Crash testing; Density-functional-theory; Field architectures; Force field models; Forcefields; Machine-learning; Molecule surface; Performance; Surface interfaces; Testing machine; Chemistry (all)
Abstract :
[en] We present the second part of the rigorous evaluation of modern machine learning force fields (MLFFs) within the TEA Challenge 2023. This study provides an in-depth analysis of the performance of MACE, SO3krates, sGDML, SOAP/GAP, and FCHL19* in modeling molecules, molecule-surface interfaces, and periodic materials. We compare observables obtained from molecular dynamics (MD) simulations using different MLFFs under identical conditions. Where applicable, density-functional theory (DFT) or experiment serves as a reference to reliably assess the performance of the ML models. In the absence of DFT benchmarks, we conduct a comparative analysis based on results from various MLFF architectures. Our findings indicate that, at the current stage of MLFF development, the choice of ML model is in the hands of the practitioner. When a problem falls within the scope of a given MLFF architecture, the resulting simulations exhibit weak dependency on the specific architecture used. Instead, emphasis should be placed on developing complete, reliable, and representative training datasets. Nonetheless, long-range noncovalent interactions remain challenging for all MLFF models, necessitating special caution in simulations of physical systems where such interactions are prominent, such as molecule-surface interfaces. The findings presented here reflect the state of MLFF models as of October 2023.
PULEVA, Mirela ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
CHARKIN-GORBULIN, Anton ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Laboratory for Chemistry of Novel Materials, University of Mons B-7000 Mons Belgium
Fonseca, Grégory; Department of Physics and Materials Science, University of Luxembourg L-1511 Luxembourg Luxembourg alexandre.tkatchenko@uni.lu igor.poltavskyi@uni.lu
Batatia, Ilyes; Department of Engineering, University of Cambridge Trumpington Street Cambridge CB2 1PZ UK
Browning, Nicholas J; Swiss National Supercomputing Centre (CSCS) 6900 Lugano Switzerland
Chmiela, Stefan; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany
Cui, Mengnan; Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin Germany
Frank, J Thorben ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany
Heinen, Stefan; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada
Huang, Bing; Wuhan University, Department of Chemistry and Molecular Sciences 430072 Wuhan China
Käser, Silvan ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
KABYLDA, Adil ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Khan, Danish; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada ; Chemical Physics Theory Group, Department of Chemistry, University of Toronto St. George Campus Toronto ON Canada
Price, Alastair J A; Department of Chemistry, University of Toronto St. George campus Toronto ON Canada ; Acceleration Consortium, University of Toronto 80 St George St Toronto ON M5S 3H6 Canada
Riedmiller, Kai ; Heidelberg Institute for Theoretical Studies Heidelberg Germany
Töpfer, Kai ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
Ko, Tsz Wai; Department of NanoEngineering, University of California San Diego 9500 Gilman Dr, Mail Code 0448 La Jolla CA 92093-0448 USA
Meuwly, Markus ; Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
Rupp, Matthias ; Luxembourg Institute of Science and Technology (LIST) L-4362 Esch-sur-Alzette Luxembourg
Csányi, Gábor ; Department of Engineering, University of Cambridge Trumpington Street Cambridge CB2 1PZ UK
Anatole von Lilienfeld, O ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany ; Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada ; Department of Chemistry, University of Toronto St. George campus Toronto ON Canada ; Acceleration Consortium, University of Toronto 80 St George St Toronto ON M5S 3H6 Canada ; Department of Materials Science and Engineering, University of Toronto St. George campus Toronto ON Canada ; Department of Physics, University of Toronto, St. George campus Toronto ON Canada
