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Electrodynamics of vortices in quasi-two-dimensional scalar Bose-Einstein condensates
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In two spatial dimensions, vortex-vortex interactions approximately vary with the logarithm of the inter-vortex
distance, making it possible to describe an ensemble of vortices as a Coulomb gas. We introduce a duality
between vortices in a quasi-two-dimensional (quasi-2D) scalar Bose-Einstein condensates (BEC) and effective
Maxwell’s electrodynamics. Specifically, we address the general scenario of inhomogeneous, time-dependent
BEC number density with dissipation or rotation. Starting from the Gross-Pitaevskii equation (GPE), which
describes the mean-field dynamics of a quasi-2D scalar BEC without dissipation, we show how to map vortices
in a quasi-2D scalar BEC to 2D electrodynamics beyond the point-vortex approximation, even when dissipation
is present or in a rotating system. The physical meaning of this duality is discussed.

DOI: 10.1103/PhysRevResearch.7.013217

I. INTRODUCTION

Topological defects are ubiquitous in physics. A
symmetry-breaking second-order phase transition generally
leads to the formation of topological defects that can
be classified according to the topology of the vacuum
manifold using homotopy groups [1-8]. This classification
identifies different kinds of defects such as kinks, vortices,
domain walls, skyrmions, etc. Among them, U (1) vortices
describe pointlike singularities of a complex scalar field with
quantized circulation [9]. Their occurrence in Bose-Einstein
condensates (BEC) indicates their superfluid character
[10,11]. In such context, they can be created spontaneously
by driving the transition from a normal fluid to a superfluid
(e.g., by a thermal quench), as theoretically analyzed
[12,13] and experimentally demonstrated [14-17]. An
alternative mechanism to create vortices involves rotating the
normal cloud [18] or the superfluid cloud, pumping angular
momentum in the system [19,20]. Vortices in degenerate
ultracold gases can also be produced by phase imprinting
[21-23], by merging independent BEC [24], by stirring laser
beams [25-29], or by making superfluid flow pass an obstacle
[30]. Progress in manipulating and controlling ultracold gases
makes it possible to design arbitrary patterns of vortices in a
BEC sample [31].

Vortex-vortex interactions are known to scale logarithmi-
cally with the intervortex distance within some approxima-
tions. In the limit of a homogeneous BEC number density,

“Contact author: seongho.shin@uni.lu
TContact author: adolfo.delcampo@uni.lu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2025/7(1)/013217(15)

013217-1

excluding the core region of each vortex, an ensemble of
static vortices in a nonrotating quasi-two-dimensional (quasi-
2D) scalar BEC without dissipation can be mathematically
regarded as a 2D Coulomb gas [9].

For nonrotating three-dimensional (3D) “He superfluid
without dissipation, a duality between vortices in a thin cylin-
drical system and 2D electrodynamics has been reported in
the limit where the superfluid density is constant outside
vortices [32,33]. Such a duality has been extended to the
general 3D case by using ¢* theory and minimizing the ac-
tion with respect to the fluctuation of the superfluid density
[34,35]. In the absence of an external potential, the asymptotic
vortex dynamics in 2D nonlinear Schrodinger equation has
been studied [36], and a duality between 2D electrodynamics
and vortices in the (2+1) dimensional nonlinear wave equa-
tion has been put forward [37]. For the nonrotating scalar
BEC without dissipation, when the BEC number density is
approximately constant, it has been shown that the motion of
the vortex can be described according to the nonrelativistic
dynamics of strings in 3D system [38], and the effective
Maxwell’s equations in a quasi-2D system [39]. This con-
nection is valid for an inhomogeneous time-independent BEC
number density in the case of a nonrotating quasi-2D scalar
BEC [40].

However, the BEC number density is zero at the core of
a vortex, and thus, a vortex has a finite core size, which
is about the order of the healing length (coherence length)
&, == h//2Mgn,,, where n,, is the mean BEC number density
[41]. As a result, the fluctuation of the BEC number density
cannot be neglected, especially around the core of the vortex.
To simplify the problem, the point-vortex model (PVM) has
been widely used. Yet, such description cannot account for
the dynamic vortex creation and annihilation processes if one
uses the mean-field Gross-Pitaevskii equation (GPE) under
nonrotating quasi-2D scalar BEC without dissipation [42—45].
It thus remains to be established whether the connection be-
tween vortices and effective Maxwell’s electrodynamics is
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FIG. 1. Duality between the vortices in the quasi-2D scalar BEC and the electrodynamics in the matter. The derivations are in Sec. IV,
and the full effective Maxwell’s equations are shown in Table III. On the right-hand side, D(r, 1) is the electric displacement field, H (r, 1) is
the magnetic field strength, Q;(¢) is the free electric charge with index j at time ¢, and J #(r, ¢) is the free electric current density. For other

definitions of symbols, refer to Tables I and II.

valid in a quasi-2D scalar BEC with dissipation, beyond the
PVM or under rotation.

In this paper, starting from the microscopic Hermitian
Hamiltonian of a nonrotating quasi-2D scalar bosons in the
s-wave scattering limit [11,46], we define the superfluid ve-
locity via the probability current, and present the condition
of the conservation of the topological charges of the vortices
in general “beyond the GPE” case, i.e., when the mean-field
limit of the Heisenberg equation of motion has a dissipative
term (e.g., Refs. [47-54]). Using that condition, we show
how vortices in a quasi-2D scalar BEC can be connected to
the effective Maxwell’s equations even beyond the PVM and
without assuming a time-independent BEC number density.
From such duality, we show that the damped-PVM [55,56]
can be alternatively induced and generalized beyond the PVM
description and present how to calculate the temporal change
of the circulation. Under the GPE + PVM, we show that the
logarithmic vortex interaction may need correction if vortices
move. We also show that one can recover previously known
results when the fluctuations of the BEC number density are
negligible. For a quick reference, we present the key ideas on
the duality we constructed in Fig. 1.

II. HAMILTONIAN OF QUASI-2D SCALAR BEC
AND THE CONTINUITY EQUATION

We start by showing the relation between the mean-field
limit of the Heisenberg equations of motion for nonrotating
quasi-2D scalar BEC on the xy plane in a region .4 and
vortex quantization. We first review the case within the GPE
description and then generalize it to the case with dissipation
or rotation.

Let us introduce a unit vector e; along the +j axis (j =
X, Y, 2), the position vector r := > j=x,y Ij€j on the xy plane,
and V=) j=x.y€;j0/0r;. For later convenience, we define
e, ‘=e, v:=|v|=.,/v-v for any vector v, and || :=
~/¥*y for any complex function v with its complex conju-
gate being ¢ *. For convenience, a summary of the symbols
we used is provided in Tables I and II.

A. Case 1: Gross-Pitaevskii equation
for nonrotating scalar BEC

Using second quantization and the s-wave scattering limit,
the Hamiltonian H (7) in the Heisenberg picture of a nonrotat-
ing quasi-2D scalar Bose gas on the xy plane in a region A
can be expressed as [11,46]

. ? .
— 2 i _ 2
H(t) = [Ad ry (r,t)|: _QMV +V(r,t):|1ﬂ(r,t)

g

2

/A d*r g e, O e OP @ O, D, (D)

where Y/(r,7) is the bosonic field operator (in Heisenberg
picture) that annihilates a boson at the position r and at time ¢,
1 is the reduced Planck constant, M is the mass of the boson,
V(r,t) is a local external potential (with no singularity) sat-
isfying [V (r, 1), U, 1)] =0, g= thzagas/(Mll) is the
density-density interaction coefficient in the quasi-2D BEC
[53,57], ap is the Bohr radius, a; is the s-wave scattering
length in units of ag, [, = /h/(Mw, ) is the harmonic oscil-
lator length in z axis, and w, is the harmonic trap frequency
in z axis.
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TABLE 1. Definitions of symbols frequently used in this paper.

Symbol Definition

BEC Bose-Einstein condensates

GPE Gross-Pitaevskii equation

PVM Point-vortex model

nD n-dimensional

A Region where the quasi-2D BEC is

M Mass of the boson

N Number of bosons in BEC

1ﬁ(r, 1) Bosonic field operator

ar,t) Number density operator [see Egs. (2)]

Ja, 0 Probability current operator [see Egs. (2)]

AT Hermitian conjugate of the quantum operator A

A+ he. A £ AT, where A can be any quantum operator

A Quantum operator A in the mean-field limit

v, || Complex conjugate of v, and || = /Y *y

AZxcec. A £+ A*, where A can be any complex function

v Magnitude of the real vector v (v := /v - v)

Oi(r,t) Mean-field kinetic energy density [see Eq. (8)]

Dy(r, 1) Quantum potential [see Eq. (9)]

v,(r, t) Superfluid velocity [see Eq. (12)]

o(r,t) Phase of the mean-field wave function

[, t) Effective kinetic force [see Eq. (18)]

Ug(r, t) Effective potential [see Eq. (19)]

Fy(r,t) Additional force from the beyond GPE
(Dissipation, rotation, etc. See Sec. 11 B)

e, Unit vector perpendicular to the system in .4

q; Topological charge of the vortex

Z Set of integers

T Position of the core of the vortex [see Eq. (30)]

Ny(M;1) Number of vortices in the region M at time ¢

[see Eq. (30)]

oM Boundary of the region M

¥, Al Closed line integral along 9. M

8(r) Dirac delta function

IM]| Area of the region M

Ug () Spatial average of U (r, t) [see Eq. (45)]

6(x) Heaviside step function

D2(r) D-dimensional disk (radius R) centered at r

By defining the number density operator A(r, ) and the
probability current operator J(r, t) as

Jar, 1) = M[I/IT(I‘, HVY(r,t) —hc.l,

ar 1) =47, P, 1), 2)

where A & h.c. := A & A" for any quantum operator A, one
can show that the integrated density operator | A d*r a(r, 1)

commutes with H(¢) and thus N = (fA d*r A(r, 1)) is con-

stant in time 7, with (A) denoting the expectation value of
the quantum operator A. From the Heisenberg equations of

motion, it follows that

%w-ﬂm):o 3)

TABLE II. Definitions of symbols for the duality to

electrodynamics.

Symbol Definition

pu(r, 1) Vortex charge density [see Eq. (35)]

Ey(r,t) Effective electric field to describe the system
[see Eq. (36)]

vp(r,t) Pseudo-superfluid velocity

[see Egs. (37) and (52) for its meaning]
€t Effective vacuum permittivity

Dy (r,t) Effective electric displacement field
[see Egs. (38)]

Py(r,t) Effective polarization density [see Egs. (38)]

J(r,t) Effective free electric current density
[see Eq. (41)]

H(r,t) Effective magnetic field strength
[see Eq. (44)]

T se(r, 1) Effective free magnetic current density

[see Eq. (49)]
Cyf Effective speed of light in vacuum
(Maximum speed of sound in scalar BEC]

Sq(r, 1) Effective Poynting vector [see Eq. (52)]
Vese(r, t) Effective electric potential [see Egs. (53)]
A, (r,t) Effective electric vector potential
[see Eqgs. (53)]
A, se(r,t) Effective magnetic vector potential
[see Egs. (53)]
By (r,t) Effective magnetic field
[see Eq. (59) and Sec. V]
and
aJr,t) I . .
= ap VIV E N o0 + he)
1 .. . o
- A—/Ilﬁ W, VIV (r, 1) + galr, )Y (r, 1)
2

o WV E0IVYE D Fhe) )
To simplify the problem, we focus on the mean-field limit
where the BEC order parameter is given by ¥ (r,t) ==
(W (r, 1)), satisfying o (r, )Y (r,t) = w(r, )Y (r,t) as we
consider a scalar (single-component) BEC. In this mean-field
limit, one can introduce the BEC number density n(r, t) :=
[ (r, t)|> and the mean-field probability current

h
Jr,t) = m[w*(r, Vi (r,t) —c.c], (®)]

where A &£ c.c. := A £ A* for any complex function A.

In the zero temperature limit, the integrated density is
normalized as f A d*r n(r,t) = N and the mean-field order
parameter v (r, t) obeys the GPE [46,58,59]

oY) | R,
lFlT = [—wv +V(r,t)+gn(r,t)j|1/f(r,t), (6)

which takes the same form as the Heisenberg equation of
motion for ¥ (r,t) upon the replacement (r,t) — ¥ (r,t).
From the Hamiltonian in Eq. (1), we define the mean-field
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energy E(t) of the nonrotating quasi-2D scalar BEC as

E(t):/ dr [@K(r,z)+n(r,r)\/(r,r)+§n2(r,z)], )
A 2

i.e., the energy obtained by neglecting the noncondensed
bosonic particles. Here,

hz
D (r,t) = —W[t//*(r,t)vzw(r,t) +c.c.]

o0 egrn+ LLED]
= nlr, r, ~ )
© 2 n2(r,1)
is the mean-field kinetic energy density, and
n* V2/n(r, 1)
dp(r,1) = — €))

2M @ 0)

is the quantum potential [60,61]. Note that ®g(r, 1) is well-
defined even for ¥ (r,t) =0, whereas ®y(r,t) is singular
where ¥ (r,t) = 0.

From the GPE in Eq. (6), it follows that

an(r, 1)
at

+V-Jr,)=0 (10)

and

oJ(r,t)

Mn(r, t
n(r, t) Y

= Ok (r,t)Vnlr,t) — n(r, t )Vog(r,t)

—n*(r, VIV (r, 1) + gn(r, 1)]
—MJr, )V - J(@r,1). (11)

Following Refs. [62-64], we define the superfluid velocity
v(r,t) as

n(r, t)vg(r,t) =J(r,t), (12)

so that Eq. (10) can be interpreted as the continuity equa-
tion for the superfluid number density n(r, t). However, care
must be taken since J(r,t) itself is well-defined even when
Y(r,t) = 0, whereas vy(r, t) is not well-defined at the loca-
tion where the order parameter vanishes, ¥ (r,t) = 0. As a
result of this feature, previous studies [32,33,38,65] neglected
the fluctuations on n(r, t) to avoid the singularity. However,
we will show that such an approximation is not necessary.

