[en] Subjective wellbeing data are increasingly used across the social sciences. Yet, despite the widespread use of such data, the predictive power of approaches commonly used to model wellbeing is only limited. In response, we here use tree-based Machine Learning (ML) algorithms to provide a better understanding of respondents' self-reported wellbeing. We analyse representative samples of more than one million respondents from Germany, the UK, and the United States, using data from 2010 to 2018. We make three contributions. First, we show that ML algorithms can indeed yield better predictive performance than standard approaches, and establish an upper bound on the predictability of wellbeing scores with survey data. Second, we use ML to identify the key drivers of evaluative wellbeing. We show that the variables emphasised in the earlier intuition- and theory-based literature also appear in ML analyses. Third, we illustrate how ML can be used to make a judgement about functional forms, including the existence of satiation points in the effects of income and the U-shaped relationship between age and wellbeing.
Disciplines :
Social economics
Author, co-author :
Oparina, Ekaterina; London School of Economics, London, UK
Kaiser, Caspar; Warwick Business School, Coventry, UK. caspar.kaiser@wbs.ac.uk ; University of Oxford, Oxford, UK. caspar.kaiser@wbs.ac.uk
GENTILE, Niccolo ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Behavioural and Cognitive Sciences > Team Conchita D AMBROSIO
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Clark, Andrew E; University of Luxembourg, Esch-sur-Alzette, Luxembourg ; PSE-CNRS, Paris, France
De Neve, Jan-Emmanuel; University of Oxford, Oxford, UK
D'AMBROSIO, Conchita ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Health and Behaviour
External co-authors :
yes
Language :
English
Title :
Machine learning in the prediction of human wellbeing.
ONS. (2021). Well-being - Office for National Statistics.
F. Cheung R.E. Lucas Assessing the validity of single-item life satisfaction measures: Results from three large samples Qual. Life Res. 23 10 2809 2818 24890827 4221492 1141.13302 10.1007/s11136-014-0726-4
Tov, W., Keh, J.S., Tan, Y.Q., Tan, Q.Y.J., & Aziz, I.A.S.B. (2022). Assessing subjective well-being: A review of common measures. in Handbook of Positive Psychology Assessment.
OECD. (2013a). Methodological considerations in the measurement of subjective well-being (tech. rep.). OECD. Paris.
E. Diener R. Inglehart L. Tay Theory and validity of life satisfaction scales Social Indicators Res. 112 3 497 527 0689.34042 10.1007/s11205-012-0076-y
D.J. Benjamin O. Heffetz M.S. Kimball A. Rees-Jones Can marginal rates of substitution be inferred from happiness data? Evidence from residency choices Am. Econ. Rev. 104 11 3498 3528 25404759 4231441 10.1257/aer.104.11.3498
C.J. Charpentier J.-E. De Neve X. Li J.P. Roiser T. Sharot Models of affective decision making: How do feelings predict choice? Psychol. Sci. 27 6 763 775 27071751 10.1177/0956797616634654
C. Kaiser A.J. Oswald The scientific value of numerical measures of human feelings PNAS 119 42 1:CAS:528:DC%2BB38XivVSmur7M 36191179 9586273 1489.14081 10.1073/pnas.2210412119 e2210412119
R. Layard A.E. Clark F. Cornaglia N. Powdthavee J. Vernoit What predicts a successful life? A life-course model of well-being Econ. J. 124 580 F720 F738 10.1111/ecoj.12170
R.E. Lucas Long-term disability is associated with lasting changes in subjective well-being: Evidence from two nationally representative longitudinal studies J. Personality Social Psychol. 92 717 730 1140.68015 10.1037/0022-3514.92.4.717
A.J. Oswald N. Powdthavee Does happiness adapt? A longitudinal study of disability with implications for economists and judges J. Public Econ. 92 5 1061 1077 0753.16019 10.1016/j.jpubeco.2008.01.002
R.E. Lucas A.E. Clark Y. Georgellis E. Diener Unemployment alters the set point for life satisfaction Psychol. Sci. 15 1 8 13 14717825 1089.91042 10.1111/j.0963-7214.2004.01501002.x
S.C. Kassenboehmer J.P. Haisken-DeNew You’re fired! the causal negative effect of entry unemployment on life satisfaction Econ. J. 119 536 448 462 1209.91133 10.1111/j.1468-0297.2008.02246.x
D.G. Blanchflower A.J. Oswald Well-being over time in Britain and the USA J. Public Econ. 88 7–8 1359 1386 1085.32013 10.1016/S0047-2727(02)00168-8
J.M. Rohrer D. Richter M. Brümmer G.G. Wagner S.C. Schmukle Successfully striving for happiness: Socially engaged pursuits predict increases in life satisfaction Psychol. Sci. 29 8 1291 1298 29775423 10.1177/0956797618761660