Margraf, Johannes T; University of Bayreuth, Bavarian Center for Battery Technology (BayBatt) Bayreuth Germany
Müller, Klaus-Robert ; Machine Learning Group, Technical University Berlin Berlin Germany ; BIFOLD, Berlin Institute for the Foundations of Learning and Data Berlin Germany ; University of Bayreuth, Bavarian Center for Battery Technology (BayBatt) Bayreuth Germany ; Department of Artificial Intelligence, Korea University Seoul South Korea ; Max Planck Institut für Informatik Saarbrücken Germany ; Google DeepMind Berlin Germany
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Fonds National de la Recherche Luxembourg H2020 European Research Council Université du Luxembourg Natural Sciences and Engineering Research Council of Canada University of Toronto Bundesministerium für Bildung und Forschung Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Alexander von Humboldt-Stiftung Ministry of Science and ICT, South Korea Korea University Klaus Tschira Stiftung
Funding text :
The simulations were performed on the Luxembourg national supercomputer MeluXina. The authors gratefully acknowledge the LuxProvide teams for their expert support. I. Poltavsky would like to acknowledge the financial support afforded by the Luxembourg National Research (FNR) (Grant C19/MS/13718694/QML-FLEX). A. Tkatchenko acknowledges support from the European Research Council (ERC-AdG grant FITMOL) and Luxembourg National Research Fund (FNR-CORE Grant MBD-in-BMD). M. Puleva acknowledges the financial support from Institute of Advanced Studies, University of Luxembourg under the Young Academics project AQMA. The work of A. Charkin-Gorbulin was performed with the support of the Belgian National Fund for Scientific Research (F.R.S.-FNRS). Computational resources were provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI) funded FNRS under Grant 2.5020.11. We thank J. Weinreich for the helpful discussions. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2023-04853. O. A. von Lilienfeld has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 772834). This research was undertaken thanks in part to funding provided to the University of Toronto's Acceleration Consortium from the Canada First Research Excellence Fund, grant number: CFREF-2022-00042. O.A. von Lilienfeld has received support as the Ed Clark Chair of Advanced Materials and as a Canada CIFAR AI Chair. I. Batatia acknowledges access to CSD3 GPU resources through a University of Cambridge EPSRC Core Equipment Award (EP/X034712/1). IB was supported by the Harding Distinguished Postgraduate Scholarship. S. Chmiela and J.T. Frank acknowledge support by the German Ministry of Education and Research (BMBF) for BIFOLD (01IS18037A). M. Cui acknowledges the Max Planck Computing and Data Facility (MPCDF) for computation time. J.T. Margraf acknowledges support by the Bavarian Center for Battery Technology (BayBatt) at the University of Bayreuth. The research at Uni Basel was financially supported (to MM) by the Swiss National Science Foundation through grants 200020_219779 and 200021_215088, which is gratefully acknowledged. A. Kabylda acknowledges financial support from the Luxembourg National Research Fund (FNR) (AFR PhD Grant 15720828). C. M\u00FCller acknowledges funding by a Feodor-Lynen fellowship of the Alexander von Humboldt foundation. K.-R. M\u00FCller was in part supported by the German Ministry for Education and Research (BMBF) under Grants 01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A, 031L0207D, and 01IS18037A and by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grants funded by the Korea government (MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program, Korea University and No. 2022-0-00984, Development of Artificial Intelligence Technology for Personalized Plug-and-Play Explanation and Verification of Explanation). K. Riedmiller acknowledges financial support from the Klaus Tschira Foundation. We thank O. Unke and C. Quarti for their helpful comments.