Note that one can formally write v,(r,t) = (B/M)Vo(r,t)
from Eq. (12) using the phase ¢(r, t) of the mean-field wave
function ¥ (r,r) [11,57,62-64]. However, we deliberately
avoid identifying the superfluid velocity in that way since it
may mislead readers into thinking that V x v (r,t) = 0 for
any case. The proper treatment when one defines v,(r,t) =
(h/M)Ve(r, t) can be seen in, e.g., Refs. [32,33,35,66—69].
Here, we will show when V x v,(r, t) may not be zero. From
Eq. (5), one can see that

h
VxJrt) = E[Vl/f*(r,t)] x[Vy(r,0)],  (13)
and according to Eq. (12),

n(r,t)V x J(@r,t)
=[Vn(r,t)] xJ(@r,t)+ nz(r, 1)V x vy(r,t). (14)

Since
[Va@r, )] x J(@r,t) = 2LMZ,[1p(r, VY *(r,t) +c.c.]
x [Y*(r, )V (r, 1) —c.c.]

h
= ﬁn(h DIVY*(r, O] x [V (r, 1],
1
s5)

wherever the superfluid density is finite n(r, t) # 0, the vortic-
ity vanishes, V x vy(r, t) = 0. Conversely, the curl of v,(r, 1)
need not vanish when n(r, t) = 0. In Sec. III, we will deter-
mine the curl of vs(r, ) at n(r,t) = 0 by using the vortex
quantization.

With the definition of v,(r,¢) in Eq. (12), Egs. (10) and
(11) can be written as

on(r,t)
o7 + V. [n@r, Dor,1)] =0 (16)
and
2 ovs(r,t) 2
Mn*(r,t) rramiatl r, Olf g t) = VUg(r, )], (17)

where we introduce the effective kinetic force f (r, ) and the
effective potential U (r, t), defined as

n2(r ) f x(r, 1) = ®g(r,)Vnr, t) — n(r, 1)VOx(r, 1)
(18)
and
Us(r,t) =V (@r,t)+ gn(r, t). (19)

For finite density n(r,t) # 0, one can see that f,(r,t) =
—V[®pr,t)+M vf(r, t)/2]. However, the effective kinetic
force fy(r,t) is singular at n(r,z) = 0. In Sec. III, we will
show how to determine the curl of f(r, ), leading to V x
fx(r,t) # 0 when vortices are moving.

Equation (16) is the continuity equation for the fluid with
flow velocity v(r, t). The absence of a drag force for n(r, t) #
0 underlines the superfluid character, justifying to call v,(r, t)
as the superfluid velocity. We kept n*(r,t) in Eq. (17) to
emphasize that the superfluid velocity v,(r, ) and the effec-
tive kinetic force f(r,t) are singular in the region where
n(r,t) = 0.

B. Case 2: beyond the nonrotating Gross-Pitaevskii equation

The Gross-Pitaevskii equation in Eq. (6) is obtained by
neglecting the bosonic field operator of the noncondensed
particles [46] in the nonrotating case. However, at nonzero
temperature, a dissipation term emerges (e.g.,Refs. [47-54]).
To go beyond the nonrotating dissipationless case, let us gen-
eralize Eqgs. (10) and (11) as

w VT =G D), (20)
and
Mn(r. t)% — 2 DU (1) — VU (r 1))

—MJ@r, )V - Jr, t)+F(r,t), (21)
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where G(r, t) and F(r, t) are real functions to be determined
by the equation ik#dy (r,t)/0t in the model under consider-
ation. Said differently, they are model-dependent. We shall
focus on the specific forms of F(r,t) or G(r,t) for a rotat-
ing quasi-2D scalar BEC without dissipation in Sec. IIB 1.
Nevertheless, in Sec. IV, we will show that one can still build
the effective Maxwell’s equations without specifying them.

From the definition of the superfluid velocity in Eq. (12),
Eq. (21) can be expressed as

dvg(r, 1)

Mn’(r, t
(1) dt

= n(r, ) f(r,t) — VUs(r, 1)]
+F(r,t) — MG, t)n(r, t)v(r,t), (22)

which implies that F(r,t) — MG(r, t )n(r, t )Jvs(r,t) may be
regarded as some kind of (force) x (area) 2 acting on the
fluid at position r at time ¢.

Note that —M G(r, t)v,(r, t)/n(r, t) corresponds to the drag
force, and thus, going beyond the GPE description, the sys-
tem may no longer be a superfluid. However, for notational
convenience, we will continue to use the word “superfluid,”
referring to v (r, t) as the superfluid velocity whether the drag
force exists or not. For notational convenience, we introduce

F(r,t) — MG(r,t)n(r, t)v(r,t)
n2(r,t)

which might be singular in the region where n(r, 1) = 0. By
using Eq. (22), one can determine

Fy(r,t) =

, (23)

Vg (r )+ F(r0)] = M%[v 0y )] + V2l 1),
24)

It can be shown that so far, every result in this Sec. II is
also valid in 3D space. In the following subsection, we will
consider a rotating quasi-2D scalar BEC without dissipation
as an example.

Example: rotating quasi-2D scalar BEC without dissipation

Motivated by the experiment with two concentric counter-
rotating superfluids [70], we will consider a rotating quasi-2D
scalar BEC with angular velocity 2, (r,t) = Q, (r, t)e that
depends on position or time. In the rotating frame, the GPE in
Eq. (6) becomes [57]

2
ihawg’ H_ |:—2h—MV2 LV 1) + on(r, t):|1//(r, 1
h
—,(r,t)- (rx —_V)I//(I‘,I). (25)
l
Therefore one can see that
Gr,t) =R, (r,t) xr]-Vn(r,t), (26)

and after some calculations,
F(r,1) = sMG(r,0)n(r, )vy(r, 1)
—Mn*(r, )R (r, 1) X v,(r, 1)
+Mn*(r, DIV - v,(r, DR (r 1) X T
+Mn(r, t)[vs(r,t) - Vn(r,t)]R, (r,t) xr

—MnP(r, ). (r, 1) x [(r- V)vg(r, 1)]

+Mnr*(r, (eL xr)-v(r, )]V (r, 1)

— IMn@r, (R (r, 1) - [r x vy(r, O} Vn(r, 1)

—IMn@r, Olr - vy(r, IR (r, 1) x Vn(r, 1)

— IMn(r, D[r - Vn(r, D)]RL(r, 1) x vy(r, 1).
(27)

Then, it can be shown that

F(r,t) = MVivg(r,1) - [8.(r,1) x 1]}, (28)

which is the generalization of Eq. (14.6) in Ref. [57] (see Ap-
pendix for the derivation). When €2 (r, ¢) is constant, Eq. (26)
is identical to Eq. (14.5) in Ref. [57].

Note that F(r, t) is singular in the region where n(r, t) =
0. Hence, one should be careful not to assume that V x
F 4(r,t) = 0. As already advanced, we will consider that curl
in the next section.

