[en] Intensive agriculture with high reliance on pesticides and fertilizers constitutes a major strategy for ‘feeding the world’. However, such conventional intensification is linked to diminishing returns and can result in ‘intensification traps’—production declines triggered by the negative feedback of biodiversity loss at high input levels. Here we developed a novel framework that accounts for biodiversity feedback on crop yields to evaluate the risk and magnitude of intensification traps. Simulations grounded in systematic literature reviews showed that intensification traps emerge in most landscape types, but to a lesser extent in major cereal production systems. Furthermore, small reductions in maximal production (5–10%) could be frequently transmitted into substantial biodiversity gains, resulting in small-loss large-gain trade-offs prevailing across landscape types. However, sensitivity analyses revealed a strong context dependence of trap emergence, inducing substantial uncertainty in the identification of optimal management at the field scale. Hence, we recommend the development of case-specific safety margins for intensification preventing double losses in biodiversity and food security associated with intensification traps.
Centre de recherche :
Luxembourg Centre for Socio-Environmental Systems (LCSES)
Disciplines :
Sciences de l’environnement & écologie
Auteur, co-auteur :
Burian, Alfred
Kremen, Claire
Wu, James Shyan-Tau
Beckmann, Michael
Bulling, Mark
Garibaldi, Lucas Alejandro
Krisztin, Tamás
Mehrabi, Zia
Ramankutty, Navin
SEPPELT, Ralf ; University of Luxembourg > Luxembourg Centre for Socio-Environmental Systems (LCSES)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes
S. Díaz et al. Pervasive human-driven decline of life on Earth points to the need for transformative change Science 2019 366 eaax3100 31831642 10.1126/science.aax3100
D. Mason-D’Croz et al. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study Lancet Planet. Health 2019 3 e318 e329 31326072 6637854 10.1016/S2542-5196(19)30095-6
W. Willett et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems Lancet 2019 393 447 492 30660336 10.1016/S0140-6736(18)31788-4
D. Tilman C. Balzer J. Hill B.L. Befort Global food demand and the sustainable intensification of agriculture Proc. Natl Acad. Sci. USA 2011 108 20260 20264 1:CAS:528:DC%2BC3MXhs1yqsbnM 22106295 3250154 10.1073/pnas.1116437108
N. Ramankutty et al. Trends in global agricultural land use: implications for environmental health and food security Annu. Rev. Plant Biol. 2018 69 789 815 1:CAS:528:DC%2BC1cXjs1ansrY%3D 29489395 10.1146/annurev-arplant-042817-040256
A.Z. Dornelles et al. Transformation archetypes in global food systems Sustain. Sci. 2022 17 1827 1840 10.1007/s11625-022-01102-5
S.G. Potts et al. Safeguarding pollinators and their values to human well-being Nature 2016 540 220 229 1:CAS:528:DC%2BC28XhvFGgurjL 27894123 10.1038/nature20588
T. Newbold et al. Global effects of land use on local terrestrial biodiversity Nature 2015 520 45 50 1:CAS:528:DC%2BC2MXmtlKlu7k%3D 25832402 10.1038/nature14324
M. Beckmann et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis Glob. Change Biol. 2019 25 1941 1956 10.1111/gcb.14606
L.A. Garibaldi et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms Science 2016 351 388 391 1:CAS:528:DC%2BC28XhtValsLw%3D 26798016 10.1126/science.aac7287
M. Albrecht et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis Ecol. Lett. 2020 23 1488 1498 32808477 7540530 10.1111/ele.13576