Behler J. Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces Phys. Rev. Lett. 2007 98 14 146401 https://dx.doi.org/10.1103/physrevlett.98.146401 10.1103/PhysRevLett.98.146401 17501293
Bartók A. P. Payne M. C. Kondor R. Csányi G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons Phys. Rev. Lett. 2010 104 13 136403 https://dx.doi.org/10.1103/physrevlett.104.136403 10.1103/PhysRevLett.104.136403
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys. 2011 134 7 074106 https://dx.doi.org/10.1063/1.3553717 10.1063/1.3553717 21341827
Rupp M. Tkatchenko A. Müller K. R. von Lilienfeld O. A. Fast and accurate modeling of molecular atomization energies with machine learning Phys. Rev. Lett. 2012 108 5 058301 https://dx.doi.org/10.1103/physrevlett.108.058301 10.1103/PhysRevLett.108.058301 22400967
Pilania G. Wang C. Jiang X. Rajasekaran S. Ramprasad R. Accelerating materials property predictions using machine learning Sci. Rep. 2013 3 1 2810 https://dx.doi.org/10.1038/srep02810 10.1038/srep02810 24077117
Bartók A. P. Kondor R. Csányi G. On representing chemical environments Phys. Rev. B 2013 87 18 184115 https://dx.doi.org/10.1103/physrevb.87.184115 10.1103/PhysRevB.87.184115
Bartók A. Gillan M. Manby F. Csányi G. Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water Phys. Rev. B 2013 88 054104 https://dx.doi.org/10.1103/physrevb.88.054104 10.1103/PhysRevB.88.054104
Szlachta W. Bartók A. Csányi G. Accuracy and transferability of Gaussian approximation potential models for tungsten Phys. Rev. B 2014 90 104108 https://dx.doi.org/10.1103/physrevb.90.104108 10.1103/PhysRevB.90.104108
Huan T. D. Mannodi-Kanakkithodi A. Ramprasad R. Accelerated materials property predictions and design using motif-based fingerprints Phys. Rev. B 2015 92 014106 https://dx.doi.org/10.1103/PhysRevB.92.014106 10.1103/PhysRevB.92.014106
Slootman E. Poltavsky I. Shinde R. Cocomello J. Moroni S. Tkatchenko A. et al., Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark J. Chem. Theory Comput. 2024 20 14 6020 6027 https://dx.doi.org/10.1021/acs.jctc.4c00498 10.1021/acs.jctc.4c00498
Christensen A. S. Bratholm L. A. Faber F. A. von Lilienfeld O. A. FCHL revisited: Faster and more accurate quantum machine learning J. Chem. Phys. 2020 152 4 044107 https://dx.doi.org/10.1063/1.5126701 10.1063/1.5126701 32007071
Browning N. J. Faber F. A. Anatole von Lilienfeld O. GPU-accelerated approximate kernel method for quantum machine learning J. Chem. Phys. 2022 12 157 21 214801 https://dx.doi.org/10.1063/5.0108967
Batatia I. Kovacs D. P. Simm G. Ortner C. Csányi G. MACE: Higher order equivariant message passing neural networks for fast and accurate force fields Adv. Neural Inf. Process. Syst. 2022 35 11423 11436 https://dx.doi.org/10.1007/978-3-030-40245-7_10
Batatia I. Batzner S. Kovács D. P. Musaelian A. Simm G. N. C. Drautz R. Ortner C. Kozinsky B. Csányi G. The design space of E(3)-equivariant atom-centered interatomic potentials Nat. Mach. Intell. 2025 7 56 67 https://dx.doi.org/10.1038/s42256-024-00956-x 10.1038/s42256-024-00956-x
Schütt K. T. Arbabzadah F. Chmiela S. Müller K. R. Tkatchenko A. Quantum-chemical insights from deep tensor neural networks Nat. Commun. 2017 8 1 13890 https://dx.doi.org/10.1038/ncomms13890 10.1038/ncomms13890
Schütt K. T. Sauceda H. E. Kindermans P. J. Tkatchenko A. Müller K. R. SchNet-a deep learning architecture for molecules and materials J. Chem. Phys. 2018 148 24 241722 https://dx.doi.org/10.1063/1.5019779 10.1063/1.5019779