III. VORTEX QUANTIZATION

A vortex with topological charge g; € Z satisfies § dI -
v(r,t) = 2nh/M)q; around its core at position r =r,,
where Z is the set of integers [41,66] (energetic and stability
considerations generally restrict the values of g; to &=1). Using
Stokes’ theorem, Eqgs. (13)—(15), if we assume that (within the
system) the superfluid density is zero only at the core of the
vortex, one can infer that

nry, (1),1) = 0.

2 h
=V x v (r 1) = ei?Qj(S(r —ry (1), (29

where §(r) is the Dirac delta function, and r = r,,(¢) is the
position of the core of the vortex with topological charge g;
at time 7. In BEC experiments or numerical simulations, the
typical size of the vortex core is about the order of the healing
length (coherence length) &, := hi/+/2M gn,,, where n,, is the
mean BEC number density [41].

In general, even for nonrotating BEC, the topological
charge of the vortex may change over time. It may flip sign
(e.g., from g = 1 to g = —1), turning a vortex into an antivor-
tex, in a nonrotating quasi-2D scalar BEC under anisotropic
trap potential and small g [71]. The nonconservation of the
number of vortices is observed in nonrotating scalar bosons
under the second-order phase transition [14—17]. Its growth
can be explained via the Kibble-Zurek mechanism [5], while
its decay can result from coarsening [72,73]. Also, this change
in the number of vortices is numerically shown in the stochas-
tic GPE under the periodic boundary conditions [13] and in
the stochastic projected GPE [74].

Considering the case of time-dependent topological
charges, for multiple vortices in the nonrotating quasi-2D
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scalar BEC in the region A, Egs. (29) can be generalized to

27l
dl - vy(r 1) = 20N 0,
7€A b = 2 Y450

J=1

n(re,(t),t) =0 forj = 1,2, ..., N, (A; 7).

2 h

= VX, n)=e1 = ;qj(t)S(r ro, (1)), (30)
where ¢;(t) € Z, 3.A represents the boundary of the region
A, 9§a A dl - vy(r, t) represents the closed line integration of
vy(r, t) along the closed curve 9.4, N,(A;t) is the number
of vortices in the region A at time ¢, and g;(t) # 0 for j =
1,2,...,Ny(A;t), whereas g;(t) = 0 for j > N,(A;1).

As we consider a quasi-2D system,

%{el{vas(r,t)]}:el-[Vx%}, 31

and from Eq. (22),

dv,(r, 1)
ot

Me, . [v y } — e (VX Ufg(r D)+ Fy(r, 01).

(32)

Thus, combining Eqs. (31) and (32) and using Stokes’ theo-
rem, it follows that

V X [fg(rt)+ Fg(r,t)] = M%[V X vs(r, 1)], (33)

and for special cases where n(r, 1) = 0 only at vortex cores,

v X [fK(rst)+FSf(r9t)]
a o0
=2, o ;q_i(t)s(r—raj(z)) , (34)

implying that the quantum curl dynamics can describe the
system. Though it is not always possible to build effective
Maxwell’s equations in the quantum curl dynamics [75],
Eq. (33) will be used in Sec. IV to define the effective free
electric current density in the effective Maxwell’s equations,
and in Sec. VI to present how it is related to the time change
of the circulation of v,(r, t).

IV. CONNECTION BETWEEN VORTICES IN QUASI-2D
BEC AND ELECTRODYNAMICS

The mathematical connection between static vortices in a
nonrotating quasi-2D scalar BEC and 2D electrostatics within
the GPE and PVM is well established [9]. In this section, we
will derive the duality between vortices in a quasi-2D BEC
and 2D electrodynamics in general. Motivated by Ref. [39],
let us define the vortex charge density p,(r, t) such that

Ny (Ajt)
/ d*rpu(rt) =) q;(). (35)
A -

j=1

We define p,(r, t) in this way because the curl of v(r, 1)
need not equal the Dirac delta function if the superfluid
density n(r,t) is zero within some finite region around the
core of the vortex. For example, the nonlinearity of the

field equation for superfluid “He changes the curl of the su-
perfluid velocity v(r, t) to the smeared delta function (see
Eq. (1.64) in Part II of Ref. [34]). Note that setting p,(r,t) =
Z;; q;(t)8(r — ry,; (1)) corresponds to the PVM, so we also
consider beyond the PVM.

Now, let us introduce the effective electric field E(r, t)
defined as

Eg(r.1) =

o1 , 36
2ﬂhesfvp(r )X ey (36)

where vp(r, t) satisfies

2T —
VX upr ) = es S Y g8 =, ), GT)

j=1
as if vp(r,t) corresponds to the superfluid velocity in the
PVM up to some irrotational vector (we will show later in
Eq. (52) that vp(r, t) is the velocity of the vortex core), and the
effective vacuum permittivity €y is some constant. Similarly,
we define the effective electric displacement field D¢ (r, ¢) and
the effective polarization density Pg(r, t) as

DSf(rat) = vS(r’t)Xelv

M
2nh
Py(r,t) :=Dg(r,t) — esEs(r, )

_M 38
= h—h[vs(r,t)—vp(r,t)]xel, (38)

whence it follows that
V- Dg(r,t) = py(r, t). (39

Further, note that

V- Pg(r.t) = pv(r,t)—qu(t)5(r—ra,,-(t)), (40)

J=1

represents the deviation from the PVM.
From Eq. (33), we introduce the effective free electric
current density J(r, t) as

el OPg(r, 1)

Jst(r, 1) = = [fx(r, 1)+ Fy(r, )] — ar

so that Eq. (33) can be written as a continuity equation for the
vortex charge density

dpy(r, 1)
ot

However, Eq. (42) does not imply vortex charge conser-
vation; the vortex charge may not be conserved as g(t) may
depend on time ¢. This consideration, including the noncon-
servation of the vortex charge, is one of the main differences
between our work and the previous works relying on the
conservation of the vortex charge [32,69,76,77]. In Sec. VI,
Eq. (42) will be used to show how to calculate the change of
the circulation of vy(r, t) in time.

From Egs. (22), (36), (38), and (41), we find

. (4D

+ V- Jy(r,1) =0. (42)

0D (r, 1) M dvp(r,t) + 0P (r, 1)
_ = — X e S
ot 2 h ot + ot
Ug(r, t
— a4V x| = EED, | 43
2 h
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If Ugk(r,t) is constant in space, Eq. (43) cannot be distin-
guished from Maxwell’s equations with the effective magnetic
field strength H(r, ) = 0. Therefore let us define H(r, t)
as

Usf(rs t) - Usf(t)
—_— e

Hsf(r,t):Z— 17l B

(44)
where

_ 1
Ugs(t) = o /A d*r Ug(r, 1), (45)

is the spatial average of Uy(r, t) and |A| denotes the area of
the region A. Then, Eq. (43) can be written as

0D (r, t
VXHsf(ryt):Jsf(rvt)'F%- (46)
Additionally, as our system is in a quasi-2D,
V- -Hg(r,t) =0, 47

meaning that there is no effective free magnetic monopole.
Using the definitions in Egs. (36) and (38),

M
V x Dg(r,t) = ———e, V- vp(r,t)+ V x Py(r,t). (48)
2rh
By defining the effective free magnetic current density
st (r, 1) as

M
T, 1) = czf[zn—heﬂ ~vp(r,t) — V X Py (r, t)}

e 0 _
—— —[Ug(r,t) — Ugs(2)], 49
+27rf18t[ sf( ) sf( )] ( )
where the effective speed of light in vacuum cg is some
positive constant, Eq. (48) can be expressed as

aHSf(rs t)

1
VXDsf(rvt):__2|:Jm,sf(rat)+ ot

Cst

}. (50)

From the Landau’s criterion of superfluidity [11,57,78], we
will set ¢y to be the maximum value of the speed of sound
in the scalar BEC, i.e., ¢; i= v/@max/M, Where np.x is the
maximum value of n(r, t).

