Article (Périodiques scientifiques)
Machine learning in the prediction of human wellbeing.
Oparina, Ekaterina; Kaiser, Caspar; GENTILE, Niccolo et al.
2025In Scientific Reports, 15 (1), p. 1632
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
SR_final.pdf
Postprint Auteur (2.15 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine learning; Prediction methods; Subjective wellbeing
Résumé :
[en] Subjective wellbeing data are increasingly used across the social sciences. Yet, despite the widespread use of such data, the predictive power of approaches commonly used to model wellbeing is only limited. In response, we here use tree-based Machine Learning (ML) algorithms to provide a better understanding of respondents' self-reported wellbeing. We analyse representative samples of more than one million respondents from Germany, the UK, and the United States, using data from 2010 to 2018. We make three contributions. First, we show that ML algorithms can indeed yield better predictive performance than standard approaches, and establish an upper bound on the predictability of wellbeing scores with survey data. Second, we use ML to identify the key drivers of evaluative wellbeing. We show that the variables emphasised in the earlier intuition- and theory-based literature also appear in ML analyses. Third, we illustrate how ML can be used to make a judgement about functional forms, including the existence of satiation points in the effects of income and the U-shaped relationship between age and wellbeing.
Disciplines :
Economie sociale
Auteur, co-auteur :
Oparina, Ekaterina;  London School of Economics, London, UK
Kaiser, Caspar;  Warwick Business School, Coventry, UK. caspar.kaiser@wbs.ac.uk ; University of Oxford, Oxford, UK. caspar.kaiser@wbs.ac.uk
GENTILE, Niccolo ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Behavioural and Cognitive Sciences > Team Conchita D AMBROSIO
TKATCHENKO, Alexandre ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Clark, Andrew E;  University of Luxembourg, Esch-sur-Alzette, Luxembourg ; PSE-CNRS, Paris, France
De Neve, Jan-Emmanuel;  University of Oxford, Oxford, UK
D'AMBROSIO, Conchita  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Health and Behaviour
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Machine learning in the prediction of human wellbeing.
Date de publication/diffusion :
10 janvier 2025
Titre du périodique :
Scientific Reports
eISSN :
2045-2322
Maison d'édition :
Nature Research, England
Volume/Tome :
15
Fascicule/Saison :
1
Pagination :
1632
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Economic and Social Research Council
European Research Council
Institute for Advanced Studies, University of Luxembourg
Disponible sur ORBilu :
depuis le 28 avril 2025

Statistiques


Nombre de vues
93 (dont 2 Unilu)
Nombre de téléchargements
36 (dont 1 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
5
OpenCitations
 
0
citations OpenAlex
 
8
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu