Alkanes; Clumped isotope effects; Path integral calculations; Site-specific isotope effects; Stable isotope fractionations; Geochemistry and Petrology
Abstract :
[en] Isotopic compositions of alkanes are typically assumed to be kinetically controlled, but recently it has been proposed that alkanes can isotopically equilibrate for both C and H isotopes during natural gas generation. Evaluation of this requires knowledge of the isotopic equilibrium between alkanes and other common hydrogen and carbon bearing species. Here we calculate isotopic equilibria within and between gaseous dihydrogen (H2), water (H2O), methane (CH4), ethane (C2H6) and propane (C3H8), including isotope fractionation among molecules, clumped isotope effects, as well as among sites of propane (i.e., the site-specific isotope effects) from 0°C to 500°C using a path-integral method paired with high-level descriptions of molecular potentials and the diagonal correction to the Born–Oppenheimer approximation. While path-integral calculations with high-level CCSD(T) potentials are available for the isotopic equilibria involving methane, the path-integral calculations for ethane and propane have only been performed based on lower-level descriptions of the molecular potentials. We analyze the relative importance of various approximations that are commonly employed when isotopic equilibria are evaluated. We find that clumped isotope effects can be calculated to the same accuracy using computationally inexpensive combination of the Bigeleisen-Mayer-Urey model with the molecular potential from density functional theory. In contrast, fractionation and site preferences of both deuterium and carbon-13 benefit from the use of the higher level CCSD(T) potentials and accounting for anharmonic effects. Additionally, for fractionation and site preference of deuterium, corrections to Born–Oppenheimer approximation can also be important.
Disciplines :
Chemistry
Author, co-author :
Korol, Roman ; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States ; Present Address: Department of Chemistry, University of Rochester, Rochester, United States
Turner, Andrew C. ; Department of Earth and Planetary Science, University of California, Berkeley, United States ; Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States ; Present address: U.S. Geological Survey, Central Energy Resources Science Center, Denver, United States
NANDI, Apurba ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, United States
Bowman, Joel M.; Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, United States
Goddard, William A.; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States ; Materials and Process Simulation Center, California Institute of Technology, Pasadena, United States
Stolper, Daniel A.; Department of Earth and Planetary Science, University of California, Berkeley, United States ; Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
External co-authors :
yes
Language :
English
Title :
Stable isotope equilibria in the dihydrogen-water-methane-ethane-propane system. Part 1: Path-integral calculations with CCSD(T) quality potentials
Office of Science National Science Foundation Division of Chemical Bioengineering Environmental and Transport Systems Chemical Sciences, Geosciences, and Biosciences Division Basic Energy Sciences Resnick Sustainability Institute for Science, Energy and Sustainability, California Institute of Technology U.S. Department of Energy National Science Foundation
Funding text :
DAS acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Award Numbers DE-AC02-05CH11231 and DE-SC0022949. WGIII acknowledges support from the National Science Foundation under award number CBET-2311117 The computations presented here were conducted in the Resnick High Performance Computing Center, a facility supported by Resnick Sustainability Institute at the California Institute of Technology. RK thanks Dr. Tomislav Begu\u0161i\u0107 for helpful discussions.
Adler, T.B., Knizia, G., Werner, H.J., A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys., 127, 2007, 221106.
Anadu J. S., Thiagarajan N., Kitchen N., Shuai Y., Warr O., Lollar B. S. and Eiler J. (2024) Insights into ethane creation, evolution, and destruction from clumped isotopologues. In 2024 Goldschmidt Conference. GOLDSCHMIDT.
Bardo, R.D., Wolfsberg, M., A Theoretical Calculation of the Equilibrium Constant for the Isotopic Exchange Reaction between H2O and HD. J. Phys. Chem., 80, 1976, 1068.
Bardo, R.D., Wolfsberg, M., The adiabatic correction for nonlinear triatomic molecules: Techniques and calculations. J. Chem. Phys. 68 (1978), 2686–2695.
Bardo, R.D., Wolfsberg, M., The nuclear mass dependence of the adiabatic correction to the Born–Oppenheimer approximation. J. Chem. Phys. 62 (1975), 4555–4558.
Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 1993, 5648.