Using Eq. (49), it is straightforward to check that

0omst(r, 1)

V Jnstr,t) =0, 51
P + V Juse(r, t) (51

where the effective free magnetic charge density p,, ¢ (r, t) is
zero [see Eq. (47)]. Equation (51) implies the conservation
of the effective free magnetic charge, so the effective free
magnetic charge always remains zero.

From our effective Maxwell’s equations in matter, given by
Egs. (39), (46), (47), and (50), the effective Poynting vector
Sse(r, t)is

Sse(r, 1) = E(r, 1) x Hy(r, 1)
_ Mop(r,t)

T Qnh) ey [Ust(r, 1) — Use ()], (52)

TABLE III. Effective Maxwell’s equations for the vortices in
the nonrotating quasi-2D scalar BEC. p,(r, t) is the vortex charge
density defined in Eq. (35), J(r, t) is the effective free electric
current density defined in Eq. (41), J,.«(r, t) is the effective free
magnetic current density defined in Eq. (49), and ¢, is the maximum
value of the sound of speed in the scalar BEC. Refer to Egs. (36),
(38), and (44) for the definitions of the effective fields.

Equation References
V -Dy(r,t) = py(r, 1) Eq. (39)
V X Hg(r t) =Js(r,t) + 0Dy (r, 1)/ 0t Eq. (46)
V- -Hg(r,t)=0 Eq. (47)
AV X Dy(r,t) = —Jse(r,t) — 0H (r, 1)/ 01 Eq. (50)

implying that the vortex (free electric charge) moves parallel
to vp(r,t), not parallel to the superfluid velocity vs(r,t) in
general when the number of vortices is not conserved [55,56].
The obtained duality is summarized in Fig. 1 and Table III.

We emphasize that our results are of broader generality
than those reported in Refs. [38,39], that assumed a uniform
condensate density with negligible fluctuation in a nonro-
tating system, or Ref. [40], that assumed inhomogeneous
time-independent condensate density in a nonrotating system
to derive Maxwell’s equations for the (2+1) dimensional su-
perfluid universe. By contrast to these preceding works, the
duality described in Sec. IV can also be applied in the case of
an inhomogeneous time-dependent condensate density n(r, t)
in the (241) dimensional spacetime, even in the rotating frame
[refer to Egs. (26) and (28) for a rotating quasi-2D scalar
BEC without dissipation]. This extension to the inhomoge-
neous time-dependent n(r, t) is important to study dynamics
of vortices because (i) vortices can move, and (ii) n(r,t) = 0
at the core of the vortex. Due to those properties, fluctuation
of n(r, t) cannot be neglected in general.

In what follows, let us introduce the effective elec-
tric potential V, «(r, t), the effective electric vector poten-
tial A, (r,t), and the effective magnetic vector potential
A, s (r, t) such that

1 0A,(r, 1)
Dy(r,t) = =V, (r, 1) — - —<5220
Ci ot

1
__zv X Am,sf(r’ t)’
Cst
1 0A,,(r,t
Hr.1) = - Ansi 1)

2
Ci ot

+V X Ae(r 1) (53)
One can impose the effective Lorenz gauge
2
3 9,48 (1) =0, (54)
n=0

for j =e, m with 9, := 0/dx", x* := (cyt,r) denoting the
position vector in (2+1) dimensional spacetime, A’; g 1) =
(Csfve,sf(ra t)’ Ae,sf(ra t)), and A,l:l,sf(r’ t) = (07 Am,sf(ra t))

013217-7
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Then, the effective Maxwell’s equations in Table III can be
written as

2
D M9, AY G (r 1) = =T (. 1), (55)
n=0

where J'(r, 1) = (cst 0o (r, 1), J5t(r, 1)), and J) ((r 1) =
(0, J st (r, 1)). Here, we use the Minkowski metric 7, with
noo = —1,7n;; =1for j =1,2,and ,, = 0 for u # v.

Using the results in Refs. [79,80], we find that the effective
electric and magnetic vector potentials are given by

u _ G 2. > R T
AL (1) = E/Ad r [wdt ST, 1)
Olcst(t —1') — |r —r'|)
Je =17 — i —rP?

where 0(x) is the Heaviside step function with 6(x) = 0 for
x <0and 6(x) = 1forx > 0.

In principle, by solving Eq. (56), one can get the effective
fields and study the vortex dynamics. However, the Heaviside
step function in Eq. (56) shows that one must take into account
the history or past behavior of J J‘.fsf (r, 1), which is the general
feature of the odd-dimensional spacetime [81] and makes it
difficult to solve Eq. (56).

The results in this section show that one may consider
vortices in a quasi-2D scalar BEC as free electric charges in
2D matter. However, there is one thing missing in the duality
we presented: what is the effective magnetic field By (r, ¢)? In
the next section, we will define the direction of By (r, t) from
the effective Lorentz force and show that the damped PVM
[55,56] can be derived using that effective Lorentz force.

, (56)

V. THE EFFECTIVE FORCE ACTING ON VORTICES

From the duality we found above, one can see that the
effective Lorentz force per unit area acting on a vortex, that

J

Mst
1) = —— | My(r,t
for, 1) Znh[ s(r, 1) + Y

Mst
2mh

Note that Eq. (57) is consistent with the “force per
unit length on a vortex line” in Refs. [32,66]. Another no-
table thing is that Eq. (60) is similar to the damped-PVM
[55,56]. For a nonrotating quasi-2D scalar BEC confined in
a boxlike trapping potential (V(r,t) = 0) as considered in
Ref. [56], Movs(r,t)/0t = fx(r,t)+ Fy(r,t) — gVn(r,t),
where F (r, t) is the additional force arising from going be-
yond the nonrotating dissipationless case (refer to Sec. II B).
In the GPE for a nonrotating quasi-2D BEC, minimization of
the mean-field energy with respect to the phase of the mean-
field Y (r,t) gives V-v,(r,t) =0 [34]. As V- Py(r,t) =
0 in the PVM [see Eq. (40)], for small dissipation where
V -wv4(r,t) ~ 0 is still a good approximation, one may set
Py (r,t) >~ ci(t)vs(r, t), with ¢;(¢) being some function that

Ust(t) — Us(r, 1)

e x {Mcifpu(r, Dvp(r,t) — 2nh[Msf(r, 1)+

is, the “effective free electric charge,” has two contributions
for )= f,(r,t)+ fy(r,t), where

[1@r, 1) = py(r,)E(r, 1)

M
= - pu(r, t)er X vp(r,1) (57)
21 heg

and

folr,t) = Jg(r, 1) x Bg(r, t)

