[en] Atomistic simulations are routinely employed in academia and industry to study the behavior of molecules, materials, and their interfaces. Central to these simulations are force fields (FFs), whose development is challenged by intricate interatomic interactions at different spatio-temporal scales and the vast expanse of chemical space. Machine learning (ML) FFs, trained on quantum-mechanical energies and forces, have shown the capacity to achieve sub-kcal (mol-1 Å-1) accuracy while maintaining computational efficiency. The TEA Challenge 2023 rigorously evaluated commonly used MLFFs across diverse applications, highlighting their strengths and weaknesses. Participants trained their models using provided datasets, and the results were systematically analyzed to assess the ability of MLFFs to reproduce potential energy surfaces, handle incomplete reference data, manage multi-component systems, and model complex periodic structures. This publication describes the datasets, outlines the proposed challenges, and presents a detailed analysis of the accuracy, stability, and efficiency of the MACE, SO3krates, sGDML, SOAP/GAP, and FCHL19* architectures in molecular dynamics simulations. The models represent the MLFF developers who participated in the TEA Challenge 2023. All results presented correspond to the state of the ML architectures as of October 2023. A comprehensive analysis of the molecular dynamics results obtained with different MLFFs will be presented in the second part of this manuscript.
CHARKIN-GORBULIN, Anton ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Laboratory for Chemistry of Novel Materials, University of Mons B-7000 Mons Belgium
PULEVA, Mirela ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Fonseca, Grégory; Department of Physics and Materials Science, University of Luxembourg L-1511 Luxembourg Luxembourg alexandre.tkatchenko@uni.lu igor.poltavskyi@uni.lu
Batatia, Ilyes; Department of Engineering, University of Cambridge Trumpington Street Cambridge CB2 1PZ UK
Browning, Nicholas J; Swiss National Supercomputing Centre (CSCS) 6900 Lugano Switzerland
Chmiela, Stefan; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany
Cui, Mengnan; Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin Germany
Frank, J Thorben ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany
Heinen, Stefan; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada
Huang, Bing; Wuhan University, Department of Chemistry and Molecular Sciences 430072 Wuhan China
Käser, Silvan ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
KABYLDA, Adil ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Khan, Danish; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada ; Chemical Physics Theory Group, Department of Chemistry, University of Toronto St George Campus Toronto ON Canada
Price, Alastair J A; Department of Chemistry, University of Toronto St George Campus Toronto ON Canada ; Acceleration Consortium, University of Toronto 80 St George St Toronto ON M5S 3H6 Canada
Riedmiller, Kai ; Heidelberg Institute for Theoretical Studies Heidelberg Germany
Töpfer, Kai ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
Ko, Tsz Wai; Department of NanoEngineering, University of California San Diego 9500 Gilman Dr, Mail Code 0448 La Jolla CA 92093-0448 USA
Meuwly, Markus ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
Rupp, Matthias ; Luxembourg Institute of Science and Technology (LIST) L-4362 Esch-sur-Alzette Luxembourg
Csányi, Gábor ; Department of Engineering, University of Cambridge Trumpington Street Cambridge CB2 1PZ UK