Bigeleisen, J., Mayer, M.G., Calculation of Equilibrium Constants for Isotopic Exchange Reactions. J. Chem. Phys. 15 (1947), 261–267.
Blanchard, M., Balan, E., Schauble, E.A., Equilibrium fractionation of non-traditional isotopes: A molecular modeling perspective. In Non-Traditional Stable Isotopes Walter De Gruyter GmbH., 2017, 27–64.
Born, M., Oppenheimer, R., Zur Quantentheorie Der Molekeln. Ann. Phys. 389 (1927), 457–484.
Cheng, B., Ceriotti, M., Direct path integral estimators for isotope fractionation ratios. J. Chem. Phys., 141, 2014, 244112.
Clog, M., Lawson, M., Peterson, B., Ferreira, A.A., Santos Neto, E.V., Eiler, J.M., A reconnaissance study of 13C–13C clumping in ethane from natural gas. Geochim. Cosmochim. Acta 223 (2018), 229–244.
Csernica, T., Sessions, A.L., Eiler, J.M., High-dimensional isotomics, part 2: Observations of over 100 constraints on methionine's isotome. Chem. Geol., 642, 2023, 121771.
Dai, J., Xia, X., Li, Z., Coleman, D.D., Dias, R.F., Gao, L., Jian, L.i., Deev, A., Jin, L.i., Dessort, D., Duclerc, D., Li, L., Liu, J., Schloemer, S., Zhang, W., Ni, Y., Hu, G., Wang, X., Tang, Y., Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques. Chem. Geol. 310–311 (2012), 49–55.
Ditchfield, R., Hehre, W.J., Pople, J.A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys., 54, 1971, 724.
Dong, G., Xie, H., Formolo, M., Lawson, M., Sessions, A., Eiler, J., Clumped isotope effects of thermogenic methane formation: insights from pyrolysis of hydrocarbons. Geochim. Cosmochim. Acta 303 (2021), 159–183.
Dunning, T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (1989), 1007–1023.
Eldridge, D.L., Korol, R., Lloyd, M.K., Turner, A.C., Webb, M.A., Miller, T.F., Stolper, D.A., Comparison of Experimental vs Theoretical Abundances of 13CH3D and 12CH2D2 for Isotopically Equilibrated Systems from 1 to 500 °C. ACS Earth Space Chem. 3 (2019), 2747–2764.
Eldridge, D.L., Turner, A.C., Bill, M., Conrad, M.E., Stolper, D.A., Experimental determinations of carbon and hydrogen isotope fractionations and methane clumped isotope compositions associated with ethane pyrolysis from 550 to 600 °C. Geochim. Cosmochim. Acta 355 (2023), 235–265.
Frenkel, D., Smit, B., Understanding Molecular Simulation: From Algorithms to Applications. 2002, Academic press.
Gao, C., Zhang, Y., Liu, Q., Yang, Y., Liu, Y., Path-integral molecular dynamics predictions of equilibrium H and O isotope fractionations between brucite and water. Geochim. Cosmochim. Acta 346 (2023), 207–222.
Gilbert, A., The Organic Isotopologue Frontier. Annu. Rev. Earth Planet. Sci. 49 (2021), 435–464.
Gilbert, A., Yamada, K., Suda, K., Ueno, Y., Yoshida, N., Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim. Cosmochim. Acta 177 (2016), 205–216.
Gonzalez, Y., Nelson, D.D., Shorter, J.H., McManus, J.B., Dyroff, C., Formolo, M., Wang, D.T., Western, C.M., Ono, S., Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 91 (2019), 14967–14974.
Gropp, J., Iron, M.A., Halevy, I., Theoretical estimates of equilibrium carbon and hydrogen isotope effects in microbial methane production and anaerobic oxidation of methane. Geochim. Cosmochim. Acta 295 (2021), 237–264.
Handy, N.C., Yamaguchi, Y., Schaefer, H.F., The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects. J. Chem. Phys. 84 (1986), 4481–4484.
Höhnerbach, M., Bientinesi, P., Accelerating AIREBO: Navigating the Journey from Legacy to High-Performance Code. J. Comput. Chem. 40 (2019), 1471–1482.
Horita, J., Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim. Cosmochim. Acta 65 (2001), 1907–1919.
Hunt, J.M., Petroleum geochemistry and geology. 2nd ed., 1996, Freeman, New York, W.H.
Iron, M.A., Gropp, J., Cost-effective density functional theory (DFT) calculations of equilibrium isotopic fractionation in large organic molecules. Phys. Chem. Chem. Phys., 21, 2019, 17555.
Julien, M., Goldman, M.J., Liu, C., Horita, J., Boreham, C.J., Yamada, K., Green, W.H., Yoshida, N., Gilbert, A., Intramolecular 13C isotope distributions of butane from natural gases. Chem. Geol., 541, 2020, 119571.
Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 1988, 785.
Liu, C., McGovern, G.P., Liu, P., Zhao, H., Horita, J., Position-specific carbon and hydrogen isotopic compositions of propane from natural gases with quantitative NMR. Chem. Geol. 491 (2018), 14–26.
Liu, Q., Liu, Y., Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2. Geochim. Cosmochim. Acta 175 (2016), 252–270.
Liu, Q., Tossell, J.A., Liu, Y., On the proper use of the Bigeleisen-Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim. Cosmochim. Acta 74 (2010), 6965–6983.
Liu, Q., Yin, X., Zhang, Y., Julien, M., Zhang, N., Gilbert, A., Yoshida, N., Liu, Y., Theoretical calculation of position-specific carbon and hydrogen isotope equilibriums in butane isomers. Chem. Geol., 561, 2021, 120031.
Lloyd, M.K., Eldridge, D.L., Stolper, D.A., Clumped 13CH2D and 12CHD2 compositions of methyl groups from wood and synthetic monomers: Methods, experimental and theoretical calibrations, and initial results. Geochim. Cosmochim. Acta 297 (2021), 233–275.
Lloyd, M.K., Stein, R.A., Ibarra, D.E., Barclay, R.S., Wing, S.L., Stahle, D.W., Dawson, T.E., Stolper, D.A., Isotopic clumping in wood as a proxy for photorespiration in trees. Proc. Natl. Acad. Sci., 120, 2023, e2306736120.
Mangenot, X., Xie, H., Crémière, A., Giunta, T., Lilley, M., Sissmann, O., Orphan, V., Schimmelmann, A., Gaucher, E.C., Girard, J.-P., Eiler, J., 2H-2H clumping in molecular hydrogen method and preliminary results. Chem. Geol., 621, 2023, 121278.
Nandi, A., Qu, C., Houston, P.L., Conte, R., Bowman, J.M., Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J. Chem. Phys., 154, 2021, 051102.
Neese, F., Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 8, 2018, e1327.
Neese, F., Wennmohs, F., Becker, U., Riplinger, C., The ORCA quantum chemistry program package. J. Chem. Phys., 152, 2020, 224108.
Neese, F., Wiley, J., The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012), 73–78.
Neubauer, C., Kantnerová, K., Lamothe, A., Savarino, J., Hilkert, A., Juchelka, D., Hinrichs, K.-U., Elvert, M., Heuer, V., Elsner, M., Bakkour, R., Julien, M., Öztoprak, M., Schouten, S., Hattori, S., Dittmar, T., Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. J. Am. Soc. Mass Spectrom. 34 (2023), 525–537.
O'Neil J. R. (1986) Chapter 1. Theoretical and Experimental Aspects of Isotopic Fractionation eds. J. W. Valley, H. P. Taylor, and J. R. O'Neil. 16.
Ono, S., Wang, D.T., Gruen, D.S., Sherwood, L.B., Zahniser, M.S., McManus, B.J., Nelson, D.D., Measurement of a Doubly Substituted Methane Isotopologue, 13CH3D, by Tunable Infrared Laser Direct Absorption Spectroscopy. Anal. Chem. 86 (2014), 6487–6494.
Piasecki, A., Sessions, A., Lawson, M., Ferreira, A.A., Neto, E.V.S., Eiler, J.M., Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim. Cosmochim. Acta 188 (2016), 58–72.
Piasecki, A., Sessions, A., Peterson, B., Eiler, J., Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory. Geochim. Cosmochim. Acta 190 (2016), 1–12.
