N.D. Mueller et al. Closing yield gaps through nutrient and water management Nature 2012 490 254 257 1:CAS:528:DC%2BC38Xht1Kku7vI
W. Mauser et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion Nat. Commun. 2015 6 1:CAS:528:DC%2BC2MXhvVequ7vJ
K.F. Davis M.C. Rulli A. Seveso P. D’Odorico Increased food production and reduced water use through optimized crop distribution Nat. Geosci. 2017 10 919 924 1:CAS:528:DC%2BC2sXitVajtbfI
C. Folberth et al. The global cropland-sparing potential of high-yield farming Nat. Sustain. 2020 3 281 289
J.M. Schneider F. Zabel F. Schünemann R. Delzeit W. Mauser Global cropland could be almost halved: assessment of land saving potentials under different strategies and implications for agricultural markets PLoS ONE 2022 17 e0263063 1:CAS:528:DC%2BB38Xls1yntro%3D
P. Potapov et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century Nat. Food 2021 3 19 28
Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03 (Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA), 2012).
D. Tilman M. Clark Global diets link environmental sustainability and human health Nature 2014 515 518 522 1:CAS:528:DC%2BC2cXhvFGltLrN
C. Schmitz et al. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison Agric. Econ. 2014 45 69 84
F. Zabel et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity Nat. Commun. 2019 10
R. Delzeit F. Zabel C. Meyer T. Václavík Addressing future trade-offs between biodiversity and cropland expansion to improve food security Reg. Environ. Change 2017 17 1429 1441
L. Kehoe et al. Biodiversity at risk under future cropland expansion and intensification Nat. Ecol. Evol. 2017 1 1129 1135
D. Tilman et al. Future threats to biodiversity and pathways to their prevention Nature 2017 546 73 81 1:CAS:528:DC%2BC2sXovFCqtL0%3D
D.R. Williams et al. Proactive conservation to prevent habitat losses to agricultural expansion Nat. Sustain. 2021 4 314 322
W.F. Laurance J. Sayer K.G. Cassman Agricultural expansion and its impacts on tropical nature Trends Ecol. Evol. 2014 29 107 116
H.K. Gibbs et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s Proc. Natl Acad. Sci. USA 2010 107 16732 16737 1:CAS:528:DC%2BC3cXht1ais7vE
Meng, Z. et al. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain.6, 758–768 (2023).
Tubiello, F. N. et al. Greenhouse gas emissions from food systems: building the evidence base. Environ. Res. Lett.16, 065007 (2021).
F.N. Tubiello et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012 Glob. Change Biol. 2015 21 2655 2660
de Andrade Junior, M. A. U. et al. How to halve the carbon and biodiversity impacts of biofuel-driven land-use change in Brazil. Biol. Conserv.260, 109214 (2021).
R.A. Houghton Carbon emissions and the drivers of deforestation and forest degradation in the tropics Curr. Opin. Environ. Sustain. 2012 4 597 603
P.C. West et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land Proc. Natl Acad. Sci. USA 2010 107 19645 19648 1:CAS:528:DC%2BC3cXhsVymu7nL
R. Ganzenmüller et al. Land-use change emissions based on high-resolution activity data substantially lower than previously estimated Environ. Res. Lett. 2022 17 064050
Q. Zheng et al. Future land-use competition constrains natural climate solutions Sci. Total Environ. 2022 838 1:CAS:528:DC%2BB38XhsFCkt7zF
R. Delzeit et al. Forest restoration: expanding agriculture Science 2019 366 316–317
Transforming our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (United Nations General Assembly, 2015).
Paris Agreement to the United Nations Framework Convention on Climate Change (United Nations Framework Convention on Climate Change, 2015).
First Draft of the Post-2020 Global Biodiversity Framework (United Nations Convention on Biological Diversity, 2020).
Winkler, K., Fuchs, R., Rounsevell, M. D. A. & Herold, M. HILDA+ Global Land Use Change between 1960 and 2019. PANGAEA https://doi.org/10.1594/PANGAEA.921846 (2020).
F. Eigenbrod et al. Identifying agricultural frontiers for modeling global cropland expansion One Earth 2020 3 504 514
E. Stehfest et al. Key determinants of global land-use projections Nat. Commun. 2019 10
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
P.G. Curtis C.M. Slay N.L. Harris A. Tyukavina M.C. Hansen Classifying drivers of global forest loss Science 2018 361 1108 1111 1:CAS:528:DC%2BC1cXhsleht7rP
H.J. Geist E.F. Lambin Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations Bioscience 2002 52 143 150
A. Marques et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth Nat. Ecol. Evol. 2019 3 628 637
R. Chaplin-Kramer et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage Proc. Natl Acad. Sci. USA 2015 112 7402 7407 1:CAS:528:DC%2BC2MXhtVSitrbJ
A. Molotoks et al. Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios Phil. Trans. R. Soc. Lond. B 2020 375 20190189 1:CAS:528:DC%2BB3cXhslGktrnJ
A. Molotoks et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage Glob. Change Biol. 2018 24 5895 5908
OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032 (OECD Publishing, 2023).
