, A. R. Fritsch, M. A. Caracanhas, F. E. A. dos Santos, C. F. Barenghi, and V. S. Bagnato, Quantum turbulence in trapped atomic bose-einstein condensates, Phys. Rep. 622, 1 (2016) 0370-1573 10.1016/j.physrep.2016.02.003.
M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. Edmonds, X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely, Turbulent relaxation to equilibrium in a two-dimensional quantum vortex gas, Phys. Rev. X 12, 011031 (2022) 2160-3308 10.1103/PhysRevX.12.011031.
A. del Campo, Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope, Phys. Rev. A 84, 031606 (R) (2011) 1050-2947 10.1103/PhysRevA.84.031606.
A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111, 100502 (2013) 0031-9007 10.1103/PhysRevLett.111.100502.
D. J. Papoular and S. Stringari, Shortcut to adiabaticity for an anisotropic gas containing quantum defects, Phys. Rev. Lett. 115, 025302 (2015) 0031-9007 10.1103/PhysRevLett.115.025302.
N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous bose gas, Science 347, 167 (2015) 0036-8075 10.1126/science.1258676.
M. Kim, J. Kwon, T. Rabga, and Y. Shin, Vortex detection in atomic Bose-Einstein condensates using neural networks trained on synthetic images, Mach. Learn.: Sci. Technol. 4, 045017 (2023) 2632-2153 10.1088/2632-2153/ad03ad.
A. del Campo, A. Retzker, and M. B. Plenio, The inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation, New J. Phys. 13, 083022 (2011) 1367-2630 10.1088/1367-2630/13/8/083022.
F. J. Gómez-Ruiz, J. J. Mayo, and A. del Campo, Full counting statistics of topological defects after crossing a phase transition, Phys. Rev. Lett. 124, 240602 (2020) 0031-9007 10.1103/PhysRevLett.124.240602.
A. del Campo, F. J. Gómez-Ruiz, Z.-H. Li, C.-Y. Xia, H.-B. Zeng, and H.-Q. Zhang, Universal statistics of vortices in a newborn holographic superconductor: beyond the kibble-zurek mechanism, J. High Energy Phys. 06 (2021) 061 1029-8479 10.1007/JHEP06(2021)061.
C.-Y. Xia, H.-B. Zeng, A. Grabarits, and A. del Campo, Kibble-zurek mechanism and beyond: Lessons from a holographic superfluid disk, arXiv:2406.09433.
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72, 126401 (2009) 0034-4885 10.1088/0034-4885/72/12/126401.
I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod. Phys. 85, 299 (2013) 0034-6861 10.1103/RevModPhys.85.299.
S. Fujiyama and M. Tsubota, Drag force on an oscillating object in quantum turbulence, Phys. Rev. B 79, 094513 (2009) 1098-0121 10.1103/PhysRevB.79.094513.
H. Adachi, S. Fujiyama, and M. Tsubota, Steady-state counterflow quantum turbulence: Simulation of vortex filaments using the full biot-savart law, Phys. Rev. B 81, 104511 (2010) 1098-0121 10.1103/PhysRevB.81.104511.
S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher, F. Dalfovo, G. Lamporesi, and G. Ferrari, Dynamics and interaction of vortex lines in an elongated bose-einstein condensate, Phys. Rev. Lett. 115, 170402 (2015) 0031-9007 10.1103/PhysRevLett.115.170402.