Pinilla, C., Blanchard, M., Balan, E., Ferlat, G., Vuilleumier, R., Mauri, F., Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics. Geochim. Cosmochim. Acta 135 (2014), 203–216.
Popa, M.E., Paul, D., Janssen, C., Röckmann, T., H2 clumped isotope measurements at natural isotopic abundances. Rapid Commun. Mass Spectrom. 33 (2019), 239–251.
Richet, P., Bottinga, Y., Javoy, M., A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules. Annu. Rev. Earth Planet. Sci. 5 (1977), 65–110.
Rustad, J.R., Ab initio calculation of the carbon isotope signatures of amino acids. Org. Geochem. 40 (2009), 720–723.
Schweizer, K.S., Stratt, R.M., Chandler, D., Wolynes, P.G., Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations. J. Chem. Phys. 75 (1981), 1347–1364.
Stern, M.J., Spindel, W., Monse, E.U., Temperature dependences of isotope effects. 1968, J. Chem, Phys, 48.
Stolper D. A., Lawson M., Formolo M. J., Davis C. L., Douglas P. M. J. and Eiler J. M. (2018) The utility of methane clumped isotopes to constrain the origins of methane in natural gas accumulations. In From Source to Seep: Geochemical Applications in Hydrocarbon Systems (eds. M. Lawson, M.J. Formolo, and J.M. Eiler). Geological Society of London. p. 0.
Stolper, D.A., Sessions, A.L., Ferreira, A.A., Santos, N.E., V., Schimmelmann A., Shusta S. S., Valentine D. L. and Eiler J. M., Combined 13C-D and D-D clumping in methane: Methods and preliminary results. Geochim. Cosmochim. Acta 126 (2014), 169–191.
Taguchi, K., Yamamoto, T., Nakagawa, M., Gilbert, A., Ueno, Y., A fluorination method for measuring the 13C-13C isotopologue of C2 molecules. Rapid Commun. Mass Spectrom., 34, 2020, e8761.
Ten-no, S., Noga, J., Explicitly correlated electronic structure theory from R12/F12 ansätze. Wires Comput. Mol. Sci. 2 (2012), 114–125.
Thiagarajan, N., Xie, H., Ponton, C., Kitchen, N., Peterson, B., Lawson, M., Formolo, M., Xiao, Y., Eiler, J., Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases. Proc. Natl. Acad. Sci. 117 (2020), 3989–3995.
Tuckerman, M.E., Berne, B.J., Martyna, G.J., Klein, M.L., Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J. Chem. Phys. 99 (1993), 2796–2808.
Turner, A.C., Korol, R., Eldridge, D.L., Bill, M., Conrad, M.E., Miller, T.F., Stolper, D.A., Experimental and theoretical determinations of hydrogen isotopic equilibrium in the system CH4-H2-H2O from 3 to 200 °C. Geochim. Cosmochim. Acta 314 (2021), 223–269.
Turner, A.C., Korol, R., Bill, M., Stolper, D.A., Stable isotope equilibria in the dihydrogen-water-methane-ethane-propane system. Part 2: Experimental determination of hydrogen isotopic equilibrium for ethane-H2 from 30–200 °C and propane-H2 from 75–200 °C. Geochim. Cosmochim. Acta, 2025.
Urey, H.C., The Thermodynamic Properties of Isotopic Substances. J. Chem. Soc., 1947, 562–581.
Wang, Y., Sessions, A.L., Nielsen, R.J., Goddard, W.A., Equilibrium 2H/1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations. Geochim. Cosmochim. Acta 73 (2009), 7060–7075.
Wassenaar, L.I., Coplen, T.B., Aggarwal, P.K., Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers. Environ. Sci. Technol. 48 (2014), 1123–1131.
Watts, H.D., Kubicki, J.D., Pedentchouk, N., Freeman, K.H., Position-Specific 2H/H Equilibrium Isotopic Fractionation Factors in Alkane, Alkene, and Aromatic Molecules: A Density Functional Theory Approach. ACS Earth Space Chem. 8 (2024), 21–35.
Webb, M.A., Miller, T.F., Position-Specific and Clumped Stable Isotope Studies: Comparison of the Urey and Path-Integral Approaches for Carbon Dioxide, Nitrous Oxide, Methane, and Propane. J. Phys. Chem. A 118 (2014), 467–474.
