Actin cytoskeleton depolymerization increases matrix metalloproteinase gene expression in breast cancer cells by promoting translocation of cysteine-rich protein 2 to the nucleus.
[en] The actin cytoskeleton plays a critical role in cancer cell invasion and metastasis; however, the coordination of its multiple functions remains unclear. Actin dynamics in the cytoplasm control the formation of invadopodia, which are membrane protrusions that facilitate cancer cell invasion by focusing the secretion of extracellular matrix-degrading enzymes, including matrix metalloproteinases (MMPs). In this study, we investigated the nuclear role of cysteine-rich protein 2 (CRP2), a two LIM domain-containing F-actin-binding protein that we previously identified as a cytoskeletal component of invadopodia, in breast cancer cells. We found that F-actin depolymerization stimulates the translocation of CRP2 into the nucleus, resulting in an increase in the transcript levels of pro-invasive and pro-metastatic genes, including several members of the MMP gene family. We demonstrate that in the nucleus, CRP2 interacts with the transcription factor serum response factor (SRF), which is crucial for the expression of MMP-9 and MMP-13. Our data suggest that CRP2 and SRF cooperate to modulate of MMP expression levels. Furthermore, Kaplan-Meier analysis revealed a significant association between high-level expression of SRF and shorter overall survival and distant metastasis-free survival in breast cancer patients with a high CRP2 expression profile. Our findings suggest a model in which CRP2 mediates the coordination of cytoplasmic and nuclear processes driven by actin dynamics, ultimately resulting in the induction of invasive and metastatic behavior in breast cancer cells.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Mgrditchian, Takouhie; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Brown-Clay, Joshua; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Hoffmann, Céline; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Müller, Tanja; Department of Cancer Research, Luxembourg Centre of Neuropathology, Luxembourg Institute of Health, Luxembourg, Luxembourg
Filali, Liza; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Ockfen, Elena; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
MAO, Xianqing ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) > Medical Education ; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Moreau, Flora; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
Casellas, Carla Pou; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
MITTELBRONN, Michel ; University of Luxembourg ; Department of Cancer Research, Luxembourg Centre of Neuropathology, Luxembourg Institute of Health, Luxembourg, Luxembourg ; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg ; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
Thomas, Clément; Department of Cancer Research, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg, Luxembourg
External co-authors :
no
Language :
English
Title :
Actin cytoskeleton depolymerization increases matrix metalloproteinase gene expression in breast cancer cells by promoting translocation of cysteine-rich protein 2 to the nucleus.
Joshua Brown-Clay and TM are recipients of Postdoctoral fellowships from Fonds De La Recherche Scientifique, Télévie (Belgium; Télévie 7.4512.16 and 7.4537.19). This work is supported by a research grant from the Fondation Cancer Luxembourg (FC/2016/02) and the National Research Fund (Luxembourg; FNR C16/BM/11297905). TM and CPC are supported by Marian Aldred Awards from Think Pink Lux. EO is recipient of a PhD fellowship from the National Research Fund (FNR PRIDE19/14254520/i2Tron). MM would like to thank the Luxembourg National Research Fund (FNR) for the support (FNR PEARL P16/BM/11192868 grant).Joshua Brown-Clay and TM are recipients of Postdoctoral fellowships from Fonds De La Recherche Scientifique, Télévie (Belgium; Télévie 7.4512.16 and 7.4537.19). This work is supported by a research grant from the Fondation Cancer Luxembourg (FC/2016/02) and the National Research Fund (Luxembourg; FNR C16/BM/11297905). TM and CPC are supported by Marian Aldred Awards from Think Pink Lux. EO is recipient of a PhD fellowship from the National Research Fund (FNR PRIDE19/14254520/i2Tron). MM would like to thank the Luxembourg National Research Fund (FNR) for the support (FNR PEARL P16/BM/11192868 grant).