Glasgow Leaders’ Declaration on Forests and Land Use (United Nations Climate Change Conference of the Parties, 2021).
Directorate-General for Environment. Proposal for a Regulation on Deforestation-free Products (European Commission, 2021).
Land Cover CCI Product User Guide Version 2 Technical Report (ESA, 2017).
The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019).
J.M. Schneider F. Zabel W. Mauser Global inventory of suitable, cultivable and available cropland under different scenarios and policies Sci. Data 2022 9
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).
R.J. Scholes R. Biggs A biodiversity intactness index Nature 2005 434 45 49 1:CAS:528:DC%2BD2MXhslClsLw%3D
J. Riggio et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems Glob. Change Biol. 2020 26 4344 4356
A. Aguiar B. Narayanan R. McDougall An overview of the GTAP 9 Data Base J. Glob. Econ. Anal. 2016 1 181 208
N. Myers R.A. Mittermeier C.G. Mittermeier G.A.B. da Fonseca J. Kent Biodiversity hotspots for conservation priorities Nature 2000 403 853 858 1:CAS:528:DC%2BD3cXhs1Olsr4%3D
E. Hansis S.J. Davis J. Pongratz Relevance of methodological choices for accounting of land use change carbon fluxes Glob. Biogeochem. Cycles 2015 29 1230 1246 1:CAS:528:DC%2BC2MXhtlOgt73N
R.A. Houghton et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere Ecol. Monogr. 1983 53 235 262 1:CAS:528:DyaL3sXlsVGgt7w%3D
Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles 22, GB3018 (2008).
R. Prestele et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison Glob. Change Biol. 2016 22 3967 3983
A. De Palma et al. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012 Sci. Rep. 2021 11
Hudson, L. The 2016 release of the PREDICTS database. Natural History Museum Data Portal https://doi.org/10.5519/0066354 (2016).
Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity Vol. CBD/COP/DEC/15/4 (United Nations Convention on Biological Diversity, 2022).
P. Alexander et al. Assessing uncertainties in land cover projections Glob. Change Biol. 2016 23 767 781
W. Mauser H. Bach PROMET – Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds J. Hydrol. 2009 376 362 377
J. Meier F. Zabel W. Mauser A global approach to estimate irrigated areas – a comparison between different data and statistics Hydrol. Earth Syst. Sci. 2018 22 1119 1133
Baldos, U. L. Development of GTAP 9 Land Use and Land Cover Data Base for Years 2004, 2007 and 2011 GTAP Research Memorandum No. 30 (GTAP, 2017).
Fischer, G. et al. Global Agro‐ecological Zones (GAEZ v3.0) (IIASA/FAO, 2012).
Ramankutty, N., Hertel, T. & Lee, H.-L. Global Land Use and Land Cover Data for Integrated Assessment Modeling (Purdue University, 2004).
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).
Purvis, A. in Advances in Ecological Research Vol. 58 (eds Bohan, D. A. et al.) 201–241 (Academic Press, 2018).
T. Newbold et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment Science 2016 353 288 291 1:CAS:528:DC%2BC28XhtFCkur7M
Palma, A., Sanchez-Ortiz, K., Phillips, H. R. P. & Purvis, A. Calculating the biodiversity intactness index: the PREDICTS implementation. Zenodo https://doi.org/10.5281/zenodo.5642946 (2021).
Center for International Earth Science Information Network (CIESIN), Columbia University. Gridded Population of the World (GPW), v4: Population Density, v4.11 https://doi.org/10.7927/H49C6VHW (NASA Socioeconomic Data and Applications Center (SEDAC), 2018).
J.R. Meijer M.A.J. Huijbregts K.C.G.J. Schotten A.M. Schipper Global patterns of current and future road infrastructure Environ. Res. Lett. 2018 13 064006
Contu, S. et al. Release of data added to the PREDICTS database. Natural History Museum Data Portal https://doi.org/10.5519/jg7i52dg (2022).
Pongratz, J. C. R., Raddatz, T. & Claussen, M. A global land cover reconstruction ad 800 to 1992: technical description. Berichte zur Erdsystemforschung 51, 1–72 (2008).
R.D. Garrett E.F. Lambin R.L. Naylor The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon Land Use Policy 2013 34 265 275
P. Meyfroidt et al. Middle-range theories of land system change Glob. Environ. Change 2018 53 52 67
P.H. Verburg E.C. Ellis A. Letourneau A global assessment of market accessibility and market influence for global environmental change studies Environ. Res. Lett. 2011 6 034019
Y. le Polain de Waroux et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco Ann. Am. Assoc. Geogr. 2018 108 204 225
Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett.14, 053003 (2019).
T.W. Hertel N. Ramankutty U.L.C. Baldos Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions Proc. Natl Acad. Sci. USA 2014 111 13799 13804 1:CAS:528:DC%2BC2cXhsFSju7nJ
D. Byerlee J. Stevenson N. Villoria Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 2014 3 92 98
J.R. Stevenson N. Villoria D. Byerlee T. Kelley M. Maredia Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production Proc. Natl Acad. Sci. USA 2013 110 8363 8368 1:CAS:528:DC%2BC3sXhtFSgt7fF
N. Villoria Technology spillovers and land use change: empirical evidence from global agriculture Am. J. Agric. Econ. 2019 101 870 893
B. Phalan M. Onial A. Balmford R.E. Green Reconciling food production and biodiversity conservation: land sharing and land sparing compared Science 2011 333 1289 1291 1:CAS:528:DC%2BC3MXhtV2jt7jE
N.E. Borlaug Mankind and civilization at another crossroad: in balance with nature—a biological myth Bioscience 1972 22 41 44
Phalan, B. What have we learned from the land sparing-sharing model? Sustainability10, 1760 (2018).
T.K. Rudel et al. Agricultural intensification and changes in cultivated areas, 1970–2005 Proc. Natl Acad. Sci. USA 2009 106 20675 20680 1:CAS:528:DC%2BC3cXksFOntg%3D%3D
R.M. Ewers J.P.W. Scharlemann A. Balmford R.E. Green Do increases in agricultural yield spare land for nature? Glob. Change Biol. 2009 15 1716 1726
Hertel, T. Implications of Agricultural Productivity for Global Cropland Use and GHG Emissions: Borlaug vs. Jevons (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, 2012).
R. Seppelt C. Arndt M. Beckmann E.A. Martin T.W. Hertel Deciphering the biodiversity–production mutualism in the global food security debate Trends Ecol. Evol. 2020 35 1011 1020
M. Beckmann et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis Glob. Change Biol. 2019 25 1941 1956
T. Newbold et al. Global effects of land use on local terrestrial biodiversity Nature 2015 520 45 50 1:CAS:528:DC%2BC2MXmtlKlu7k%3D
N. Villoria R. Garrett F. Gollnow K. Carlson Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil Nat. Commun. 2022 13 1:CAS:528:DC%2BB38XisVWntLfN
F. Humpenöder et al. Peatland protection and restoration are key for climate change mitigation Environ. Res. Lett. 2020 15 104093
J. Leifeld C. Wüst-Galley S. Page Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100 Nat. Clim. Change 2019 9 945 947 1:CAS:528:DC%2BC1MXitleqs7%2FE
S. Carter et al. Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties Environ. Res. Lett. 2018 13 014002
J.C. Habel et al. European grassland ecosystems: threatened hotspots of biodiversity Biodivers. Conserv. 2013 22 2131 2138
J. Bengtsson et al. Grasslands—more important for ecosystem services than you might think Ecosphere 2019 10
A. Popp et al. Land-use protection for climate change mitigation Nat. Clim. Change 2014 4 1095 1098 1:CAS:528:DC%2BC2cXhvFKmu7fM
B.P. Murphy A.N. Andersen C.L. Parr The underestimated biodiversity of tropical grassy biomes Phil. Trans. R. Soc. B 2016 371 20150319
R.D. Bardgett et al. Combatting global grassland degradation Nat. Rev. Earth Environ. 2021 2 720 735
E. Prangel et al. Afforestation and abandonment of semi-natural grasslands lead to biodiversity loss and a decline in ecosystem services and functions J. Appl. Ecol. 2023 60 825 836
G.R. Colli C.R. Vieira J.C. Dianese Biodiversity and conservation of the Cerrado: recent advances and old challenges Biodivers. Conserv. 2020 29 1465 1475
B.B.N. Strassburg et al. Moment of truth for the Cerrado hotspot Nat. Ecol. Evol. 2017 1 0099
A. Salazar G. Baldi M. Hirota J. Syktus C. McAlpine Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review Glob. Planet. Change 2015 128 103 119
R. Beuchle et al. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach Appl. Geogr. 2015 58 116 127
I.R. Staude et al. Prioritize grassland restoration to bend the curve of biodiversity loss Restor. Ecol. 2023 31
J.P.S. Vieira-Alencar et al. How habitat loss and fragmentation are reducing conservation opportunities for vertebrates in the most threatened savanna of the world Perspect. Ecol. Conserv. 2023 21 121 127
Schneider, J. M. et al. Global dataset of areas under cropland expansion pressure. Zenodo https://zenodo.org/records/12505548