Chmiela S. Tkatchenko A. Sauceda H. E. Poltavsky I. Schütt K. T. Müller K. R. Machine learning of accurate energy-conserving molecular force fields Sci. Adv. 2017 3 5 e1603015 https://dx.doi.org/10.1126/sciadv.1603015 10.1126/sciadv.1603015
Chmiela S. Sauceda H. E. Müller K. R. Tkatchenko A. Towards exact molecular dynamics simulations with machine-learned force fields Nat. Commun. 2018 9 1 3887 https://dx.doi.org/10.1038/s41467-018-06169-2 10.1038/s41467-018-06169-2 30250077
Unke O. T. Stöhr M. Ganscha S. Unterthiner T. Maennel H. Kashubin S. et al., Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments Sci. Adv. 2024 10 14 eadn4397 https://dx.doi.org/10.1126/sciadv.adn4397 10.1126/sciadv.adn4397
Schütt K. T., Chmiela S., von Lilienfeld O. A., Tkatchenko A., Tsuda K., Müller K. R., Machine learning meets quantum physics, LNP, 2020: https://dx.doi.org/10.1063/pt.3.4164
Unke O. T. Chmiela S. Gastegger M. Schütt K. T. Sauceda H. E. Müller K. R. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects Nat. Commun. 2021 12 1 7273 https://dx.doi.org/10.1038/s41467-021-27504-0 10.1038/s41467-021-27504-0
Frank J. T. Unke O. T. Müller K. R. So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems Adv. Neural Inf. Process. Syst. 2022 35 29400 29413 https://dx.doi.org/10.1103/physrevresearch.2.032064
Frank J. T. Unke O. T. Müller K. R. Chmiela S. A Euclidean transformer for fast and stable machine learned force fields Nat. Commun. 2024 15 1 6539 https://dx.doi.org/10.1038/s41467-024-50620-6 10.1038/s41467-024-50620-6 39107296
Musaelian A. Batzner S. Johansson A. Sun L. Owen C. J. Kornbluth M. et al., Learning local equivariant representations for large-scale atomistic dynamics Nat. Commun. 2023 14 1 579 https://dx.doi.org/10.1038/s41467-023-36329-y 10.1038/s41467-023-36329-y
Batzner S. Musaelian A. Sun L. Geiger M. Mailoa J. P. Kornbluth M. et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials Nat. Commun. 2022 13 1 2453 https://dx.doi.org/10.1038/s41467-022-29939-5 10.1038/s41467-022-29939-5
Plé T. Lagardère L. Piquemal J. P. Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects Chem. Sci. 2023 14 44 12554 12569 https://dx.doi.org/10.1039/d3sc02581k 10.1039/D3SC02581K
Schütt K. T., Unke O. T. and Gastegger M., Equivariant message passing for the prediction of tensorial properties and molecular spectra, in International Conference on Machine Learning. PMLR, 2021, pp. 9377-9388, https://dx.doi.org/10.1103/physrevb.105.165131
Deringer V. L. Bartók A. P. Bernstein N. Wilkins D. M. Ceriotti M. Csányi G. Gaussian process regression for materials and molecules Chem. Rev. 2021 121 16 10073 10141 https://dx.doi.org/10.1021/acs.chemrev.1c00022 10.1021/acs.chemrev.1c00022
Fonseca G. Poltavsky I. Tkatchenko A. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope J. Chem. Theory Comput. 2023 19 23 8706 8717 https://dx.doi.org/10.1021/acs.jctc.3c00985 10.1021/acs.jctc.3c00985
Bischoff T., Jäckl B. and Rupp M., Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials, arXiv, 2024, preprint, arXiv:240913390, https://dx.doi.org/10.2139/ssrn.3787885
Chong S. Grasselli F. Ben M. C. Morrow J. D. Deringer V. L. Ceriotti M. Robustness of local predictions in atomistic machine learning models J. Chem. Theory Comput. 2023 19 22 8020 8031 https://dx.doi.org/10.1021/acs.jctc.3c00704.s001 10.1021/acs.jctc.3c00704 37948446
Heid E. McGill C. J. Vermeire F. H. Green W. H. Characterizing uncertainty in machine learning for chemistry J. Chem. Inf. Model. 2023 63 13 4012 4029 https://dx.doi.org/10.1021/acs.jcim.3c00373 10.1021/acs.jcim.3c00373