von Lilienfeld, O Anatole ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany ; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada ; Department of Chemistry, University of Toronto St George Campus Toronto ON Canada ; Acceleration Consortium, University of Toronto 80 St George St Toronto ON M5S 3H6 Canada ; Department of Materials Science and Engineering, University of Toronto St George Campus Toronto ON Canada ; Department of Physics, University of Toronto St George Campus Toronto ON Canada
Margraf, Johannes T; University of Bayreuth, Bavarian Center for Battery Technology (BayBatt) Bayreuth Germany
Müller, Klaus-Robert ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany ; Department of Artificial Intelligence, Korea University Seoul South Korea ; Max Planck Institut für Informatik Saarbrücken Germany ; Google DeepMind Berlin Germany
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Université du Luxembourg Fonds De La Recherche Scientifique – FNRS Fonds National de la Recherche Luxembourg European Research Council Alexander von Humboldt-Stiftung Natural Sciences and Engineering Research Council of Canada Horizon 2020 Framework Programme University of Toronto Bundesministerium für Bildung und Forschung Ministry of Science and ICT, South Korea Korea University Engineering and Physical Sciences Research Council Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Klaus Tschira Stiftung
Funding text :
The simulations were performed on the Luxembourg national supercomputer MeluXina. The authors gratefully acknowledge the LuxProvide teams for their expert support. I. Poltavsky would like to acknowledge the financial support afforded by the Luxembourg National Research (FNR) (Grant C19/MS/13718694/QML-FLEX). A. Tkatchenko acknowledges support from the European Research Council (ERC-AdG Grant FITMOL) and Lux-embourg National Research Fund (FNR-CORE Grant MBD-in-BMD). M. Puleva acknowledges the financial support from Institute of Advanced Studies, University of Luxembourg under the Young Academics Project AQMA. The work of A. Charkin-Gorbulin was performed with the support of the Belgian National Fund for Scientific Research (F. R. S.-FNRS). Computational resources were provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI) funded FNRS under Grant 2.5020.11. We thank J. Weinreich for the helpful discussions. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2023-04853. O. A. von Lilienfeld has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 772834). This research was undertaken thanks in part to funding provided to the University of Toronto's Acceleration Consortium from the Canada First Research Ex-cellence Fund, grant number: CFREF-2022-00042. O. A. von Lilienfeld has received support as the Ed Clark Chair of Advanced Materials and as a Canada CIFAR AI Chair. I. Batatia acknowledges access to CSD3 GPU resources through a University of Cambridge EPSRC Core Equipment Award (EP/X034712/1). IB was supported by the Harding Distinguished Postgraduate Scholarship. S. Chmiela and J. T. Frank acknowledge support by the German Ministry of Education and Research (BMBF) for BIFOLD (01IS18037A). M. Cui acknowledges the Max Planck Computing and Data Facility (MPCDF) for computation time. J. T. Margraf acknowledges support by the Bavarian Center for Battery Technology (BayBatt) at the University of Bayreuth. The research at Uni Basel was financially supported (to MM) by the Swiss National Science Foundation through Grants 200020_219779 and 200021_215088, which is gratefully acknowledged. A. Kabylda acknowledges financial support from the Luxembourg National Research Fund (FNR) (AFR PhD Grant 15720828). C. M\u00FCller acknowledges funding by a Feodor-Lynen fellowship of the Alexander von Humboldt foundation. K.-R. M\u00FCller was in part supported by the German Ministry for Education and Research (BMBF) under Grants 01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A, 031L0207D, and 01IS18037A and by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grants funded by the Korea Government (MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program, Korea University and No. 2022-0-00984, Development of Artificial Intelligence Technology for Personalized Plug-and-Play Explanation and Verification of Explanation). K. Riedmiller acknowledges financial support from the Klaus Tschira Foundation. We thank O. Unke and C. Quarti for their helpful comments.