Amar S. Fields G. B. (2015). Potential clinical implications of recent matrix metalloproteinase inhibitor design strategies. Expert Rev. Proteomics 12 (5), 445–447. 10.1586/14789450.2015.1069190
Arber S. Caroni P. (1996). Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 10 (3), 289–300. 10.1101/gad.10.3.289
Azam H. Pierro L. Reina M. Gallagher W. M. Prencipe M. (2022). Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opin. Ther. Targets 26 (2), 155–169. 10.1080/14728222.2022.2032652
Bailey T. L. Johnson J. Grant C. E. Noble W. S. (2015). The MEME suite. Nucleic Acids Res. 43 (W1), W39–W49. 10.1093/nar/gkv416
Castro-Mondragon J. A. Riudavets-Puig R. Rauluseviciute I. Lemma R. B. Turchi L. Blanc-Mathieu R. et al. (2022). Jaspar 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50 (D1), D165–D173. 10.1093/nar/gkab1113
Chang D. F. Belaguli N. S. Chang J. Schwartz R. J. (2007). LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes. Proc. Natl. Acad. Sci. U. S. A. 104 (1), 157–162. 10.1073/pnas.0605635103
Chang D. F. Belaguli N. S. Iyer D. Roberts W. B. Wu S. P. Dong X. R. et al. (2003). Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors. Dev. Cell 4 (1), 107–118. 10.1016/s1534-5807(02)00396-9
Choi J. Y. Jang Y. S. Min S. Y. Song J. Y. (2011). Overexpression of MMP-9 and HIF-1α in breast cancer cells under hypoxic conditions. J. Breast Cancer 14 (2), 88–95. 10.4048/jbc.2011.14.2.88
Coussens L. M. Fingleton B. Matrisian L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295 (5564), 2387–2392. 10.1126/science.1067100
Dallas S. L. Rosser J. L. Mundy G. R. Bonewald L. F. (2002). Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J. Biol. Chem. 277 (24), 21352–21360. 10.1074/jbc.M111663200
Demeulemeester J. Kumar P. Møller E. K. Nord S. Wedge D. C. Peterson A. et al. (2016). Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biol. 17 (1), 250. 10.1186/s13059-016-1109-7
Dobin A. Davis C. A. Schlesinger F. Drenkow J. Zaleski C. Jha S. et al. (2013). Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15–21. 10.1093/bioinformatics/bts635
Drabsch Y. ten Dijke P. (2011). TGF-beta signaling in breast cancer cell invasion and bone metastasis. J. Mammary Gland. Biol. Neoplasia 16 (2), 97–108. 10.1007/s10911-011-9217-1
Drabsch Y. ten Dijke P. (2012). TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31 (3-4), 553–568. 10.1007/s10555-012-9375-7
Dreos R. Ambrosini G. Groux R. Cavin Périer R. Bucher P. (2017). The eukaryotic promoter database in its 30th year: Focus on non-vertebrate organisms. Nucleic Acids Res. 45 (D1), D51–D55. 10.1093/nar/gkw1069
Eddy R. J. Weidmann M. D. Sharma V. P. Condeelis J. S. (2017). Tumor cell invadopodia: Invasive protrusions that orchestrate metastasis. Trends Cell Biol. 27 (8), 595–607. 10.1016/j.tcb.2017.03.003
Ferrari R. Martin G. Tagit O. Guichard A. Cambi A. Voituriez R. et al. (2019). MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat. Commun. 10 (1), 4886. 10.1038/s41467-019-12930-y
Gandalovicova A. Rosel D. Fernandes M. Veselý P. Heneberg P. Čermák V. et al. (2017). Migrastatics-Anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer 3 (6), 391–406. 10.1016/j.trecan.2017.04.008
Gilkes D. M. Semenza G. L. Wirtz D. (2014). Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 14 (6), 430–439. 10.1038/nrc3726
Gilles L. Bluteau D. Boukour S. Chang Y. Zhang Y. Robert T. et al. (2009). MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood 114 (19), 4221–4232. 10.1182/blood-2009-03-209932
Gobin E. Bagwell K. Wagner J. Mysona D. Sandirasegarane S. Smith N. et al. (2019). A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 19 (1), 581. 10.1186/s12885-019-5768-0
Godefroy E. Manches O. Dréno B. Hochman T. Rolnitzky L. Labarrière N. et al. (2011). Matrix metalloproteinase-2 conditions human dendritic cells to prime inflammatory T(H)2 cells via an IL-12- and OX40L-dependent pathway. Cancer Cell 19 (3), 333–346. 10.1016/j.ccr.2011.01.037
Grant C. E. Bailey T. L. Noble W. S. (2011). Fimo: Scanning for occurrences of a given motif. Bioinformatics 27 (7), 1017–1018. 10.1093/bioinformatics/btr064
Gross J. Lapiere C. M. (1962). Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. U. S. A. 48, 1014–1022. 10.1073/pnas.48.6.1014
Grubinger M. Gimona M. (2004). CRP2 is an autonomous actin-binding protein. FEBS Lett. 557 (1-3), 88–92. 10.1016/s0014-5793(03)01451-0
Gyorffy B. Lanczky A. Eklund A. C. Denkert C. Budczies J. Li Q. et al. (2010). An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123 (3), 725–731. 10.1007/s10549-009-0674-9
Gyorffy B. (2021). Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 19, 4101–4109. 10.1016/j.csbj.2021.07.014
Herrmann J. Borkham-Kamphorst E. Haas U. Van de Leur E. Fraga M. F. Esteller M. et al. (2006). The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-beta in smooth muscle and hepatic stellate cells. Biochem. Biophys. Res. Commun. 345 (4), 1526–1535. 10.1016/j.bbrc.2006.05.076
Hoffmann C. Brown-Clay J. Thomas C. (2017). Subcellular localization and function of 2LIM proteins in plants and humans. Planta 246 (6), 1243–1245. 10.1007/s00425-017-2789-2
Hoffmann C. Mao X. Brown-Clay J. Moreau F. Al Absi A. Wurzer H. et al. (2018). Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci. Rep. 8 (1), 10191. 10.1038/s41598-018-28637-x
Hoffmann C. Mao X. Dieterle M. Moreau F. Al Absi A. Steinmetz A. et al. (2016). CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis. Oncotarget 7 (12), 13688–13705. 10.18632/oncotarget.7327
Hoffmann C. Moreau F. Moes M. Luthold C. Dieterle M. Goretti E. et al. (2014). Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol. Cell Biol. 34 (16), 3053–3065. 10.1128/MCB.00651-14
Hu Z. Fan C. Oh D. S. Marron J. S. He X. Qaqish B. F. et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96. 10.1186/1471-2164-7-96
Jacob A. Prekeris R. (2015). The regulation of MMP targeting to invadopodia during cancer metastasis. Front. Cell Dev. Biol. 3, 4. 10.3389/fcell.2015.00004
Jin X. Mu P. (2015). Targeting breast cancer metastasis. Breast Cancer (Auckl) 9 (1), 23–34. 10.4137/BCBCR.S25460
Jobin P. G. Butler G. S. Overall C. M. (2017). New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim. Biophys. Acta Mol. Cell Res. 1864 (11), 2043–2055. 10.1016/j.bbamcr.2017.05.013
Kalluri R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3 (6), 422–433. 10.1038/nrc1094
Karagiannis G. S. Pastoriza J. M. Wang Y. Harney A. S. Entenberg D. Pignatelli J. et al. (2017). Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl. Med. 9 (397), eaan0026. 10.1126/scitranslmed.aan0026
Katharina P. (2011). Tumor cell seeding during surgery-possible contribution to metastasis formations. Cancers (Basel) 3 (2), 2540–2553. 10.3390/cancers3022540
Kihara T. Shinohara S. Fujikawa R. Sugimoto Y. Murata M. Miyake J. (2011). Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem. Biophys. Res. Commun. 411 (1), 96–101. 10.1016/j.bbrc.2011.06.100
Klein T. Bischoff R. (2011). Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41 (2), 271–290. 10.1007/s00726-010-0689-x
Kong Y. Flick M. J. Kudla A. J. Konieczny S. F. (1997). Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell Biol. 17 (8), 4750–4760. 10.1128/mcb.17.8.4750
Krishnamachary B. Zagzag D. Nagasawa H. Rainey K. Okuyama H. Baek J. H. et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 66 (5), 2725–2731. 10.1158/0008-5472.CAN-05-3719
Leong H. S. Robertson A. E. Stoletov K. Leith S. J. Chin C. A. Chien A. E. et al. (2014). Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8 (5), 1558–1570. 10.1016/j.celrep.2014.07.050
Ma L. Greenwood J. A. Schachner M. (2011). CRP1, a protein localized in filopodia of growth cones, is involved in dendritic growth. J. Neurosci. 31 (46), 16781–16791. 10.1523/JNEUROSCI.2595-11.2011
Medjkane S. Perez-Sanchez C. Gaggioli C. Sahai E. Treisman R. (2009). Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat. Cell Biol. 11 (3), 257–268. 10.1038/ncb1833
Mgrditchian T. Sakalauskaite G. Müller T. Hoffmann C. Thomas C. (2021). The multiple roles of actin-binding proteins at invadopodia. Int. Rev. Cell Mol. Biol. 360, 99–132. 10.1016/bs.ircmb.2021.03.004
Miralles F. Posern G. Zaromytidou A. I. Treisman R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113 (3), 329–342. 10.1016/s0092-8674(03)00278-2