_ [By(r.0)
- 2nh

'el][fK(rvt)_I_st(r?t)]

- ;—i{Bs«r, 0 Uf 1) + Fa(r, )]}
wh

8I)Sf(rv t)

o X Bg(r, t). (58)

As vortices are in a quasi-2D system, B¢ (r, t) must be parallel
to e, in order for f,(r,¢) to be in the xy plane. However,
there is no constraint on B (r, ¢) to build the duality between
vortices in a quasi-2D scalar BEC and electrodynamics. In
principle, one may thus set

B (r,t) == puo[Hp(r, ) + Mg (r, t)e, ]
Usf(t) - Usf(rv t)

= Msf|:Msf(r’t)+ i

:|eL, (59)

where My (r,t)e, is the effective magnetization vector, and
the constant g := 1/ esfcff is the effective vacuum permeabil-
ity. With this choice,

}[fK(r, 1)+ Fy(r,1)]

(60)

Usf(t) - Usf(rvt) aPsf(l)
27 h ot '

(

only depends on time ¢. Therefore, with a suitable choice of
Mg (r, t) and an appropriate definition of the effective vortex
mass, one may derive the damped-PVM [55,56]. Or one may
use Pg(r,t) >~ ci(t)vg(r,t) together with the definition of
P (r,t) in the second line in Egs. (38) to get

2 h
vp(r, 1) > vy(r, 1) — 7610)% x vs(r,t),  (61)

and claim from the effective Poynting vector in Eq. (52) that
the point vortex (free electric point charge) should move with
velocity vp(r, t), which also arrives to the damped-PVM men-
tioned above. In that sense, Eq. (60) describes the generalized
damped vortex model.
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VI. TEMPORAL CHANGE OF THE CIRCULATION
IN A STATIC AREA

Under the PVM,

por, 1) =) g8 (r —re, (1)), (62)

J=1

so we may choose D (r,t) = esE(r, t), that is, we may
set Py(r,t) =0 in the PVM. Note that it is equivalent to
set vp(r,t) = vy(r, t), which is the usual choice in the PVM
(e.g., Refs. [42,45]). In fluid mechanics, for any differentiable
function Q(r, t), the Reynolds transport theorem [82,83] states
that

d 3
E[/de rQ(r,t):|

_ / d3r{BQ(””+v-[Q<r,r>vv<t><r,r>]}, ©63)
V) ot

where vy () (r, t) is the velocity of the moving volume V().
By generalizing Eq. (63) to 2D systems and applying it to
Eq. (42), with Pg(r, t) = O [or, equivalently, to Eq. (33)], one
finds for any static area M in the quasi-2D system in the
region A that

Ny(Mt)

d
s > 4o

j=1

= —% dle, - [Js(r,t)withPgy (r,t) = 0]
IM

=5 dl - [fg(r,t) + F(r, )], (64)

2w h IM
where e,, is the unit outward normal vector. The last line in
Egs. (64) is independent of whether one uses the PVM or
not, according to Eq. (33). Hence, if fg(r,t) + Fy(r,t) is
perpendicular to d M, the circulation in the region M does not
change in time. Since f(r, t) is related to the modulation of
the BEC number density n(r, t) [see the definition in Eq. (24)],
phonon emission plays a role in annihilation and creation of
vortices, as demonstrated in Refs. [84,85]. For finite density
n(r,t) #0 in dM, one can use fg(r,t) = —V[Dp(r, 1)+
va(r, t)/2].

As an example, let us consider the case where only one
vortex is positioned at the center of the circular quasi-2D
scalar BEC with circular symmetry. We thus assume no ex-
ternal drag or other effect that breaks circular symmetry. Due
to this symmetry, f(r, t) is perpendicular to the boundary
of any disk 9D3(0) with R > 0, where D}(r.) denotes a
d-dimensional disk with radius R centered at r.. Within the
GPE, F«(r, t) = 0 for a nonrotating system, while F(r,t) =
MV{vy(r,t)-[R1(r,t) x r]} in the case of a rotating system
(see Eq. (28)), which will also be perpendicular to dDz(0) due
to the symmetry. Therefore, the vortex will be dynamically
stable within the GPE description both in the rotating and
nonrotating cases. Conversely, for a rotating or nonrotating
quasi-2D scalar circular dissipationless BEC, if the system
has circular symmetry, a single vortex cannot emerge at the
center if there are no vortices initially. This is consistent with

the findings in Ref. [27], where vortex creation is described at
the border of the trap.

Note that the results in this section only tells how the cir-
culation (total topological charges of vortices) in a static area
changes in time. Therefore, they do not exclude the possibility
of the annihilation and creation of two vortices with opposite
charges. In the next section, we will show that the stability of
the vortex could be understood with the help of the effective
Poynting vector introduced in Eq. (52).

VIL. STABILITY OF VORTICES IN QUASI-2D SCALAR BEC

It is known that the hydrogen atom cannot be stable in
classical mechanics due to the radiation. We will show that
the vortex number conservation in the PVM for a nonrotating
dissipationless quasi-2D scalar BEC in a box trap [42—45] can
be understood by using the duality we constructed in Sec. IV.

In the PVM, the vortex core size is neglected and vp(r, t) =
vy(r, t), meaning that E(r, 1) = Dy (r, t). Then, regardless of
its charge, the vortex velocity is always perpendicular to the
effective electric field E«(r, t) (see Egs. (36), (38), and (39))
due to other vortices. Then one can conclude that the vortices
cannot collide in the PVM unless one uses the damped PVM
or other models that make vp(r, 1) # vy(r, t). This is consis-
tent with the results in [42-45].

For a nonrotating quasi-2D scalar BEC in a box trap,
n(r,t) is zero only at the boundary or at the positions of
point vortices, and n(r,t) >~ ¢ otherwise where ¢ is some
positive constant. Also, if there is no dissipation, v(r,t)
should be always parallel to the boundary [see Eq. (16)].
This makes Ug (r, t) ~ U (¢) around any infinitesimal closed
curve around the point vortex as long as no other vortices
are infinitesimally close to that vortex. Then, in the PVM,
the effective Poynting vector S (r,?) is zero around any
infinitesimal closed curve around the vortex since vortices
cannot collide, meaning that there is no effective radiation
and hence the vortex does not lose its energy. In conclu-
sion, the PVM cannot exhibit vortex annihilation/creation in
a nonrotating dissipationless quasi-2D scalar BEC in a box
trap. Of course, this conclusion does not hold for the damped
PVM or other models where vp(r,t) # vy(r,t), and indeed
the damped PVM can explain the vortex annihilation [56].
Also, if there is dissipation, vortices may disappear at the
boundary in the PVM since vy(r, ) is not parallel to the
boundary.

From the above discussion, one can infer that the effective
photons would be emitted in the annihilation of vortices. As
it is known that the phonon emission plays a role in the
annihilation and creation of vortices [84,85], the phonons in a
quasi-2D scalar BEC would behave like the effective photons.

In the next section, we discuss some implications of the
duality we established using a GPE description with the PVM.