Behler J. Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces Phys. Rev. Lett. 2007 98 146401 10.1103/PhysRevLett.98.146401 17501293
Bartók A. P. Payne M. C. Kondor R. Csányi G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons Phys. Rev. Lett. 2010 104 136403 10.1103/PhysRevLett.104.136403 20481899
Szlachta W. Bartók A. Csányi G. Accuracy and transferability of gaussian approximation potential models for tungsten Phys. Rev. B:Condens. Matter Mater. Phys. 2014 90 104108 10.1103/PhysRevB.90.104108
Bartók A. P. De S. Poelking C. Bernstein N. Kermode J. R. Csányi G. Ceriotti M. Machine learning unifies the modeling of materials and molecules Sci. Adv. 2017 3 e1701816 10.1126/sciadv.1701816 29242828
Deringer V. L. Csányi G. Machine learning based interatomic potential for amorphous carbon Phys. Rev. B 2017 95 094203 10.1103/PhysRevB.95.094203
Sauceda H. E. Gálvez-González L. E. Chmiela S. Paz-Borbón L. O. Müller K.-R. Tkatchenko A. BIGDML— Towards accurate quantum machine learning force fields for materials Nat. Commun. 2022 13 3733 10.1038/s41467-022-31093-x 35768400
Batatia I., Benner P., Chiang Y., Elena A. M., Kovács D. P., Riebesell J., Advincula X. R., Asta M., Avaylon M., Baldwin W. J., Berger F., Bernstein N., Bhowmik A., Blau S. M., Cărare V., Darby J. P., De S., Pia F. D., Deringer V. L., Elijošius R., El-Machachi Z., Falcioni F., Fako E., Ferrari A. C., Genreith-Schriever A., George J., Goodall R. E. A., Grey C. P., Grigorev P., Han S., Handley W., Heenen H. H., Hermansson K., Holm C., Jaafar J., Hofmann S., Jakob K. S., Jung H., Kapil V., Kaplan A. D., Karimitari N., Kermode J. R., Kroupa N., Kullgren J., Kuner M. C., Kuryla D., Liepuoniute G., Margraf J. T., Magdău I.-B., Michaelides A., Moore J. H., Naik A. A., Niblett S. P., Norwood S. W., O'Neill N., Ortner C., Persson K. A., Reuter K., Rosen A. S., Schaaf L. L., Schran C., Shi B. X., Sivonxay E., Stenczel T. K., Svahn V., Sutton C., Swinburne T. D., Tilly J., van der Oord C., Varga-Umbrich E., Vegge T., Vondrák M., Wang Y., Witt W. C., Zills F., and Csányi G., A foundation model for atomistic materials chemistry, arXiv, 2024, preprint, arXiv:2401.00096 [physics.chem-ph]
Botu V. Chapman J. Ramprasad R. A study of adatom ripening on an Al (1 1 1) surface with machine learning force fields Comput. Mater. Sci. 2017 129 332 10.1016/j.commatsci.2016.12.007
Stocker S. Jung H. Csányi G. Goldsmith C. F. Reuter K. Margraf J. T. Estimating free energy barriers for heterogeneous catalytic reactions with machine learning potentials and umbrella integration J. Chem. Theory Comput. 2023 19 6796 10.1021/acs.jctc.3c00541 37747812
Wengert S. Csányi G. Reuter K. Margraf J. T. Data-efficient machine learning for molecular crystal structure prediction Chem. Sci. 2021 12 4536 10.1039/D0SC05765G 34163719
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys. 2011 134 074106 10.1063/1.3553717 21341827
Rupp M. Tkatchenko A. Müller K.-R. von Lilienfeld O. A. Fast and accurate modeling of molecular atomization energies with machine learning Phys. Rev. Lett. 2012 108 058301 10.1103/PhysRevLett.108.058301 22400967
Bartók A. Gillan M. Manby F. G C. Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water Phys. Rev. B:Condens. Matter Mater. Phys. 2013 88 054104 10.1103/PhysRevB.88.054104