C.J. Boyce Understanding fixed effects in human well-being J. Econ. Psychol. 31 1 1 16 1052.90527 10.1016/j.joep.2009.08.009
C.J. Boyce A.M. Wood Personality prior to disability determines adaptation: Agreeable individuals recover lost life satisfaction faster and more completely Psychol. Sci. 22 11 1397 1402 22020977 10.1177/0956797611421790
J. Anglim S. Horwood L.D. Smillie R.J. Marrero J.K. Wood Predicting psychological and subjective well-being from personality: A meta-analysis Psychol. Bull. 146 279 323 31944795 10.1037/bul0000226
E. Ryan R.M. Deci On happiness and human potentials: A review of research on Hedonic and Eudaimonic well-being Annu. Rev. Psychol. 52 141 166 1:STN:280:DC%2BD3Mzptlaktg%3D%3D 11148302 0934.03009 10.1146/annurev.psych.52.1.141
P. Dolan T. Peasgood M. White Do we really know what makes us happy? A review of the economic literature on the factors associated with subjective well-being J. Econ. Psychol. 29 1 94 122 10.1016/j.joep.2007.09.001
A.E. Clark Four decades of the economics of happiness: Where next? Rev. Income Wealth 64 2 245 269 1364.19001 10.1111/roiw.12369
F. Kong K. Ding Z. Yang X. Dang S. Hu Y. Song J. Liu Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults Social Cognit. Affect. Neurosci. 10 952 960 10.1093/scan/nsu144
M. Nikolova C. Graham K.F. Zimmermann The economics of happiness Handbook of Labor, Human Resources and Population Economics Springer International Publishing 1 33 0876.35009
P. Frijters T. Beatton The mystery of the U-shaped relationship between happiness and age J. Econ. Behav. Organ. 82 2–3 525 542 0343.92008 10.1016/j.jebo.2012.03.008
T.C. Cheng N. Powdthavee A.J. Oswald Longitudinal evidence for a midlife nadir in human well-being: Results from four data sets Econ. J. 127 599 126 142 10.1111/ecoj.12256
C. Wunder A. Wiencierz J. Schwarze H. Küchenhoff Well-being over the life span: Semiparametric evidence from British and German longitudinal data Rev. Econ. Stat. 95 1 154 167 10.1162/REST_a_00222
D. Kahneman A. Deaton High income improves evaluation of life but not emotional well-being PNAS 107 38 16489 93 2010PNAS.10716489K 1:CAS:528:DC%2BC3cXht1Wku7bO 20823223 2944762 0584.62193 10.1073/pnas.1011492107
A.T. Jebb L. Tay E. Diener S. Oishi Happiness, income satiation and turning points around the world Nat. Human Behav. 2 1 33 38 10.1038/s41562-017-0277-0
B. Stevenson J. Wolfers Subjective well-being and income: Is there any evidence of satiation? Am. Econ. Rev. 103 3 598 604 1280.18010 10.1257/aer.103.3.598
M.A. Killingsworth Experienced well-being rises with income, even above §75,000 per year PNAS 118 4 1:CAS:528:DC%2BB3MXitFaisb0%3D 33468644 7848527 10.1073/pnas.2016976118 e2016976118
M. Kaiser S. Otterbach A. Sousa-Poza Using machine learning to uncover the relation between age and life satisfaction Sci. Rep. 12 1 5263 2022NatSR.12.5263K 1:CAS:528:DC%2BB38Xoslylu7c%3D 35347178 8960822 1319.94044 10.1038/s41598-022-09018-x
Margolis, S., Elder, J., Hughes, B., & Lyubomirsky, S. (2021). What are the most important predictors of subjective well-being? Insights from machine learning and linear regression approaches on the MIDUS datasets (tech. rep.). PsyArXiv.
G. Prati Correlates of quality of life, happiness and life satisfaction among European adults older than 50 years: A machine-learning approach Arch. Gerontol. Geriatr. 103 35998473 0807.03035 10.1016/j.archger.2022.104791 104791
J. Dukart S. Weis S. Genon S.B. Eickhoff Towards increasing the clinical applicability of machine learning biomarkers in psychiatry Nat. Human Behav. 5 4 431 432 10.1038/s41562-021-01085-w
L. Breiman Random forests Machine Learn. 45 1 5 32 1007.68152 10.1023/A:1010933404324
Hastie, T., Tibshirani, R., Friedman, J.H., & Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2. (Springer, 2009).
Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. Ann. Stat. 1189–1232.
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Front. Neurorobot.7, Article 21.
R. Tibshirani Regression shrinkage and selection via the Lasso J. R. Stat. Soc. Series B (Methodol.) 58 1 267 288 1379242 0850.62538 10.1111/j.2517-6161.1996.tb02080.x
R. Shwartz-Ziv A. Armon Tabular data: Deep learning is not all you need Inform. Fusion 81 84 90 10.1016/j.inffus.2021.11.011
Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022). Deep Neural Networks and Tabular Data: A Survey. arXiv:2110.01889 [cs].
