Automated industrial demand response; Data model; Digital energy platform; Energy services; Reference architecture; Demand response
Abstract :
[en] The industrial sector accounts for a large share of electricity demand and has promising potential for providing demand response services. In parallel, digital platforms have emerged to support industrial demand response. However, these platforms often operate in isolated environments, with customized, single company solutions. This carries the risk of being subject to potential vendor lock-in and challenges related of restricted interoperability due to a lack of agnostic information exchanges. Additionally, many platforms focus on specific flexibility assets or market services, which limits the ability of industrial companies to fully explore their demand response potential. To address these challenges, we propose the Energy Synchronization Platform concept, which features three main innovations. First, its multi-sided architecture enables any industrial company to connect to demand-response-oriented service providers, thus creating value for various stakeholders. Second, it employs a standardized data model to facilitate interoperable and agnostic information exchange, thus reducing vendor lock-in and enhancing cross-platform compatibility (i.e., enabling connections to other platforms and any machine). Third, its modular, service-oriented design supports the integration of diverse market-related services, such as flexibility scheduling, optimization, and grid flexibility. Moreover, we present insights from evaluations of conceptual test operations across different settings, in both laboratories and industrial companies located in a model region in Germany. We discuss factors that influence the deployment of the Energy Synchronization Platform and the potential impacts of its deployment on company operations. The results of this analysis can support practitioners and researchers in developing, improving, or replicating the Energy Synchronization Platform.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Disciplines :
Computer science Management information systems Energy
Author, co-author :
VAN STIPHOUDT, Christine ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
POTENCIANO MENCI, Sergio ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
Kaymakci, Can ; Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Institute for Energy Efficiency in Production (EEP), University of Stuttgart, Stuttgart, Germany
Wenninger, Simon ; University of Applied Sciences Augsburg, Augsburg, Germany
Duda, Sebastian ; Fraunhofer FIT, University of Bayreuth, Bayreuth, Germany
FRIDGEN, Gilbert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
Sauer, Alexander ; Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Institute for Energy Efficiency in Production (EEP), University of Stuttgart, Stuttgart, Germany
External co-authors :
yes
Language :
English
Title :
The Energy Synchronization Platform concept in the model region Augsburg to enable and streamline automated industrial demand response
FNR13342933 - DFS - Paypal-fnr Pearl Chair In Digital Financial Services, 2019 (01/01/2020-31/12/2024) - Gilbert Fridgen
Name of the research project :
R-AGR-3740 - SynErgie II - FRIDGEN Gilbert
Funders :
Fonds National de la Recherche Luxembourg Federal Ministry of Education and Research Bonn Office
Funding number :
17742284; 17886330; 13342933
Funding text :
This work has been supported by: the Kopernikus-project "SynErgie" of the German Federal Ministry of Education and Research (BMBF) ; the Luxembourg National Research Fund (FNR) , grant reference 17742284 and 17886330 ; and PayPal, PEARL grant reference 13342933 /Gilbert Fridgen. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. The authors gratefully acknowledge the project supervision undertaken by the project management organization Projektträger Jülich (PtJ) and the extensive discussions with the colleagues from the cluster on information- and communication technology.
Lopes, J.A., Madureira, A., Matos, M., Bessa, R., Monteiro, V., Afonso, J., et al. The future of power systems: Challenges, trends, and upcoming paradigms. Wiley Interdiscip Rev Energy Env, 9, 2019, e368, 10.1002/wene.368.
European Commission, Report on energy prices and costs in Europe. 2024 URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2024%3A136%3AFIN&qid=1711266005450. [Accessed 30 October 2024].
Di Silvestre, M.L., Favuzza, S., Riva Sanseverino, E., Zizzo, G., How decarbonization, digitalization and decentralization are changing key power infrastructures. Renew Sustain Energy Rev, 93, 2018, 10.1016/j.rser.2018.05.068.
Dumbs, C., Jarry, G., Willems, M., Gross, T., Larsen, A., Wagner, T., Market models for local flexibility procurement: Interflex’ experience and main challenges. CIRED 2019 proceedings, 2019, AIM, 2166, 10.34890/979.
Eurostat, Energy statistics - an overview. 2022 URL https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview. [Accessed 04 October 2024].
International Energy Agency, How is energy used in Germany?. 2022 URL https://www.iea.org/countries/germany/energy-mix. [Accessed 04 October 2024].
International Energy Agency, How is electricity used in Germany?. 2022 URL https://www.iea.org/countries/germany/electricity. [Accessed 15 October 2024].
International Energy Agency, How is electricity used in Europe?. 2022 URL https://www.iea.org/regions/europe/electricity. [Accessed 15 October 2024].
Heffron, R., Körner, M.-F., Wagner, J., Weibelzahl, M., Fridgen, G., Industrial demand-side flexibility: A key element of a just energy transition and industrial development. Appl Energy, 269, 2020, 115026, 10.1016/j.apenergy.2020.115026.
Mayer, P., Heer, M., Shu, D.Y., Zielonka, N., Leenders, L., Baader, F.J., et al. Flexibility from industrial demand-side management in net-zero sector-coupled national energy systems. Front Energy Res, 12, 2024, 10.3389/fenrg.2024.1443506.
Energieflexibilität in der deutschen Industrie. Band 2: Markt- und Stromsystem, Managementsysteme und Technologien energieflexibler Fabriken [Energy flexibility in German industry. Volume 2: Market and power systems, management systems and technologies of energy flexible factories]. 2022, Fraunhofer Verlag, 10.24406/publica-258.
Shoreh, M.H., Siano, P., Shafie-khah, M., Loia, V., Catalão, J.P.S., A survey of industrial applications of demand response. Electr Power Syst Res 141 (2016), 31–49, 10.1016/j.epsr.2016.07.008.
Leinauer, C., Schott, P., Fridgen, G., Keller, R., Ollig, P., Weibelzahl, M., Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation. Energy Policy, 165, 2022, 112876, 10.1016/j.enpol.2022.112876 URL https://www.sciencedirect.com/science/article/pii/S030142152200101X.
Heymann, F., Galus, M.D., Digital platforms in the energy sector – a menu of regulatory options for policy makers. 2022 IEEE 21st mediterranean electrotechnical conference, 2022, 1045–1049, 10.1109/MELECON53508.2022.9843059.
Siddiquee, S.S., Howard, B., Bruton, K., Brem, A., O'Sullivan, D.T., Progress in demand response and it's industrial applications. Front Energy Res, 9, 2021, 673176, 10.3389/fenrg.2021.673176.
Cennamo, C., Diaferia, L., Gaur, A., Salviotti, G., Assessing incumbents’ risk of digital platform disruption. MIS Q Exec 21:1 (2022), 55–74.
Duda, S., Kaymakci, C., Köberlein, J., Wenninger, S., Haubner, T., Sauer, A., et al. Structuring the digital energy platform jungle: Development of a multi-layer taxonomy and implications for practice. Proceedings of the conference on production systems and logistics, 2022, 42–51, 10.15488/12192.
Bauer, D., Abele, E., Ahrens, R., Bauernhansl, T., Fridgen, G., Jarke, M., et al. Flexible IT-platform to synchronize energy demands with volatile markets. Tseng, M.M., Tsai, H.-Y., Wang, Y., (eds.) Procedia CIRP, vol. 63, 2017, 318–323, 10.1016/j.procir.2017.03.088.
Singh M, Jiao J, Klobasa M, Frietsch R. Emergence of digital and x-as-a-service (XAAS) platforms in german energy sector. In: IAEE international online conference. 2021.
Bhagwan, N., Evans, M., A review of industry 4.0 technologies used in the production of energy in China, Germany, and South Africa. Renew Sustain Energy Rev, 173, 2023, 113075, 10.1016/j.rser.2022.113075.