Käser S. Koner D. Christensen A. S. von Lilienfeld O. A. Meuwly M. Machine learning models of vibrating H2CO: Comparing reproducing kernels, FCHL, and PhysNet J. Phys. Chem. A 2020 124 8853 10.1021/acs.jpca.0c05979 32970440
Chmiela S. Tkatchenko A. Sauceda H. E. Poltavsky I. Schütt K. T. Müller K.-R. Machine learning of accurate energy-conserving molecular force fields Sci. Adv. 2017 3 e1603015 10.1126/sciadv.1603015 28508076
Bartók A. P. Kondor R. Csányi G. On representing chemical environments Phys. Rev. B:Condens. Matter Mater. Phys. 2013 87 184115 10.1103/PhysRevB.87.184115
Cisneros G. A. Wikfeldt K. T. Ojamäe L. Lu J. Xu Y. Torabifard H. Bartók A. P. Csányi G. Molinero V. Paesani F. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions Chem. Rev. 2016 116 7501 https://dx.doi.org/10.1021/acs.chemrev.5b00644 10.1021/acs.chemrev.5b00644 27186804
Schütt K. T. Sauceda H. E. Kindermans P.-J. Tkatchenko A. Müller K.-R. SchNet-a deep learning architecture for molecules and materials J. Chem. Phys. 2018 148 241722 10.1063/1.5019779 29960322
Stöhr M. Sandonas L. M. Tkatchenko A. Accurate many-body repulsive potentials for density-functional tight binding from deep tensor neural networks J. Phys. Chem. Lett. 2020 11 6835 10.1021/acs.jpclett.0c01307 32787209
Thompson A. P. Swiler L. P. Trott C. R. Foiles S. M. Tucker G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials J. Comput. Phys. 2015 285 316 10.1016/j.jcp.2014.12.018
Schütt K. T. Arbabzadah F. Chmiela S. Müller K.-R. Tkatchenko A. Quantum-chemical insights from deep tensor neural networks Nat. Commun. 2017 8 13890 10.1038/ncomms13890 28067221
Schütt K. T., Chmiela S., von Lilienfeld O. A., Tkatchenko A., Tsuda K., and Müller K.-R., Machine Learning Meets Quantum Physics, LNP, 2020
Unke O. T. Stöhr M. Ganscha S. Unterthiner T. Maennel H. Kashubin S. Ahlin D. Gastegger M. Sandonas L. M. Berryman J. T. Tkatchenko A. Müller K.-R. Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments, Sc Adv 2024 10 eadn4397
Unke O. T. Chmiela S. Gastegger M. Schütt K. T. Sauceda H. E. Müller K.-R. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects Nat. Commun. 2021 12 7273 10.1038/s41467-021-27504-0 34907176
Kovács D. P., Moore J. H., Browning N. J., Batatia I., Horton J. T., Kapil V., Magdău I.-B., Cole D. J., and Csányi G., MACE-OFF23: Transferable machine learning force fields for organic molecules, arXiv, 2023, preprint, arXiv:2312.15211
Qiao Z. Christensen A. S. Welborn M. Manby F. R. Anandkumar A. Miller III T. F. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry Proc. Natl. Acad. Sci. U.S.A. 2022 119 e2205221119 10.1073/pnas.2205221119 35901215
Frank J. T. Unke O. T. Müller K.-R. So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems Adv. Neural Inf. Process. Syst. 2022 35 29400
Frank J. T. Unke O. T. Müller K.-R. Chmiela S. A Euclidean transformer for fast and stable machine learned force fields Nat. Commun. 2024 15 6539 10.1038/s41467-024-50620-6 39107296
Musaelian A. Batzner S. Johansson A. Sun L. Owen C. J. Kornbluth M. Kozinsky B. Learning local equivariant representations for large-scale atomistic dynamics Nat. Commun. 2023 14 579 10.1038/s41467-023-36329-y 36737620
Batzner S. Musaelian A. Sun L. Geiger M. Mailoa J. P. Kornbluth M. Molinari N. Smidt T. E. Kozinsky B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials Nat. Commun. 2022 13 2453 10.1038/s41467-022-29939-5 35508450
Plé T. Lagardère L. Piquemal J.-P. Force-field-enhanced neural network interactions: from local equivariant embed- ding to atom-in-molecule properties and long-range effects Chem. Sci. 2023 14 12554 10.1039/D3SC02581K 38020379