Vishwakarma G. Sonpal A. Hachmann J. Metrics for benchmarking and uncertainty quantification: Quality, applicability, and best practices for machine learning in chemistry Trends Chem. 2021 3 2 146 156 https://dx.doi.org/10.1016/j.trechm.2020.12.004 10.1016/j.trechm.2020.12.004
Pernot P. Savin A. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors J. Chem. Phys. 2018 148 24 241707 https://dx.doi.org/10.1063/1.5016248 10.1063/1.5016248
Tran K. Neiswanger W. Yoon J. Zhang Q. Xing E. Ulissi Z. W. Methods for comparing uncertainty quantifications for material property predictions Mach. Learn: Sci. Technol. 2020 1 2 025006 https://dx.doi.org/10.1088/2632-2153/ab7e1a
Haghighatlari M. Vishwakarma G. Altarawy D. Subramanian R. Kota B. U. Sonpal A. et al., Chem ML: A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020 10 4 e1458 https://dx.doi.org/10.1002/wcms.1458 10.1002/wcms.1458
Jinnouchi R. Lahnsteiner J. Karsai F. Kresse G. Bokdam M. Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference Phys. Rev. Lett. 2019 122 225701 https://dx.doi.org/10.1103/PhysRevLett.122.225701 10.1103/PhysRevLett.122.225701
Sauceda H. E. Gálvez-González L. E. Chmiela S. Paz-Borbón L. O. Müller K. R. Tkatchenko A. BIGDML—Towards accurate quantum machine learning force fields for materials Nat. Commun. 2022 13 1 3733 https://dx.doi.org/10.1038/s41467-022-31093-x 10.1038/s41467-022-31093-x
Goodwin Z. A. H. Wenny M. B. Yang J. H. Cepellotti A. Ding J. Bystrom K. et al., Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials J. Phys. Chem. Lett. 2024 15 30 7539 7547 https://dx.doi.org/10.1021/acs.jpclett.4c01942 10.1021/acs.jpclett.4c01942
Vandermause J. Xie Y. Lim J. S. Owen C. J. Kozinsky B. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt Nat. Commun. 2022 13 1 5183 https://dx.doi.org/10.1038/s41467-022-32294-0 10.1038/s41467-022-32294-0 36055982
Owen C. J. Xie Y. Johansson A. Sun L. Kozinsky B. Low-index mesoscopic surface reconstructions of Au surfaces using Bayesian force fields Nat. Commun. 2024 15 1 3790 https://dx.doi.org/10.1038/s41467-024-48192-6 10.1038/s41467-024-48192-6
Weinreich J. Lemm D. von Rudorff G. F. von Lilienfeld O. A. Ab initio machine learning of phase space averages J. Chem. Phys. 2022 07 157 2 024303 https://dx.doi.org/10.1063/5.0095674
Weinreich J. Browning N. J. von Lilienfeld O. A. Machine learning of free energies in chemical compound space using ensemble representations: Reaching experimental uncertainty for solvation J. Chem. Phys. 2021 04 154 13 134113 https://dx.doi.org/10.1063/5.0041548
Magdău I. B. Arismendi-Arrieta D. J. Smith H. E. Grey C. P. Hermansson K. Csányi G. Machine learning force fields for molecular liquids: Ethylene Carbonate/Ethyl Methyl Carbonate binary solvent npj Comput. Mater. 2023 9 1 146 https://dx.doi.org/10.1038/s41524-023-01100-w 10.1038/s41524-023-01100-w
Schaaf L. L. Fako E. De S. Schäfer A. Csányi G. Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields npj Comput. Mater. 2023 9 1 180 https://dx.doi.org/10.1038/s41524-023-01124-2 10.1038/s41524-023-01124-2
Baldwin W. J. Liang X. Klarbring J. Dubajic M. Dell'Angelo D. Sutton C. et al., Dynamic Local Structure in Caesium Lead Iodide: Spatial Correlation and Transient Domains Small 2024 20 3 2303565 https://dx.doi.org/10.1002/smll.202303565 10.1002/smll.202303565
Stark W. G. van der Oord C. Batatia I. Zhang Y. Jiang B. Csányi G. et al., Benchmarking of machine learning interatomic potentials for reactive hydrogen dynamics at metal surfaces Mach. Learn: Sci. Technol. 2024 5 3 030501 https://dx.doi.org/10.1088/2632-2153/ad5f11