Alfalouji, Q., Schranz, T., Kümpel, A., Schraven, M., Storek, T., Gross, S., et al. IoT middleware platforms for smart energy systems: an empirical expert survey. Buildings, 12(5), 2022, 526, 10.3390/buildings12050526.
Panetto, H., Zdravkovic, M., Jardim-Goncalves, R., Romero, D., Cecil, J., Mezgár, I., New perspectives for the future interoperable enterprise systems. Comput Ind 79 (2016), 47–63, 10.1016/j.compind.2015.08.001.
Senna, P.P., Almeida, A.H., Barros, A.C., Bessa, R.J., Azevedo, A.L., Architecture model for a holistic and interoperable digital energy management platform. Procedia Manuf 51 (2020), 1117–1124, 10.1016/j.promfg.2020.10.157 30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021). URL https://www.sciencedirect.com/science/article/pii/S235197892032014X.
Stede, J., Arnold, K., Dufter, C., Holtz, G., von Roon, S., Richstein, J.C., The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy, 147, 2020, 111893, 10.1016/j.enpol.2020.111893.
Zancanella, P., Bertoldi, P., Kiss, B., Demand response status in EU member states, policy assessment. 2016, Publications Office of the European Union, Luxembourg (Luxembourg), 10.2790/962868.
Murthy Balijepalli, V., Pradhan, V., Khaparde, S., Review of demand response under smart grid paradigm. ISGT2011-India, 2011, IEEE, 236–243, 10.1109/ISET-India.2011.6145388.
Rusche, S., Weissflog, J., Wenninger, S., Häckel, B., How flexible are energy flexibilities? developing a flexibility score for revenue and risk analysis in industrial demand-side management. Appl Energy, 345, 2023, 121351, 10.1016/j.apenergy.2023.121351 URL https://www.sciencedirect.com/science/article/pii/S0306261923007158.
VDI-the association of German engineers, Energy-flexible factory - fundamentals (VDI 5207 blatt 1). 2019 URL https://www.vdi.de/richtlinien/details/vdi-5207-blatt-1-energieflexible-fabrik-grundlagen.
Neugebauer, R., Putz, M., Schlegel, A., Langer, T., Franz, E., Lorenz, S., Energy-sensitive production control in mixed model manufacturing processes. Dornfeld, D.A., Linke, B.S., (eds.) Leveraging technology for a sustainable world, 2012, Springer Berlin Heidelberg, Berlin, Heidelberg, 399–404, 10.1007/978-3-642-29069-5_68.
Kupzog, F., Genest, O., Ahmadifar, A., Berthomé, F., Cupelli, M., Kazmi, J., et al. SGAM-Based comparative study of interoperability challenges in european flexibility demonstrators: Methodology and results. 2018 IEEE 16th international conference on industrial informatics, 2018, IEEE, 692–697, 10.1109/INDIN.2018.8472053.
The OpenADR Alliance, OpenADR - connecting smart energy to the grid. 2002 URL https://www.openadr.org/. [Accessed 20 August 2023].
The Green Button Alliance, Green button - open energy data. 2011 URL https://energy.gov/data/green-button. [Accessed 20 August 2023].
Potenciano Menci, S., Valarezo, O., Decoding design characteristics of local flexibility markets for congestion management with a multi-layered taxonomy. Appl Energy, 357, 2024, 122203, 10.1016/j.apenergy.2023.122203.
Jing, T., shen, J., Jia, T., Yutong, J., Ning, Z., Application of cloud edge collaboration architecture in power iot. 2020 IEEE international conference on information technology, big data and artificial intelligence, vol. 1, 2020, 18–22, 10.1109/ICIBA50161.2020.9277488.
Xiao, J., Zhang, W., Zhong, R.Y., Blockchain-enabled cyber–physical system for construction site management: A pilot implementation. Adv Eng Inform, 57, 2023, 102102, 10.1016/j.aei.2023.102102.