Schütt K. T., Unke O. T., and Gastegger M., Equivariant message passing for the prediction of tensorial properties and molecular spectra, in International Conference on Machine Learning, PMLR, 2021, pp. 9377-9388
Ko T. W. Finkler J. A. Goedecker S. Behler J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer Nat. Commun. 2021 12 398 10.1038/s41467-020-20427-2 33452239
Durumeric A. E. Charron N. E. Templeton C. Musil F. Bonneau K. Pasos-Trejo A. S. Chen Y. Kelkar A. Noé F. Clementi C. Machine learned coarse-grained protein force-fields: Are we there yet? Curr. Opin. Struct. Biol. 2023 79 102533 10.1016/j.sbi.2023.102533 36731338
Park C. W. Kornbluth M. Vandermause J. Wolverton C. Kozinsky B. Mailoa J. P. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture npj Comput. Mater. 2021 7 73 10.1038/s41524-021-00543-3
Haghighatlari M. Li J. Guan X. Zhang O. Das A. Stein C. J. Heidar-Zadeh F. Liu M. Head-Gordon M. Bertels L. Hao H. Leven I. Head-Gordon T. NewtonNet: a newtonian message passing network for deep learning of interatomic potentials and forces Digit. Discov. 2022 1 333 10.1039/D2DD00008C 35769203
Brandstetter J., Hesselink R., van der Pol E., Bekkers E. J., and Welling M., Geometric and physical quantities improve E(3) equivariant message passing, arXiv, 2021, preprint, arXiv:2110.02905
Anderson B., Hy T. S. and Kondor R., Cormorant: Covariant Molecular Neural Networks, in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS 2019), ed. H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc and E. B. Fox, 2019, vol. 32, pp. 14470-14479
Jia W., Wang H., Chen M., Lu D., Lin L., Car R., Weinan E., and Zhang L., Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning, in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1-14
Behler J. Perspective: Machine learning potentials for atomistic simulations J. Chem. Phys. 2016 145 170901 10.1063/1.4966192 27825224
Huang B. von Lilienfeld O. A. Quantum machine learning using atom-in-molecule-based fragments selected on the fly Nat. Chem. 2020 12 945 10.1038/s41557-020-0527-z 32929248
Vazquez-Salazar L. I. Boittier E. D. Meuwly M. Uncertainty quantification for predictions of atomistic neural networks Chem. Sci. 2022 13 13068 10.1039/D2SC04056E 36425481
Friederich P. Häse F. Proppe J. Aspuru-Guzik A. Machine-learned potentials for next-generation matter simulations Nat. Mater. 2021 20 750 10.1038/s41563-020-0777-6 34045696
Kabylda A. Vassilev-Galindo V. Chmiela S. Poltavsky I. Tkatchenko A. Efficient interatomic descriptors for accurate machine learning force fields of extended molecules Nat. Commun. 2023 14 3562 10.1038/s41467-023-39214-w 37322039
Chmiela S. Sauceda H. E. Müller K.-R. Tkatchenko A. Towards exact molecular dynamics simulations with machine- learned force fields Nat. Commun. 2018 9 3887 10.1038/s41467-018-06169-2 30250077
Kocer E. Ko T. W. Behler J. Neural network potentials: A concise overview of methods Annu. Rev. Phys. Chem. 2022 73 163 10.1146/annurev-physchem-082720-034254 34982580
Käser S. Vazquez-Salazar L. I. Meuwly M. Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects Digit. Discov. 2023 2 28 10.1039/D2DD00102K 36798879
Dral P. O. Quantum chemistry in the age of machine learning J. Phys. Chem. Lett. 2020 11 2336 10.1021/acs.jpclett.9b03664 32125858
von Lilienfeld O. A. Müller K.-R. Tkatchenko A. Exploring chemical compound space with quantum-based machine learning Nat. Rev. Chem 2020 4 347 10.1038/s41570-020-0189-9 37127950
Poltavsky I. Tkatchenko A. Machine learning force fields: Recent advances and remaining challenges J. Phys. Chem. Lett. 2021 12 6551 10.1021/acs.jpclett.1c01204 34242032
Unke O. T. Chmiela S. Sauceda H. E. Gastegger M. Poltavsky I. Schütt K. T. Tkatchenko A. Müller K.-R. Machine learning force fields Chem. Rev. 2021 121 10142 10.1021/acs.chemrev.0c01111 33705118