VIII. NONROTATING QUASI-2D SCALAR BEC
WITHIN THE GROSS-PITAEVSKII EQUATION
AND THE POINT-VORTEX MODEL

Given that V -v,(r,t) =0 in the GPE for nonrotat-
ing scalar BEC [34], we may introduce using Eq. (24) a
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differentiable real function C(r, t) such that
Sr@r, 1) =VUs(r, 1)+ V x [C(r,t)e,]. (65)

Then, using Eq. (33), one can see that

Clr 1) = —hf a2 1n(|'_’|)
y L

> g )s(r
j=1

where L is some positive constant with units of length. In
this special case, by choosing P (r, t) = 0 in the PVM as we
discussed below Eq. (62),

—r,®) |, (66)

1 NGOl = 1o, (O] = ¢, (1)
.]sf(",l)—_gjg1 |r—raj(t)|2
Fo (1) - [ — 1o (1)]
——Z;A) oo )
J
+ L VIV ) + g1, ©7)
2 h

where v(¢) := dv(t)/dt for any vector v(¢). This explicitly
shows that the vortex core movement is related to the effective
free electric current density, as is expected from the duality we
presented.

From the continuity equation in Eq. (16), provided that V -
vS (r ’ t ) = 07

on(r,t)
ot

and since we set Py (r,t) =0
m,s 4 t d2 Vr,t
Jst(r.1) = hh&[( - vuf 9 alﬁ

) — W/Adzrl n(rl,t)].

(69)

= —v,(r,t)- Vn(r,1), (68)

TN ey
— | n(r,
S5xhor

This implies that the description can be simplified if the ex-
ternal potential V (r,¢) and the BEC number density n(r, 1)
are constant in time, or their variation can be neglected. This
motivates the following example.

A. Homogeneous BEC number density limit

Let us ignore the spatial fluctuation of n(r, t) for simplicity.
Of course, this limit is valid only for vanishing healing length
&, — 0; else, the spatial fluctuation of n(r,t) cannot be ne-
glected since n(r, t) = 0 at cores of vortices. This neglect of
the size of the vortex is another assumption in the PVM. As
we already discussed in Sec. VII, the effective Poynting vec-
tor is approximately zero in this limit, reassuring the known
results that the vortices in nonrotating quasi-2D scalar BEC
cannot collide in the PVM, thus leading to the vortex number
conservation in the GPE + PVM description [43,44].

If vortices do not move, dp,(r,t)/dt =0 and Dg(r,t) =
—VV,(r,t), since Jo(r, t) ~ 0 from Eq. (67). By using the

2D Green'’s function with a static source [79],

1 L
Vesf(rvt):f d*r —p,(r')In (—>
’ 2m Ir—r'|

N, (A)
< L
=Y iy . (70)
P 2 Ir—rq

As an upshot, one can recover the well-known logarithmic
vortex interaction energy [11,41,66].

Now, let us consider a more general case in which vor-
tices are created at + = 0 and vortices move after creation,
i.e., py(r,t) = Z]]YL(IA) q;j8(r —ry,(t)) fort > 0 and zero oth-
erwise. In the near-field approximation [86,87] where the
retardation is negligible,

/wm,mWa—m—v—mﬁm>
JE =1 = Ir —ry @)

/ ar' Olestt — 1) —dj(1))
~ t
0 \/cgf(t — 1Y — d2(1)
dt
= 0(cst — d;(t)) —— (71)
40/ feyr)? — d3 1)

where dj(t) := |r —ry,(t)| and T ==t —t'. From this result,

/ O (et — 1) — Ir—ra,(t )
\/c (t — — 1o, (1)

0 &ﬂ+ﬂmﬁ—v—mﬁw

2 — 1, ()]

Ve, j(r 1) = —

[

2 \r
X O(cstt — |r —rq; (1)), (72)

in the near-field approximation. Note that V, (r,t) =
Zjil Ve,j(r 1), so V. ;(r,t) is the effective electric potential
due to the vortex with topological charge g; whose core is at
ry;(t)attimet > 0. Since V,,;(r, 1) = O for et < |r —ry, (1)1,
we will focus on the case where ¢yt > |r — 1y, (7)|. Note that

qj 2cpt |r_rot,-(t)|2
Vei(ryt) ~ —In| ———— — ).
00 h“«v—%m0+0<<mﬁ

(73)

Let us assume there is a single moving vortex with
charge q; at rq,(¢) for t > 0. As we obtain V, «(r, t) in the
near-field approximation, for cst > |r — ry, (¢)|, the approxi-
mate superfluid velocity v(?(r, ) when neglecting J(r, t) is

2h
vO(r, 1) = —%Q X VWost(r, 1) = Zv(o)(r 0, (74)

j=l1
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where
h r—ry(t)
0) L
v.i(rt)y~q—e X ————— 75
51 ( QoL r—re OF (75)
and
h —ry (t
v 1) ~ g1 ey x r T ®
ct 4/ (et = Ir = ray (0P
1
(76)

X 9
Jie? = Ir =, 0O

in the near-field approximation.

The first component, v(YOI) (r,t) in Eq. (75), is the simplest
extension of the superﬂuici velocity due to the single static
vortex whose core is at r,,. However, that is not enough for
a moving vortex, as one may infer from the electric field
of the moving particle (Jefimenko’s equations [88,89]). Note
that

h r—r, (l‘) |r_ra (t)|2
(0) ’ ) ~ " 1 O ! . 77
Vi (1) = 1 M 2(est) - (et ) 7

One can check that V x {e| x [r —rq, (¢)]} = 2e, as we con-
sider a quasi-2D system. However, Eqs. (76) and (77) are
valid only in the near-field approximation and thus the closed
line integral of Eq. (77) around the core of the vortex at
Iy, (t)is of order O(Jr — 1y, (t)|?/(cst)?) , which is small since
Cst > |r —ry, (2)].

With the above results,

V[P, 1) - vV, 1)]

~_2< ﬁ)sz(%( O
— M) = oF “

_ 2
+@<M)’ (78)

(Csft )2

in the near-field approximation, showing that J(r, ) # O.
The correction due to the nonzero J(r, t) is of order O(jr —
ro, (1))?/(csst)?) relative to v§?1) (r, 1), but further evaluation
needs numerical calculations to solve Eq. (56) under the spe-
cific system in the region A one studies. One may consider it
as solving the effective Liénard-Wiechert potentials in (241)-
dimensional space-time since vortices in the PVM can be
regarded as free electric point charges, according to the duality
we described. Given that the main subject of this paper is to
present the duality between vortices in a quasi-2D scalar BEC
and electrodynamics, we do not discuss this further.

B. Relation to 2D Coulomb gas and vortex spacing distribution

As we showed in Eq. (70), the static vortices in the
nonrotating quasi-2D BEC in the GPE + PVM description
can be mapped to the 2D Coulomb gas. Using the duality
between the 2D Coulomb gas and the (1+1) dimensional
sine-Gordon model [90,91], the equivalence between the sine-
Gordon model and the massive Thirring model [92], and the
work in Ref. [93] that connected between the Berezinskii-
Kosterlitz-Thouless (BKT) transition [94,95] and the 2D
Coulomb gas, one can infer that the BKT transition may

happen in the nonrotating quasi-2D BEC with vortices. Using
the results in Ref. [96], if the topological charge of the vortex
is £Q and the total charge is zero, it can be shown that the
BKT transition occurs when the effective temperature Teg of
the system is at 7;, which takes the value

hz 2
="
2Mkp

(79)

in the GPE + PVM description.