Stocker S. Jung H. Csányi G. Goldsmith C. F. Reuter K. Margraf J. T. Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration J. Chem. Theory Comput. 2023 19 6796 6804 https://dx.doi.org/10.1021/acs.jctc.3c00541 10.1021/acs.jctc.3c00541 37747812
Musaelian A., Johansson A., Batzner S. and Kozinsky B., Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2023, vol. 12, pp. 1-12, https://dx.doi.org/10.1145/3581784.3627041
Kovács D. P. van der Oord C. Kucera J. Allen A. E. Cole D. J. Ortner C. et al., Linear atomic cluster expansion force fields for organic molecules: beyond RMSE J. Chem. Theory Comput. 2021 17 12 7696 7711 https://dx.doi.org/10.33774/chemrxiv-2021-7qlf5-v3 10.1021/acs.jctc.1c00647
Wang Z. Wu H. Sun L. He X. Liu Z. Shao B. et al., Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics J. Chem. Phys. 2023 159 3 035101 https://dx.doi.org/10.1063/5.0147023 10.1063/5.0147023
Fu X., Wu Z., Wang W., Xie T., Keten S., Gomez-Bombarelli R., et al., Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations, arXiv, 2022, preprint arXiv:221007237, https://dx.doi.org/10.1063/5.0147023
Morrow J. D. Gardner J. L. Deringer V. L. How to validate machine-learned interatomic potentials J. Chem. Phys. 2023 158 12 121501 https://dx.doi.org/10.1063/5.0139611 10.1063/5.0139611
Stocker S. Gasteiger J. Becker F. Günnemann S. Margraf J. T. How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? Mach Learn Sci. Technol. 2022 3 045010 https://dx.doi.org/10.1088/2632-2153/ac9955
Artrith N. Butler K. T. Coudert F. X. Han S. Isayev O. Jain A. et al., Best practices in machine learning for chemistry Nat. Chem. 2021 13 6 505 508 https://dx.doi.org/10.1038/s41557-021-00716-z 10.1038/s41557-021-00716-z
Bender A. Schneider N. Segler M. Patrick W. W. Engkvist O. Rodrigues T. Evaluation guidelines for machine learning tools in the chemical sciences Nat. Rev. Chem 2022 6 6 428 442 https://dx.doi.org/10.1038/s41570-022-00391-9 10.1038/s41570-022-00391-9 37117429
Pernot P. Huang B. Savin A. Impact of non-normal error distributions on the benchmarking and ranking of quantum machine learning models Mach. Learn: Sci. Technol. 2020 1 3 035011 https://dx.doi.org/10.1088/2632-2153/aba184
Chmiela S. Vassilev-Galindo V. Unke O. T. Kabylda A. Sauceda H. E. Tkatchenko A. et al., Accurate global machine learning force fields for molecules with hundreds of atoms Sci. Adv. 2023 9 2 eadf0873 https://dx.doi.org/10.1126/sciadv.adf0873 10.1126/sciadv.adf0873 36630510
Christensen A. S., Faber F. A., Huang B., Bratholm L. A., Tkatchenko A., Müller K. R., et al., QML: A Python Toolkit for Quantum Machine Learning, preprint, 2017, https://dx.doi.org/10.1201/9781032669182-25
Rahimi A. Recht B. Random features for large-scale kernel machines Adv. Neural Inf. Process. Syst. 2007 20 https://dx.doi.org/10.1109/igarss.2015.7325686
Poltavsky I. Charkin-Gorbulin A. Puleva M. Cordeiro Fonseca G. Batatia I. Browning N. J. Chmiela S. Cui M. Frank J. T. Heinen S. Huang B. Käser S. Kabylda A. Khan D. Müller C. Price A. J. A. Riedmiller K. Töpfer K. Ko T. W. Meuwly M. Rupp M. Csanyi G. Anatole von Lilienfeld O. Margraf J. T. Müller K.-R. Tkatchenko A. Chem. Sci. 2025 https://dx.doi.org/10.1039/d4sc06529h
Smith J. S. Isayev O. Roitberg A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost Chem. Sci. 2017 8 3192 3203 https://dx.doi.org/10.1039/C6SC05720A 10.1039/C6SC05720A 28507695
Drautz R. Atomic cluster expansion for accurate and transferable interatomic potentials Phys. Rev. B 2019 99 014104 https://dx.doi.org/10.1103/PhysRevB.99.014104 10.1103/PhysRevB.99.014104
Choudhary K. DeCost B. Major L. Butler K. Thiyagalingam J. Tavazza F. Unified graph neural network force-field for the periodic table: solid state applications Digital Discovery 2023 2 346 355 https://dx.doi.org/10.1039/D2DD00096B 10.1039/D2DD00096B