Keith J. A. Vassilev-Galindo V. Cheng B. Chmiela S. Gastegger M. Müller K.-R. Tkatchenko A. Combining machine learning and computational chemistry for predictive insights into chemical systems Chem. Rev. 2021 121 9816 10.1021/acs.chemrev.1c00107 34232033
Noé F. Tkatchenko A. Müller K.-R. Clementi C. Machine learning for molecular simulation Annu. Rev. Phys. Chem. 2020 71 361 10.1146/annurev-physchem-042018-052331 32092281
Wu S. Yang X. Zhao X. Li Z. Lu M. Xie X. Yan J. Applications and advances in machine learning force fields J. Chem. Inf. Model. 2023 63 6972 10.1021/acs.jcim.3c00889 37751546
Böselt L. Thürlemann M. Riniker S. Machine learning in QM/MM molecular dynamics simulations of condensed- phase systems J. Chem. Theory Comput. 2021 17 2641 10.1021/acs.jctc.0c01112 33818085
Cremer J. Sandonas L. M. Tkatchenko A. Clevert D.-A. De Fabritiis G. Equivariant graph neural networks for toxicity prediction Chem. Res. Toxicol. 2023 36 1561
Gasteiger J. Becker F. Günnemann S. Gemnet: Universal directional graph neural networks for molecules Adv. Neural Inf. Process. Syst. 2021 34 6790
Gasteiger J., Giri S., Margraf J. T., and Günnemann S., Fast and uncertainty-aware directional message passing for non-equilibrium molecules, arXiv, 2020, preprint, arXiv:2011.14115
Botu V. Batra R. Chapman J. Ramprasad R. Machine learning force fields: construction, validation, and outlook J. Phys. Chem. C 2017 121 511 10.1021/acs.jpcc.6b10908
Vandermause J. Torrisi S. B. Batzner S. Xie Y. Sun L. Kolpak A. M. Kozinsky B. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events npj Comput. Mater. 2020 6 20 10.1038/s41524-020-0283-z
Gilmer J., Schoenholz S. S., Riley P. F., Vinyals O., and Dahl G. E., Neural message passing for quantum chemistry, in International Conference on Machine Learning, PMLR, 2017, pp. 1263-1272
Stocker S. Gasteiger J. Becker F. Günnemann S. Margraf J. T. How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? Mach. Learn.: Sci. Technol. 2022 3 045010
Lejaeghere K. Bihlmayer G. Björkman T. Blaha P. Blügel S. Blum V. Caliste D. Castelli I. E. Clark S. J. Corso A. D. de Gironcoli S. Deutsch T. Dewhurst J. K. Marco I. D. Draxl C. Dułak M. Eriksson O. Flores-Livas J. A. Garrity K. F. Genovese L. Giannozzi P. Giantomassi M. Goedecker S. Gonze X. Grånäs O. Gross E. K. U. Gulans A. Gygi F. Hamann D. R. Hasnip P. J. Holzwarth N. A. W. Iuşan D. Jochym D. B. Jollet F. Jones D. Kresse G. Koepernik K. Küçükbenli E. Kvashnin Y. O. Locht I. L. M. Lubeck S. Marsman M. Marzari N. Nitzsche U. Nordström L. Ozaki T. Paulatto L. Pickard C. J. Poelmans W. Probert M. I. J. Refson K. Richter M. Rignanese G.-M. Saha S. Scheffler M. Schlipf M. Schwarz K. Sharma S. Tavazza F. Thunström P. Tkatchenko A. Torrent M. Vanderbilt D. van Setten M. J. Speybroeck V. V. Wills J. M. Yates J. R. Zhang G.-X. Cottenier S. Reproducibility in density functional theory calculations of solids Science 2016 351 aad3000 10.1126/science.aad3000 27013736
Laurent A. D. Jacquemin D. TD-DFT benchmarks: a review Int. J. Quantum Chem. 2013 113 2019 10.1002/qua.24438
Unke O. T. Meuwly M. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges J. Chem. Theory Comput. 2019 15 3678 10.1021/acs.jctc.9b00181 31042390
Poltavsky I. Puleva M. Charkin-Gorbulin A. Fonseca G. Batatia I. Browning N. J. Chmiela S. Cui M. Frank J. T. Heinen S. Huang B. Käser S. Kabylda A. Khan D. Müller C. Price A. J. A. Riedmiller K. Töpfer K. Ko T. W. Meuwly M. Rupp M. Csányi G. von Lilienfeld O. A. Margraf J. T. Müller K.-R. Tkatchenko A. Crash testing machine learning force fields for molecules, materials, and interfaces: molecular dynamics in the TEA challenge 2023 Chem. Sci. 2025 https://dx.doi.org/10.1039/D4SC06530A