Yue, G., Design of information management system for structural monitoring based on network fragmentation. Int J Internet Protoc Technol 13:4 (2020), 202–210, 10.1504/ijipt.2020.110307.
Nolan, S., O'Malley, M., Challenges and barriers to demand response deployment and evaluation. Appl Energy 152 (2015), 1–10, 10.1016/j.apenergy.2015.04.083 URL https://www.sciencedirect.com/science/article/pii/S0306261915005462.
Constantinides, P., Henfridsson, O., Parker, G.G., Introduction—platforms and infrastructures in the digital age. Inf Syst Res 29 (2018), 381–400, 10.1287/isre.2018.0794.
Kloppenburg, S., Boekelo, M., Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition. Energy Res Soc Sci 49 (2019), 68–73, 10.1016/j.erss.2018.10.016.
Duch-Brown, N., Rossetti, F., Digital platforms across the european regional energy markets. Energy Policy, 144, 2020, 111612, 10.1016/j.enpol.2020.111612 URL https://www.sciencedirect.com/science/article/pii/S0301421520303499.
Martín-Lopo, M.M., Boal, J., Sánchez-Miralles, Álvaro, A literature review of iot energy platforms aimed at end users. Comput Netw, 171, 2020, 107101, 10.1016/j.comnet.2020.107101 URL https://www.sciencedirect.com/science/article/pii/S138912861931271X.
Honarmand, Mohammad Esmaeil, et al. An overview of demand response: From its origins to the smart energy community. IEEE Access 9 (2021), 96851–96876, 10.1109/access.2021.3094090.
Stanelyte, Daiva, Radziukyniene, Neringa, Radziukynas, Virginijus, Overview of demand-response services: A review. Energies, 15(5), 2022, 1659, 10.3390/en15051659.
Vahid-Ghavidel, Morteza, et al. Demand response programs in multi-energy systems: A review. Energies, 13(17), 2020, 4332, 10.3390/en13174332.
Schwidtal, Jan Marc, et al. Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models. Renew Sustain Energy Rev, 179, 2023, 113273, 10.1016/j.rser.2023.113273.
Zhang, Chenghua, et al. Review of existing peer-to-peer energy trading projects. Energy Procedia 105 (2017), 2563–2568, 10.1016/j.egypro.2017.03.737.
Duda, S., Fabri, L., Kaymakci, C., Wenninger, S., Sauer, A., Deriving digital energy platform archetypes for manufacturing – A data-driven clustering approach. Herberger, D., Hübner, M., Stich, V., (eds.) Proceedings of the conference on production systems and logistics, 2023, publish-Ing, 54–64, 10.15488/13424.
Drewel, M., Özcan, L., Gausemeier, J., Dumitrescu, R., Platform patterns—using proven principles to develop digital platforms. J Knowl Econ 12 (2021), 519–543, 10.1007/s13132-021-00772-3.
Göbel, H., Cronholm, S., Nascent design principles enabling digital service platforms. Lecture notes in computer science, vol. 9661, 2016, 52–67, 10.1007/978-3-319-39294-3_4.
Blaschke, M., Riss, U., Haki, K., Aier, S., Design principles for digital value co-creation networks: A service-dominant logic perspective. Electron Mark 29 (2019), 443–472, 10.1007/s12525-019-00356-9.
Fischer S, Lohrenz L, Lattemann C, Robra-Bissantz S. Critical design factors for digital service platforms - a literature review. In: ECIS 2020 research papers.
Piserà, D., Ferrucci, T., Fioriti, D., Poli, D., Silvestro, F., Freeware digital platform for designing renewable energy communities in Italy: An overview. 2023 AEIT international annual conference, 2023, 1–6, 10.23919/AEIT60520.2023.10330372.
Cali, U., Dynge, M.F., Idries, A., Mishra, S., Dmytro, I., Hashemipour, N., et al. Digital energy platforms considering digital privacy and security by design principles. Proceedings of the 2023 European interdisciplinary cybersecurity conference, 2023, Association for Computing Machinery, New York, NY, USA, 167–173, 10.1145/3590777.3591405.
Canelón, R., Peña, C., Salazar, A., Dinnp-u: A design process for digital innovation platforms in energy sector companies. J Technol Manag Innov 17:3 (2022), 59–69, 10.4067/S0718-27242022000300059.
ISO/IEC/IEEE, ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary. 2017, 10.1109/IEEESTD.2017.8016712.
Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M., The concept of reference architectures. Syst Eng, 13, 2010, 10.1002/sys.20129.
SynErgie research project, SynErgie. 2024 https://synergie-projekt.de/. [Accessed 07 February 2024].
Hevner, A., March, S., Park, J., Ram, S., Design science in information systems research. Manag Inf Syst Q 28 (2004), 75–105, 10.2307/25148625.
Recker, J., Scientific research in information systems: a beginner's guide, 2013, Springer.
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S., A design science research methodology for information systems research. J Manage Inf Syst 24:3 (2007), 45–77, 10.2753/MIS0742-1222240302.
Rösch, M., Bauer, D., Haupt, L., Keller, R., Bauernhansl, T., Fridgen, G., et al. Harnessing the full potential of industrial demand-side flexibility: An end-to-end approach connecting machines with markets through service-oriented IT platforms. Appl Sci, 9, 2019, 3796, 10.3390/app9183796.
van Stiphoudt, C., Potenciano Menci, S., Kaymakci, C., Wenninger, S., Bauer, D., Duda, S., et al. Energy synchronization platform concept to enable and streamline automated industrial demand response. Energy proceedings, vol. 42, international conference on applied energy, 2024, 10.46855/energy-proceedings-10990.
Europex, EPEX spot - European power exchange. 2024 URL https://www.europex.org/members/epex-spot/#:~:text=EPEX%20SPOT%20operates%20daily%20Day,a%20Nominated%20Electricity%20Market%20Operator. [Accessed 12 February 2024].
Schott, P., Sedlmeir, J., Strobel, N., Weber, T., Fridgen, G., Abele, E., A generic data model for describing flexibility in power markets. Energies, 12, 2019, 1893, 10.3390/en12101893.
EFDM development team, EFDM - project repository. 2023 URL https://git.ptw.maschinenbau.tu-darmstadt.de/eta-fabrik/public/energy_flexibility_data_model. [Accessed 04 March 2024].
Bahmani, R., van Stiphoudt, C., Potenciano Menci, S., Schöpf, M., Fridgen, G., Optimal industrialfflexibility scheduling based on generic data format. Energy Inf, 5, 2022, 26, 10.1186/s42162-022-00198-4.
Schilp, J., Bank, L., Köberlein, J., Bauernhansl, T., Sauer, A., Schlereth, A., et al. Konzept der Energiesynchronisationsplattform. Diskussionspapiere V4. Executive Summary [Concept of the energy synchronization platform. Discussion papers v4. Executive summary]. 2021, 10.24406/IGCV-N-642368 Discussion paper, Fraunhofer Verlag, Augsburg (Germany).
VFK development team, Virtual Fort Knox research repository. 2019 URL https://github.com/research-virtualfortknox. [Accessed 04 May 2023].
Jordan, P., Scharmer, V., Schulz, J., Wörle, M., Zäh, M.F., Bollenbach, J., et al. Energieflexible Modellregion Augsburg – Lessons Learned aus dem konzeptionellen Testbetrieb zum regionalen Energieflexibilitätshandel [energy flexible model region augsburg – lessons learned from the conceptual test operation of regional flexibility trading]. 2023, 10.14459/2023MD1687088.
Tristán, A., Heuberger, F., Sauer, A., A methodology to systematically identify and characterize energy flexibility measures in industrial systems. Energies, 13(22), 2020, 10.3390/en13225887.