Moes D. Gatti S. Hoffmann C. Dieterle M. Moreau F. Neumann K. et al. (2013). A LIM domain protein from tobacco involved in actin-bundling and histone gene transcription. Mol. Plant 6 (2), 483–502. 10.1093/mp/sss075
Molder F. Jablonski K. P. Letcher B. Hall M. B. Tomkins-Tinch C. H. Sochat V. et al. (2021). Sustainable data analysis with Snakemake. F1000Res. 10, 33. 10.12688/f1000research.29032.2
Morrison C. J. Butler G. S. Rodríguez D. Overall C. M. (2009). Matrix metalloproteinase proteomics: Substrates, targets, and therapy. Curr. Opin. Cell Biol. 21 (5), 645–653. 10.1016/j.ceb.2009.06.006
Munoz-Najar U. M. Neurath K. M. Vumbaca F. Claffey K. P. (2006). Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25 (16), 2379–2392. 10.1038/sj.onc.1209273
Nannuru K. C. Futakuchi M. Varney M. L. Vincent T. M. Marcusson E. G. Singh R. K. (2010). Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 70 (9), 3494–3504. 10.1158/0008-5472.CAN-09-3251
Olson E. N. Nordheim A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11 (5), 353–365. 10.1038/nrm2890
Parker J. S. Mullins M. Cheang M. C. U. Leung S. Voduc D. Vickery T. et al. (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27 (8), 1160–1167. 10.1200/JCO.2008.18.1370
Rahmani K. Dean D. A. (2017). Leptomycin B alters the subcellular distribution of CRM1 (Exportin 1). Biochem. Biophys. Res. Commun. 488 (2), 253–258. 10.1016/j.bbrc.2017.04.042
Rankin E. B. Giaccia A. J. (2016). Hypoxic control of metastasis. Science 352 (6282), 175–180. 10.1126/science.aaf4405
Schmeichel K. L. Beckerle M. C. (1994). The LIM domain is a modular protein-binding interface. Cell 79 (2), 211–219. 10.1016/0092-8674(94)90191-0
Semenza G. L. (2016). The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta 1863 (3), 382–391. 10.1016/j.bbamcr.2015.05.036
Siddhartha R. Garg M. (2021). Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol. Appl. Pharmacol. 426, 115593. 10.1016/j.taap.2021.115593
Stoletov K. Lewis J. D. (2015). Invadopodia: A new therapeutic target to block cancer metastasis. Expert Rev. Anticancer Ther. 15 (7), 733–735. 10.1586/14737140.2015.1058711
Sung H. Ferlay J. Siegel R. L. Laversanne M. Soerjomataram I. Jemal A. et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249. 10.3322/caac.21660
Tatti O. Vehviläinen P. Lehti K. Keski-Oja J. (2008). MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp. Cell Res. 314 (13), 2501–2514. 10.1016/j.yexcr.2008.05.018
Tohme S. Simmons R. L. Tsung A. (2017). Surgery for cancer: A trigger for metastases. Cancer Res. 77 (7), 1548–1552. 10.1158/0008-5472.CAN-16-1536
Tran T. C. Singleton C. Fraley T. S. Greenwood J. A. (2005). Cysteine-rich protein 1 (CRP1) regulates actin filament bundling. BMC Cell Biol. 6 (1), 45. 10.1186/1471-2121-6-45
Walsh J. C. Lebedev A. Aten E. Madsen K. Marciano L. Kolb H. C. (2014). The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal 21 (10), 1516–1554. 10.1089/ars.2013.5378
Wang M. Hu Y. Stearns M. E. (2003). A novel IL-10 signalling mechanism regulates TIMP-1 expression in human prostate tumour cells. Br. J. Cancer 88 (10), 1605–1614. 10.1038/sj.bjc.6600855
Weaver A. M. (2006). Invadopodia: Specialized cell structures for cancer invasion. Clin. Exp. Metastasis 23 (2), 97–105. 10.1007/s10585-006-9014-1
Weiskirchen R. Pino J. D. Macalma T. Bister K. Beckerle M. C. (1995). The cysteine-rich protein family of highly related LIM domain proteins. J. Biol. Chem. 270 (48), 28946–28954. 10.1074/jbc.270.48.28946
Winer A. Adams S. Mignatti P. (2018). Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol. Cancer Ther. 17 (6), 1147–1155. 10.1158/1535-7163.MCT-17-0646
Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb) 2 (3), 100141. 10.1016/j.xinn.2021.100141
Yates L. R. Knappskog S. Wedge D. Farmery J. H. R. Gonzalez S. Martincorena I. et al. (2017). Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32 (2), 169–184. 10.1016/j.ccell.2017.07.005
Yu Q. Stamenkovic I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14 (2), 163–176. 10.1101/gad.14.2.163
Zhe X. Yang Y. Jakkaraju S. Schuger L. (2003). Tissue inhibitor of metalloproteinase-3 downregulation in lymphangioleiomyomatosis: Potential consequence of abnormal serum response factor expression. Am. J. Respir. Cell Mol. Biol. 28 (4), 504–511. 10.1165/rcmb.2002-0124OC