Blum V., Rossi M., Kokott S., and Scheffler M., The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale, arXiv, 2022, preprint, arXiv:2208.12335
Blum V. Gehrke R. Hanke F. Havu P. Havu V. Ren X. Reuter K. Scheffler M. Ab initio molecular simulations with numeric atom-centered orbitals Comput. Phys. Commun. 2009 180 2175 10.1016/j.cpc.2009.06.022
Ren X. Rinke P. Blum V. Wieferink J. Tkatchenko A. Sanfilippo A. Reuter K. Scheffler M. Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions New J. Phys. 2012 14 053020 10.1088/1367-2630/14/5/053020
Chmiela S. Vassilev-Galindo V. Unke O. T. Kabylda A. Sauceda H. E. Tkatchenko A. Müller K.-R. Accurate global machine learning force fields for molecules with hundreds of atoms Sci. Adv. 2023 9 eadf0873 10.1126/sciadv.adf0873 36630510
Perdew J. P. Burke K. Ernzerhof M. Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 10.1103/PhysRevLett.77.3865 10062328
Tkatchenko A. DiStasio Jr R. A. Car R. Scheffler M. Accurate and efficient method for many-body van der Waals interactions Phys. Rev. Lett. 2012 108 236402 10.1103/PhysRevLett.108.236402 23003978
Ambrosetti A. Reilly A. M. DiStasio R. A. Tkatchenko A. Long-range correlation energy calculated from coupled atomic response functions J. Chem. Phys. 2014 140 18A508 10.1063/1.4865104 24832316
Pracht P. Grimme S. Bannwarth C. Bohle F. Ehlert S. Feldmann G. Gorges J. Müller M. Neudecker T. Plett C. Spicher S. Steinbach P. Wesołowski P. A. Zeller F. CREST—A program for the exploration of low-energy molecular chemical space J. Chem. Phys. 2024 160 114110 10.1063/5.0197592 38511658
Adamo C. Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 1999 110 6158 10.1063/1.478522
Hermann J. Tkatchenko A. Density functional model for van der Waals interactions: Unifying many-body atomic approaches with nonlocal functionals Phys. Rev. Lett. 2020 124 146401 10.1103/PhysRevLett.124.146401 32338971
DiezCabanes V. Giannini S. Beljonne D. Quarti C. On the origin of energetic disorder in mixed Halides Llead Perovskites Adv. Opt. Mater. 2024 12 2301105 10.1002/adom.202301105
Fonseca G. Poltavsky I. Tkatchenko A. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope J. Chem. Theory Comput. 2023 19 8706 10.1021/acs.jctc.3c00985 38011895
Deringer V. L. Bartók A. P. Bernstein N. Wilkins D. M. Ceriotti M. Csányi G. Gaussian process regression for materials and molecules Chem. Rev. 2021 121 10073 10.1021/acs.chemrev.1c00022 34398616
Jinnouchi R. Lahnsteiner J. Karsai F. Kresse G. Bokdam M. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference Phys. Rev. Lett. 2019 122 225701 10.1103/PhysRevLett.122.225701 31283285
Jung H. Sauerland L. Stocker S. Reuter K. Margraf J. T. Machine-learning driven global optimization of surface adsorbate geometries npj Comput. Mater. 2023 9 114 10.1038/s41524-023-01065-w
Fu X., Wu Z., Wang W., Xie T., Keten S., Gomez-Bombarelli R., and Jaakkola T., Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations, arXiv, 2022, preprint, arXiv:2210.07237
Gawlikowski J. Tassi C. R. N. Ali M. Lee J. Humt M. Feng J. Kruspe A. Triebel R. Jung P. Roscher R. Shahzad M. Yang W. Bamler R. Zhu X. X. A survey of uncertainty in deep neural networks Artif. Intell. Rev. 2023 56 1513 10.1007/s10462-023-10562-9
Hjorth Larsen A. Jørgen Mortensen J. Blomqvist J. Castelli I. E. Christensen R. Dułak M. Friis J. Groves M. N. Hammer B. Hargus C. Hermes E. D. Jennings P. C. Bjerre Jensen P. Kermode J. Kitchin J. R. Leonhard Kols- bjerg E. Kubal J. Kaasbjerg K. Lysgaard S. Bergmann Maronsson J. Maxson T. Olsen T. Pastewka L. Peterson A. Rostgaard C. Schiøtz J. Schütt O. Strange M. Thygesen K. S. Vegge T. Vilhelmsen L. Walter M. Zeng Z. Jacobsen K. W. The atomic simulation environment - a Python library for working with atoms J. Phys. Condens. Matter 2017 29 273002 10.1088/1361-648X/aa680e 28323250