M. Dainese et al. A global synthesis reveals biodiversity-mediated benefits for crop production Sci. Adv. 2019 5 eaax0121 31663019 6795509 10.1126/sciadv.aax0121
R. Seppelt C. Arndt M. Beckmann E.A. Martin T.W. Hertel Deciphering the biodiversity–production mutualism in the global food security debate. Trends Ecol. Evol. 2020 35 1011 1020 32943219 10.1016/j.tree.2020.06.012
W. Kuang et al. Cropland redistribution to marginal lands undermines environmental sustainability Natl Sci. Rev. 2022 9 nwab091 35070327 10.1093/nsr/nwab091
J. Storkey S. Meyer K.S. Still C. Leuschner The impact of agricultural intensification and land-use change on the European arable flora Proc. Biol. Sci. 2012 279 1421 1429 1:STN:280:DC%2BC383mtFGgsQ%3D%3D 21993499
V. Dakos J. Bascompte Critical slowing down as early warning for the onset of collapse in mutualistic communities Proc. Natl Acad. Sci. USA 2014 111 17546 17551 1:CAS:528:DC%2BC2cXhvFKmu7vP 25422412 4267327 10.1073/pnas.1406326111
L.A. Garibaldi et al. Working landscapes need at least 20% native habitat Cons. Lett. 2021 14 e12773 10.1111/conl.12773
B. Phalan M. Onial A. Balmford R.E. Green Reconciling food production and biodiversity conservation: land sharing and land sparing compared Science 2011 333 1289 1291 1:CAS:528:DC%2BC3MXhtV2jt7jE 21885781 10.1126/science.1208742
G. Le Provost et al. Land-use history impacts functional diversity across multiple trophic groups Proc. Natl Acad. Sci. USA 2020 117 1573 1579 31907310 6983382 10.1073/pnas.1910023117
E.J. Wubs et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly Ecol. Lett. 2019 22 1145 1151 31020756 6850328 10.1111/ele.13271
E.W. Seabloom E.T. Borer D. Tilman Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate Ecol. Lett. 2020 23 1756 1765 32945098 10.1111/ele.13591
F. Isbell D. Tilman P.B. Reich A.T. Clark Deficits of biodiversity and productivity linger a century after agricultural abandonment Nat. Ecol. Evol. 2019 3 1533 1538 31666737 10.1038/s41559-019-1012-1
D. Moreno-Mateos et al. The long-term restoration of ecosystem complexity Nat. Ecol. Evol. 2020 4 676 685 32284582 10.1038/s41559-020-1154-1
G.S. Cumming et al. Implications of agricultural transitions and urbanization for ecosystem services Nature 2014 515 50 57 1:CAS:528:DC%2BC2cXitFanurfE 25373674 10.1038/nature13945
R. Seppelt et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes Bioscience 2016 66 890 896 29599534 5862251 10.1093/biosci/biw004
T. Gomiero Soil degradation, land scarcity and food security: reviewing a complex challenge Sustainability 2016 8 281 10.3390/su8030281
C.K. Lesorogol Land privatization and pastoralist well-being in Kenya Dev. Change 2008 39 309 331 10.1111/j.1467-7660.2007.00481.x
G. Liebscher Untersuchungen über die Bestimmung des Düngerbedürfnisses der Ackerböden und Kulturpflanzen J. für. Landwirtsch. 1895 43 49 125
A.-M. Klein et al. Importance of pollinators in changing landscapes for world crops Proc. Biol. Sci. 2007 274 303 313 17164193
C. Kremen Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 2005 8 468 479 21352450 10.1111/j.1461-0248.2005.00751.x
L. Jiang P.J. Morin Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity Am. Nat. 2005 165 350 363 15729665 10.1086/428300
K. Gerstner C.F. Dormann A. Stein A.M. Manceur R. Seppelt Effects of land use on plant diversity—a global meta‐analysis J. Appl. Ecol. 2014 51 1690 1700 10.1111/1365-2664.12329
R. Schulz S. Bub L.L. Petschick S. Stehle J. Wolfram Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops Science 2021 372 81 84 1:CAS:528:DC%2BB3MXotFGksLc%3D 33795455 10.1126/science.abe1148