Anstine D., Zubatyuk R. and Isayev O., AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs, ChemRxiv, 2024, preprint, https://dx.doi.org/10.26434/chemrxiv-2023-296ch-v2
Zeng J. Zhang D. Lu D. Mo P. Li Z. Chen Y. et al., DeePMD-kit v2: A software package for deep potential models J. Chem. Phys. 2023 08 159 5 054801 https://dx.doi.org/10.1063/5.0155600
Wang H. Zhang L. Han J. E W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics Comput. Phys. Commun. 2018 228 178 184 10.1016/j.cpc.2018.03.016 . https://www.sciencedirect.com/science/article/pii/S0010465518300882
Rodriguez A. Lin C. Yang H. Al-Fahdi M. Shen C. Choudhary K. et al., Million-scale data integrated deep neural network for phonon properties of heuslers spanning the periodic table npj Comput. Mater. 2023 9 1 20 https://dx.doi.org/10.1038/s41524-023-00974-0 10.1038/s41524-023-00974-0
Zhang Y. Jiang B. Universal machine learning for the response of atomistic systems to external fields Nat. Commun. 2023 14 1 6424 https://dx.doi.org/10.1038/s41467-023-42148-y 10.1038/s41467-023-42148-y 37827998
Vandermause J. Torrisi S. B. Batzner S. Xie Y. Sun L. Kolpak A. M. et al., On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events npj Comput. Mater. 2020 6 1 20 https://dx.doi.org/10.1038/s41524-020-0283-z 10.1038/s41524-020-0283-z
Kang P. L. Yang Z. X. Shang C. Liu Z. P. Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface J. Chem. Theory Comput. 2023 19 21 7972 7981 https://dx.doi.org/10.1021/acs.jctc.3c00873 10.1021/acs.jctc.3c00873
Xie F. Lu T. Meng S. Liu M. GPTFF: A high-accuracy out-of-the-box universal AI force field for arbitrary inorganic materials Sci. Bull. 2024 3525 3532 10.1016/j.scib.2024.08.039 39278799
Shapeev A. V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials Multiscale Model. Simul. 2016 14 3 1153 1173 https://dx.doi.org/10.1137/15M1054183 10.1137/15M1054183
Houston P. L. Qu C. Nandi A. Conte R. Yu Q. Bowman J. M. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods J. Chem. Phys. 2022 01 156 4 044120 https://dx.doi.org/10.1063/5.0080506
Houston P. L. Qu C. Yu Q. Pandey P. Conte R. Nandi A. et al., No Headache for PIPs: A PIP Potential for Aspirin Runs Much Faster and with Similar Precision Than Other Machine-Learned Potentials J. Chem. Theory Comput. 2024 20 8 3008 3018 https://dx.doi.org/10.1021/acs.jctc.4c00054 10.1021/acs.jctc.4c00054 38593438
Park Y. Kim J. Hwang S. Han S. Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations J. Chem. Theory Comput. 2024 06 20 11 4857 4868 https://dx.doi.org/10.1021/acs.jctc.4c00190 https://dx.doi.org/10.1021/acs.jctc.4c00190
Thompson A. P. Swiler L. P. Trott C. R. Foiles S. M. Tucker G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials J. Comput. Phys. 2015 285 316 330 https://dx.doi.org/10.1016/j.jcp.2014.12.018 10.1016/j.jcp.2014.12.018
Chen C. Ong S. P. A universal graph deep learning interatomic potential for the periodic table Nat. Comput. Sci. 2022 2 11 718 728 https://dx.doi.org/10.1038/s43588-022-00349-3 10.1038/s43588-022-00349-3
Markland T. E. Ceriotti M. Nuclear quantum effects enter the mainstream Nat. Rev. Chem 2018 2 3 0109 https://dx.doi.org/10.1038/s41570-017-0109 10.1038/s41570-017-0109
Ramachandran G. Ramakrishnan C. Sasisekharan V. Stereochemistry of polypeptide chain configurations J. Mol. Biol. 1963 7 95 99 https://dx.doi.org/10.1016/s0022-2836(63)80023-6 10.1016/S0022-2836(63)80023-6 13990617
Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units Biopolymers 1968 6 10 1425 1436 https://dx.doi.org/10.1002/bip.1968.360061006 10.1002/bip.1968.360061006 5685102
Ramachandran G. N., Sasisekharan V. . Conformation of Polypeptides and Proteins**The literature survey for this review was completed in September 1967, with the journals which were then available in Madras and the preprinta which the authors had received. †† By the authors' request, the publishers have left certain matters of usage and spelling in the form in which they wrote them, Advances in Protein Chemistry. Academic Press, 1968, vol. 23, pp. 283-437, https://dx.doi.org/10.1007/978-3-662-69832-7_13
Ester M., Kriegel H. P., Sander J. and Xu X., A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96, AAAI Press, 1996, pp. 226-231, https://dx.doi.org/10.5120/739-1038
Schubert E. Sander J. Ester M. Kriegel H. P. Xu X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN ACM Trans. Database Syst. 2017 42 3 1 21 https://dx.doi.org/10.1145/3068335 10.1145/3068335
Adamo C. Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 1999 04 110 13 6158 6170 https://dx.doi.org/10.1063/1.478522
Hermann J. Tkatchenko A. Density functional model for van der Waals interactions: Unifying many-body atomic approaches with nonlocal functionals Phys. Rev. Lett. 2020 124 14 146401 https://dx.doi.org/10.1103/physrevlett.124.146401 10.1103/PhysRevLett.124.146401 32338971
Ren P. Xiao Y. Chang X. Huang P. Y. Li Z. Gupta B. B. et al., A Survey of Deep Active Learning ACM Comput. Surv. 2021 54 9 1 40 https://dx.doi.org/10.1145/3472291 10.1145/3472291
Hirschfeld L. Swanson K. Yang K. Barzilay R. Coley C. W. Uncertainty Quantification Using Active Learning for Molecular Property Prediction J. Chem. Inf. Model. 2020 60 8 3770 3780 https://dx.doi.org/10.1021/acs.jcim.0c00502.s001 10.1021/acs.jcim.0c00502 32702986
Tan A. R. Urata S. Goldman S. et al., Active Learning for Machine Learning Force Fields in Material Science npj Comput. Mater. 2023 9 225 https://dx.doi.org/10.1038/s41524-023-01180-8 10.1038/s41524-023-01180-8
Frenkel D. and Smit B., Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2007, https://dx.doi.org/10.1063/1.881812
Kabylda A., Frank J. T., Dou S. S., Khabibrakhmanov A., Sandonas L. M., Unke O. T., et al., Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields, ChemRxiv, 2024, preprint, https://dx.doi.org/10.26434/chemrxiv-2024-bdfr0
Choi J. J. Yang X. Norman Z. M. Billinge S. J. L. Owen J. S. Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells Nano Lett. 2014 14 1 127 133 https://dx.doi.org/10.1021/nl403514x 10.1021/nl403514x 24266720
Ivanovska T. Quarti C. Grancini G. Petrozza A. De Angelis F. Milani A. et al., Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon-Phonon Interactions ChemSusChem 2016 9 20 2994 3004 10.1002/cssc.201600932 27677891 . https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201600932
DiezCabanes V. Giannini S. Beljonne D. Quarti C. On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites Adv. Opt. Mater. 2024 12 8 2301105 https://dx.doi.org/10.1002/adom.202301105 10.1002/adom.202301105
Larsen A. H. Mortensen J. J. Blomqvist J. Castelli I. E. Christensen R. Dułak M. et al., The atomic simulation environment - a Python library for working with atoms J. Phys. Condens. Matter 2017 29 27 273002 https://dx.doi.org/10.1088/1361-648x/aa680e 10.1088/1361-648X/aa680e 28323250
Wengert S. Csányi G. Reuter K. Margraf J. T. Data-efficient machine learning for molecular crystal structure prediction Chem. Sci. 2021 12 4536 4546 https://dx.doi.org/10.1039/D0SC05765G 10.1039/D0SC05765G 34163719