Weiss, G.M., Sessions, A.L., Julien, M., Csernica, T., Yamada, K., Gilbert, A., Freeman, K.H., Eiler, J.M., Analysis of intramolecular carbon isotope distributions in alanine by electrospray ionization Orbitrap mass spectrometry. Int. J. Mass Spectrom., 493, 2023, 117128.
Werner, H.J., Knowles, P.J., Knizia, G., Manby, F.R., Schütz, M., Molpro: A general-purpose quantum chemistry program package. 2012, Wiley Interdiscip. Rev. Comput. Mol, Sci, 2.
Wilkes, E.B., Sessions, A.L., Zeichner, S.S., Dallas, B., Schubert, B., Jahren, A.H., Eiler, J.M., Position-specific carbon isotope analysis of serine by gas chromatography/Orbitrap mass spectrometry, and an application to plant metabolism. Rapid Commun. Mass Spectrom., 36, 2022, e9347.
Xie, H., Dong, G., Formolo, M., Lawson, M., Liu, J., Cong, F., Mangenot, X., Shuai, Y., Ponton, C., Eiler, J., The evolution of intra- and inter-molecular isotope equilibria in natural gases with thermal maturation. Geochim. Cosmochim. Acta 307 (2021), 22–41.
Xie, H., Formolo, M.J., Sessions, A.L., Eiler, J.M., Theoretical and experimental constraints on hydrogen isotope equilibrium in C1-C5 alkanes. Geochim. Cosmochim. Acta 386 (2024), 63–73.
Yin, X., Zhang, Y., Liu, Q., Gilbert, A., Liu, F., Gao, C., Zhang, S., Ridley, M.K., Liu, Y., Position-specific and clumped isotope equilibria in propane: Ab initio calculations beyond the harmonic and Born-Oppenheimer approximations. 2024, Chem, Geol.
Young, E.D., Rumble, D., Freedman, P., Mills, M., A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int. J. Mass Spectrom. 401 (2016), 1–10.
Zeichner, S.S., Aponte, J.C., Bhattacharjee, S., Dong, G., Hofmann, A.E., Dworkin, J.P., Glavin, D.P., Elsila, J.E., Graham, H.V., Naraoka, H., Takano, Y., Tachibana, S., Karp, A.T., Grice, K., Holman, A.I., Freeman, K.H., Yurimoto, H., Nakamura, T., Noguchi, T., Okazaki, R., Yabuta, H., Sakamoto, K., Yada, T., Nishimura, M., Nakato, A., Miyazaki, A., Yogata, K., Abe, M., Okada, T., Usui, T., Yoshikawa, M., Saiki, T., Satoshi, T., Terui, F., Nakazawa, S., Watanabe, S., Tsuda, Y., Hamase, K., Fukushima, K., Aoki, D., Hashiguchi, M., Mita, H., Chikaraishi, Y., Ohkouchi, N., Ogawa, N.O., Sakai, S., Parker, E.T., McLain, H.L., Orthous-Daunay, F.-R., Vuitton, V., Wolters, C., Schmitt-Kopplin, P., Hertkorn, N., Thissen, R., Ruf, A., Isa, J., Oba, Y., Koga, T., Yoshimura, T., Araoka, D., Sugahara, H., Furusho, A., Furukawa, Y., Aoki, J., Kano, K., Nomura, S.M., Sasaki, K., Sato, H., Yoshikawa, T., Satoru, T., Morita, M., Onose, M., Kabashima, F., Fujishima, K., Yamazaki, T., Kimura, Y., Eiler, J.M., Polycyclic aromatic hydrocarbons in samples of ryugu formed in the interstellar medium. Science 382 (2023), 1411–1416.
Zhang, Y., Liu, Y., On accurate calculations of equilibrium H/D fractionations at super-cold conditions (≤200 K) I: Full Partition Function Ratio (FPFR) vs. Path Integral Monte Carlo (PIMC). Chem. Geol., 666, 2024, 122303.
Zhang, Y., Liu, Y., The theory of equilibrium isotope fractionations for gaseous molecules under super-cold conditions. Geochim. Cosmochim. Acta 238 (2018), 123–149.