Note that this effective temperature T may not be directly
related to the temperature of the BEC system. The GPE is the
zero temperature limit of the Heisenberg equation of motion
for the bosonic field operator 1/}(r, t). Nevertheless, if there is
no vortex dipole in the simulation using the GPE, Ti > T..
Otherwise, Tep < 7.

Another notable connection is that, in a newborn super-
fluid, the early vortex spacing distribution closely follows
the Poisson point process (PPP) in the PVM with a density
predicted by the Kibble-Zurek mechanism (KZM) [13,97].
Further, the spacing distribution of the 2D Coulomb gas
also follows a PPP when the effective temperature is infinite
[98,99]. Assuming that the initial movement of the vortices
can be neglected, the topological charge of each vortex is
conserved initially, and the deviation from the GPE is neg-
ligible, vortices can be mapped to the 2D Coulomb gas when
the measurement is done soon after the vortex creation. Then,
we may understand the similarity between Refs. [13] and
[98,99] with the help of the duality discussed in this paper:
the initial effective temperature of the vortices is very high
when the vortices are created via KZM (no vortex dipole
exists initially), and they cool down as time goes on until the
duality between vortices and 2D Coulomb gas is broken, given
that the motion of vortices cannot be neglected as time goes
on. After that, vortex-antivortex annihilation occurs instead of
forming vortex dipoles since vortices can no longer be mapped
to the 2D Coulomb gas. One should solve Eq. (56) to find
corrections beyond the 2D Coulomb gas.

IX. CONCLUSION

The description of vortices in two-dimensional systems
as a Coulomb gas has a fruitful history. In this work, we
have provided a description of vortices in a quasi-2D scalar
BEC in terms of 2D electrodynamics. Such duality goes
beyond the previous findings not only by deriving the ana-
log of Maxwell’s equations that account for inhomogeneous
time-dependent BEC with and without dissipation but also by
considering the superfluid rotation.

We have elucidated how to map the vortices in a quasi-2D
scalar BEC to Maxwell’s equations in (2+1) dimensional
space-time. Such formulation may find applications in the
study of nonequilibrium BEC proliferated by vortices, with
applications to the study of vortex patterns, including clus-
tering and melting [29,31], quantum turbulence [100,101],
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stochastic geometry of quantum matter [13,97,99], and vor-
tex pattern detection via a quantum dynamical microscope,
that relies on controlled expansions realizing a shortcut
to adiabaticity to scale up the superfluid cloud [102-104].
Likewise, our findings can be applied to the dynamics
of phase transitions [14-17,105,106], including the Kibble-
Zurek mechanism [5,107], the generalizations to account for
the universal statistics of defects [108,109], and fast-quench
universality [12,110].

An interesting prospect is the generalization of our results
to BEC characterized by higher-order nonlinearities (e.g., due
to losses and confinement), dipolar interactions [111], and
spinor degrees of freedom [8], where the mean-field wave-
function ¥ (r, 1) = [Y/(r, 1) V_s(r,1)]" for a spin-f
system does not commute with its Hermitian conjugate
¥ (r, t) in general.

Beyond the realm of ultracold gases, our findings can be
applied and generalized for polaritonic BEC and quantum
fluids of light [112]. The extending of our results beyond
the quasi-2D case is also an open problem. For example,
in 3D, one can infer from Eqs. (46) and (47) that there
would be effective free magnetic charge since e; would cor-
respond to the unit vector along the vortex line, which is both
space- and time-dependent as the vortex line can be open or
closed [14,68,113—-115]. This effective free magnetic charge
would affect the effective magnetic field strength H(r, 1),
introducing additional terms to the vortex line interaction in
Refs. [34,35] that neglected vortex core regions.

One may also wonder whether other electromagnetic dual-
ities exist to describe the different types of topological defects
that are classified by homotopy theory [1,6,7]. Beyond vor-
tices, are there electromagnetic dualities valid for domain
walls, monopoles, textures, and skyrmions? Can a unified
duality valid for any type of topological defect be conceived?
Recently, a similar duality to the one we have reported has
been introduced for defects in crystalline solids in the Her-
mitian case of elastic media [87]. This suggests that it might
be possible to build a duality between topological defects and
Maxwell’s equations in other systems.
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APPENDIX: DERIVATION OF EQ. (28)
In a quasi-2D system with &, (r,¢) = Q2 (r, t)e,,
Vi{vg(r,t) - [, (r,t) x r]}
=—rxe[vy(r,t) - VQ,(r,1)]
—rxQrO)[V v, )] +vs@r, ) x y(r, 1)

+ [ V)vs(r, )] x £, (r, 1)
+ v5(r, 1) X [(r- V)R (r, 1)].

From Egs. (26) and (27),
F(r,t) —MG(r,t)n(r, t)v(r,t)
= Mnr2(r, O)V{vy(r,1) - [, (r, 1) x r]}

(AD)

+ Mn*(r,O[v,(r, t) - VQu(r, t)r x e,
— Mr*(r,0)[r - VQu(r,D)]og(r, 1) x e,
+ Mn*(r,t){es - [r x vy(r, )}V (r, 1)
+ Mn(r,t)R,(r,t) x {[vg(r,t) - Vn(r, t)]r}
— %Mn(r, DR (r,t) x {[r- Va(r, t)]v(r, 1)}
— IMn(r, )R (r, 1) x {[r - v,(r,)]Vn(r, 1)}
— IMn(r, t){(RL(r, 1) - [r x Valr, D]}v,(r, 1)
— IMn@r (R, 1) - [r < v,(r, )} Va(r, 1), (A2)
The third to fifth lines in Eq. (A2) can be written as
an(r, vy(r,t)-VQ, (r,t)r x e,
— MR, )[r-VQ (r,0)]vs(r, 1) x e,
+ Mnr*(r, e, - [r x vs(r, DIV (r, 1)
= Mn*[e; - VQL(r,t)]r x vy(r, 1), (A3)

which is zero since e, - V = 0 in a quasi-2D system.
The sixth to the last lines in Eq. (A2) can be written as

Mn(r, )R, (r,t) x {[vy(r,t) - Vu(r, t)]r}
— IMn(r, )1 (r, 1) x {[r - Va@r, D]v,(r, 1)}
— IMn(r, )R (r, t) x {[r - vs(r, )] Vn(r, 1)}
— IMn(r, {1 t) - [r x Va@r, O}v,(r, 1)
— IMn(r, t){RL(r, 1) - [r x vy(r, )]} Vn(r, 1)
= IMn(r,1)Q.(r, D)leL - Vn@r, O)lr x v,(r, 1)
+ %Mn(r, 1) (r,t)ey - vy(r,t)]r x Vn(r, t),
(Ad)

which is also zero since v,(r, 1) - e, = 0 in a quasi-2D scalar
BEC. This concludes the derivation of Eq. (28).
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