OECD. (2013b). OECD Guidelines on Measuring Subjective Well-being.
D. Fudenberg J. Kleinberg A. Liang S. Mullainathan Measuring the completeness of economic models J. Political Econ. 130 4 956 990 1373.68104 10.1086/718371
A.B. Krueger D.A. Schkade The reliability of subjective well-being measures J. Public Econ. 92 8–9 1833 1845 19649136 2597879 1153.74313 10.1016/j.jpubeco.2007.12.015
A. Clark S. Flèche R. Layard N. Powdthavee G. Ward The Origins of Happiness Princeton University Press 10.2307/j.ctvc77dgq
I. Reis D. Baron S. Shahaf Probabilistic random forest: A machine learning algorithm for noisy data sets Astron. J. 157 1 16 2019AJ..157..16R 0509.40006 10.3847/1538-3881/aaf101
A. Ferrer-i-Carbonell P. Frijters How important is methodology for the estimates of the determinants of happiness? Econ. J. 114 497 641 659 1168.91487 10.1111/j.1468-0297.2004.00235.x
E. Proto A. Zhang COVID-19 and mental health of individuals with different personalities PNAS 118 37 1:CAS:528:DC%2BB3MXitVCnu7nJ 34508007 8449367 10.1073/pnas.2109282118 e2109282118
OECD. (2020b). Education at a Glance 2020.
A. Gorry D. Gorry S.N. Slavov Does retirement improve health and life satisfaction? Health Econ. 27 12 2067 2086 30141568 1396.91368 10.1002/hec.3821
M. Wetzel O. Huxhold C. Tesch-Römer Transition into retirement affects life satisfaction: Short- and long-term development depends on last labor market status and education Social Indicators Res. 125 3 991 1009 10.1007/s11205-015-0862-4
Wolpert, D.H., & Macready, W.G. (1995). No Free Lunch Theorems for Search (tech. rep.). Technical Report SFI-TR-95-02-010, Santa Fe Institute.
P. Mehta M. Bukov C.-H. Wang A.G. Day C. Richardson C.K. Fisher D.J. Schwab A high-bias, low-variance introduction to machine learning for physicists Phys. Rep. 810 1 124 2019PhR..810..1M 3955135 31404441 6688775 10.1016/j.physrep.2019.03.001
S. Wager S. Athey Estimation and inference of heterogeneous treatment effects using random forests J. Am. Stat. Assoc. 113 523 1228 1242 3862353 1:CAS:528:DC%2BC1cXhtV2gu77F 1402.62056 10.1080/01621459.2017.1319839
J. van Agteren M. Iasiello L. Lo J. Bartholomaeus Z. Kopsaftis M. Carey M. Kyrios A systematic review and meta-analysis of psychological interventions to improve mental wellbeing Nat. Human Behav. 5 5 631 652 10.1038/s41562-021-01093-w
Helliwell, J.F., Wang, S., Huang, H., & Norton, M. (2022). in Happiness, Benevolence, and Trust During COVID-19 and Beyond (World Happiness Report), 15–52.
J. McGuire C. Kaiser A.M. Bach-Mortensen A systematic review and meta-analysis of the impact of cash transfers on subjective well-being and mental health in low- and middle-income countries Nat. Human Behav. 6 3 359 370 0709.53061 10.1038/s41562-021-01252-z
L. Breiman Classification and Regression Trees Routledge 0541.62042
F. Pedregosa G. Varoquaux A. Gramfort V. Michel B. Thirion O. Grisel M. Blondel P. Prettenhofer R. Weiss V. Dubourg Scikit-learn: Machine learning in Python J. Machine Learn. Res. 12 2825 2830 2854348 1280.68189
H. Cantril The Pattern of Human Concerns Rutgers University Press
UKHLS. (2021). United Kingdom Household Longitudinal Study Understanding Society: Waves 1-10, 2009-2019 and Harmonised BHPS: Waves 1-18, 1991-2009.
A. Ahrens C.B. Hansen M.E. Schaffer Lassopack: Model selection and prediction with regularized regression in Stata Stata J. 20 1 176 235 07442277 10.1177/1536867X20909697
M. Bertrand S. Mullainathan Do people mean what they say? Implications for subjective survey data Am. Econ. Rev. 91 2 67 72 0989.91057 10.1257/aer.91.2.67
E. Oparina S. Srisuma Analyzing subjective well-being data with misclassification J. Business Econ. Stat. 40 2 730 743 4410894 1547.62868 10.1080/07350015.2020.1865169
A.J. Silk Test-retest correlations and the reliability of copy testing J. Marketing Res. 14 4 476 1039.83001 10.1177/002224377701400405
R. Kammann R. Flett Affectometer 2: A scale to measure current level of general happiness Austr. J. Psychol. 35 2 259 265 1135.74019 10.1080/00049538308255070
Molnar, C. (2022). Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/