V. Butsic T. Kuemmerle Using optimization methods to align food production and biodiversity conservation beyond land sharing and land sparing Ecol. Appl. 2015 25 589 595 26214906 10.1890/14-1927.1
M. Zobel The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol. Evol. 1997 12 266 269 1:STN:280:DC%2BC3M7itFKrug%3D%3D 21238064 10.1016/S0169-5347(97)01096-3
E.A. Martin et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe Ecol. Lett. 2019 22 1083 1094 30957401 10.1111/ele.13265
R.F. Pywell et al. Wildlife-friendly farming increases crop yield: evidence for ecological intensification Proc. Biol. Sci. 2015 282 20151740 26423846 4614778
B. Balmford R.E. Green M. Onial B. Phalan A. Balmford How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 2019 56 73 84 10.1111/1365-2664.13282
D. Tilman et al. The influence of functional diversity and composition on ecosystem processes Science 1997 277 1300 1302 1:CAS:528:DyaK2sXlslans7s%3D 10.1126/science.277.5330.1300
T. Newbold P. Oppenheimer A. Etard J.J. Williams Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change Nat. Ecol. Evol. 2020 4 1630 1638 32929240 10.1038/s41559-020-01303-0
J.G. Hagan B. Vanschoenwinkel L. Gamfeldt We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data Ecol. Lett. 2021 24 2537 2548 34532926 10.1111/ele.13874
B. Ricci et al. Local pesticide use intensity conditions landscape effects on biological pest control Proc. Biol. Sci. 2019 286 20182898 1:STN:280:DC%2BB3M3jt1KqtA%3D%3D 31164058 6571472
A. Burian et al. Low-cost management interventions and their impact on multilevel trade-offs in agricultural grasslands J. Appl. Ecol. 2023 60 2079 2090 10.1111/1365-2664.14492
Y. Zou et al. Do diverse landscapes provide for effective natural pest control in subtropical rice? J. Appl. Ecol. 2020 57 170 180 1:CAS:528:DC%2BB3cXhtl2isbo%3D 10.1111/1365-2664.13520
M. Chapman et al. Social–ecological feedbacks drive tipping points in farming system diversification One Earth 2022 5 283 292 10.1016/j.oneear.2022.02.007
R. Bommarco D. Kleijn S.G. Potts Ecological intensification: harnessing ecosystem services for food security Trends Ecol. Evol. 2013 28 230 238 23153724 10.1016/j.tree.2012.10.012
C. Kremen A. Miles Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs Ecol. Soc. 2012 17 40 10.5751/ES-05035-170440
A.C. Sánchez H.N. Kamau F. Grazioli S.K. Jones Financial profitability of diversified farming systems: a global meta-analysis Ecol. Econ. 2022 201 107595 10.1016/j.ecolecon.2022.107595
B.J. Brosi P.R. Armsworth G.C. Daily Optimal design of agricultural landscapes for pollination services Conserv. Lett. 2008 1 27 36 10.1111/j.1755-263X.2008.00004.x
L. Fahrig Ecological responses to habitat fragmentation per se Annu. Rev. Ecol. Evol. Syst. 2017 48 1 23 10.1146/annurev-ecolsys-110316-022612
L.A. Garibaldi et al. Smaller agricultural fields, more edges, and natural habitats reduce herbicide-resistant weeds Agric. Ecosyst. Environ. 2023 342 108260 1:CAS:528:DC%2BB38XivFamu7rM 10.1016/j.agee.2022.108260
Regulation (EU) 2021/2115. Establishing Rules on Support for Strategic Plans to Be Drawn Up by Member States Under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013 (ed Development AaR) (The European Parliament and the Council of the European Union, 2021).
Post-2020 Global Biodiversity Framework: Discussion Paper (Convention of Biological Diversity, 2019).
Fahrig L. in Issues and Perspectives in Landscape Ecology (eds Wiens, J. A. & Moss, M. R.) 3–10 (Cambridge Univ. Press, 2005).
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2021).