[en] Poultry farms are hotspots for the development and spread of antibiotic resistance genes (ARGs), due to high stocking densities and extensive use of antibiotics, posing a threat of spread and contagion to workers and the external environment. Here, we applied shotgun metagenome sequencing to characterize the gut microbiome and resistome of poultry, workers and their households - also including microbiomes from the internal and external farm environment - in three different farms in Italy during a complete rearing cycle. Our results highlighted a relevant overlap among the microbiomes of poultry, workers, and their families (gut and skin), with clinically relevant ARGs and associated mobile elements shared in both poultry and human samples. On a finer scale, the reconstruction of species-level genome bins (SGBs) allowed us to delineate the dynamics of microorganism and ARGs dispersion from farm systems. We found the associations with worker microbiomes representing the main route of ARGs dispersion from poultry to human populations. Collectively, our findings clearly demonstrate the urgent need to implement more effective procedures to counteract ARGs dispersion from poultry food systems and the relevance of metagenomics-based metacommunity approaches to monitor the ARGs dispersion process for the safety of the working environment on farms.
Disciplines :
Microbiology
Author, co-author :
Scicchitano, Daniel; University of Bologna, Italy. Electronic address: daniel.scicchitano2@unibo.it
Babbi, Giulia; University of Bologna, Italy. Electronic address: giulia.babbi3@unibo.it
Palladino, Giorgia; University of Bologna, Italy. Electronic address: giorgia.palladino2@unibo.it
Turroni, Silvia; University of Bologna, Italy. Electronic address: silvia.turroni@unibo.it
Mekonnen, Yitagele Terefe; University of Bologna, Italy. Electronic address: yitagele.mekonnen2@unibo.it
LACZNY, Cedric Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Leekitcharoenphon, Pimlapas; Tecnhical University of Denmark, Denmark. Electronic address: pile@food.dtu.dk
This work was carried out in the context of the "Controlling Microbiomes Circulations for Better Food Systems" (CIRCLES) project, which was funded by the European Union's Horizon 2020 research and innovation program under grant agreement no. 818290.
Bahram, M., Hildebrand, F., Forslund, S.K., et al. Structure and function of the global topsoil microbiome. Nature 560 (2018), 233–237, 10.1038/s41586-018-0386-6.
Bai, H., He, L.Y., Wu, D.L., Gao, F.Z., Zhang, M., Zou, H.Y., Ying, G.G., Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environ. Int., 158, 2022, 106927.
Bruinsma, N., Hutchinson, J.M., Van Den Bogaard, A.E., Giamarellou, H., Degener, J., Stobberingh, E.E., Influence of population density on antibiotic resistance. J. Antimicrob. Chemother. 51:2 (2003), 385–390.
Cao, H., Bougouffa, S., Park, T.J., Lau, A., Tong, M.K., Chow, K.H., Ho, P.L., Sharing of antimicrobial resistance genes between humans and food animals. Msystems, 7(6), 2022, 10.1128/msystems.00775-22 e00775-22.
Cheng, J., Hu, J., Geng, F., Nie, S., Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Sci. Human Wellness 11:5 (2022), 1101–1110, 10.1016/j.fshw.2022.04.002.
Chng, K.R., Li, C., Bertrand, D., et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26 (2020), 941–951, 10.1038/s41591-020-0894-4.
Crofts, T., Gasparrini, A., Dantas, G., Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol. 15 (2017), 422–434, 10.1038/nrmicro.2017.28.
Czepiel, J., Dróżdż, M., Pituch, H., Kuijper, E.J., Perucki, W., Mielimonka, A., Biesiada, G., Clostridium difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 38 (2019), 1211–1221.
de Nies, L., Lopes, S., Busi, S.B., et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 9, 2021, 49, 10.1186/s40168-020-00993-9.
Dragulescu, A., Arendt, C., xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5 https://CRAN.R-project.org/package=xlsx, 2020.
Duan, M., Gu, J., Wang, X., Li, Y., Zhang, R., Hu, T., Zhou, B., Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicol. Environ. Saf. 180 (2019), 114–122.
EMA, https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac, 2021.
Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W., Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R.M., Sonntag, H.G., Trautmann, M., Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria?. GMS Hyg. Infect. Control, 12, 2017, Doc05, 10.3205/dgkh000290 (PMID: 28451516; PMCID: PMC5388835. Apr 10).
Feng, Y., Wang, Y., Zhu, B., et al. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes. Commun. Biol., 4, 2021, 1305, 10.1038/s42003-021-02827-2.
Gao, C., ggVennDiagram: A ‘ggplot2’ Implement of Venn Diagram. R package version 1.2.2 https://CRAN.R-project.org/package=ggVennDiagram>, 2022.
Gaucher, M.L., Perron, G.G., Arsenault, J., Letellier, A., Boulianne, M., Quessy, S., Recurring necrotic enteritis outbreaks in commercial broiler chicken flocks strongly influence toxin gene carriage and species richness in the resident Clostridium perfringens population. Front. Microbiol., 8, 2017, 881.
Gilroy, R., Ravi, A., Getino, M., Pursley, I., Horton, D.L., Alikhan, N.F., Baker, D., Gharbi, K., Hall, N., Watson, M., Adriaenssens, E.M., Foster-Nyarko, E., Jarju, S., Secka, A., Antonio, M., Oren, A., Chaudhuri, R.R., La Ragione, R., Hildebrand, F., Pallen, M.J., Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ, 9, 2021, e10941, 10.7717/peerj.10941 (PMID: 33868800; PMCID: PMC8035907. Apr 6).
Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R.L., Ławniczek-Wałczyk, A., Piechowicz, L., Wolska, L., Intensive poultry farming: a review of the impact on the environment and human health. Sci. Total Environ., 858, 2023, 160014.
Hassanzadeh, S., Pourmand, M.R., Mashhadi, R., Ghazvini, K., Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; a systematic review. Microb. Pathog., 139, 2020, 103850.
He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., Alvarez, P.J., Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water, 3(1), 2020, 4.
Hendriksen, R.S., Munk, P., Njage, P., et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun., 10, 2019, 1124, 10.1038/s41467-019-08853-3.
Immerseel, F.V., Buck, J.D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., Ducatelle, R., Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol. 33:6 (2004), 537–549.
Jiang, X., Ellabaan, M.M.H., Charusanti, P., Munck, C., Blin, K., Tong, Y., Weber, T., Sommer, M.O.A., Lee, S.Y., Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun., 8, 2017, 15784, 10.1038/ncomms15784 (PMID: 28589945; PMCID: PMC5467266. Jun 7).
Katz, L., Baltz, R.H., Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43:2–3 (2016), 155–176.
Kecerova, Z., Cizek, A., Nyc, O., Krutova, M., Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe 56 (2019), 17–21.
Khadem, A., Soler, L., Everaert, N., Niewold, T.A., Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br. J. Nutr. 112:7 (2014), 1110–1118.
Kim, D.W., Cha, C.J., Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 53:3 (2021), 301–309.
Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H., Shen, J., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16:2 (2016), 161–168, 10.1016/S1473-3099(15)00424-7 (Epub 2015 Nov 19. PMID: 26603172. Feb).
Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L., Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 3:1 (2021), 32–38.
Mac Aogain, M., Kilkenny, S., Walsh, C., Lindsay, S., Moloney, G., Morris, T., Rogers, T.R., Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile. J. Glob. Antimicrob. Resist. 3:4 (2015), 295–299.
Maciel-Guerra, A., Baker, M., Hu, Y., et al. Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. ISME J. 17 (2023), 21–35, 10.1038/s41396-022-01315-7.
Mazhar, S.H., Li, X., Rashid, A., Su, J., Xu, J., Brejnrod, A.D., Rensing, C., Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Sci. Total Environ., 755, 2021, 142702.
McCarthy, A.J., Loeffler, A., Witney, A.A., Gould, K.A., Lloyd, D.H., Lindsay, J.A., Extensive horizontal gene transfer during Staphylococcus aureus cocolonization in vivo. Genome Biol. Evol. 6:10 (2014), 2697–2708.
McDonald, L.C., Gerding, D.N., Johnson, S., Bakken, J.S., Carroll, K.C., Coffin, S.E., Wilcox, M.H., Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66:7 (2018), e1–e48.
Neuwirth, E., RColorBrewer: ColorBrewer Palettes. R package version 1.1-3 https://CRAN.R-project.org/package=RColorBrewer, 2022.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., Weedon, J., vegan: Community Ecology Package. R package version 2.6-2 https://CRAN.R-project.org/package=vegan, 2022.
Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Segata, N., Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:3 (2019), 649–662.
Reimer, L.C., Sardà Carbasse, J., Koblitz, J., Ebeling, C., Podstawka, A., Overmann, J., Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 50:D1 (2022), D741–D746.
Rudis, B., hrbrthemes: Additional Themes, Theme Components and Utilities for ‘ggplot2’. R package version 0.8.0 https://CRAN.R-project.org/package=hrbrthemes, 2020.
Simon, Garnier, Ross, Noam, Rudis, Robert, Camargo, Antônio P., Sciaini, Marco, Scherer, Cédric, Rvision - Colorblind-Friendly Color Maps for R. 2021 R package version 0.6.2.
Song, L., Wang, C., Jiang, G., Ma, J., Li, Y., Chen, H., Guo, J., Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environ. Int., 154, 2021, 106559.
Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., Segata, N., Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27:4 (2017), 626–638.
Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon, J.I., The human microbiome project. Nature 449:7164 (2007), 804–810.
Valles-Colomer, M., Blanco-Míguez, A., Manghi, P., Asnicar, F., Dubois, L., Golzato, D., Segata, N., The person-to-person transmission landscape of the gut and oral microbiomes. Nature, 2023, 1–11.
Van Boeckel, T.P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N.G., Laxminarayan, R., Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459), 2019, eaaw1944.
von Wintersdorff, C.J.H., Penders, J., van Niekerk, J.M., Mills, N.D., Majumder, S., van Alphen, L.B., Savelkoul, P.H.M., Wolffs, P.F.G., Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol., 7, 2016, 173, 10.3389/fmicb.2016.00173.
Warnes, G., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., gplots: Various R Programming Tools for Plotting Data_. R package version 3.1.3 https://CRAN.R-project.org/package=gplots, 2022.
Wickham, H., Reshaping data with the reshape package. J. Stat. Softw., 21(12), 2007.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer-Verlag, New York.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H., Welcome to the tidyverse. J. Open Source Softw., 4(43), 2019, 1686, 10.21105/joss.01686.
Wood, J., RcppAlgos: High Performance Tools for Combinatorics and Computational Mathematics. R package version 2.6.0 https://CRAN.R-project.org/package=RcppAlgos, 2022.