![]() ![]() | Korol, R., Turner, A. C., NANDI, A., Bowman, J. M., Goddard, W. A., & Stolper, D. A. (May 2025). Stable isotope equilibria in the dihydrogen-water-methane-ethane-propane system. Part 1: Path-integral calculations with CCSD(T) quality potentials. Geochimica et Cosmochimica Acta, 396, 71 - 90. doi:10.1016/j.gca.2025.02.028 ![]() |
![]() ![]() | Yu, Q., Ma, R., Qu, C., Conte, R., NANDI, A., Pandey, P., Houston, P. L., Zhang, D. H., & Bowman, J. M. (2025). Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials. Nature computational science. doi:10.1038/s43588-025-00790-0 ![]() |
![]() ![]() | Jäger, S., Khatri, J., Meyer, P., Henkel, S., Schwaab, G., NANDI, A., Pandey, P., Barlow, K. R., Perkins, M. A., Tschumper, G. S., Bowman, J. M., van der Avoird, A., & Havenith, M. (05 November 2024). On the nature of hydrogen bonding in the H2S dimer. Nature Communications, 15 (1), 9540. doi:10.1038/s41467-024-53444-6 ![]() |
![]() ![]() | NANDI, A., Pandey, P., Houston, P. L., Qu, C., Yu, Q., Conte, R., TKATCHENKO, A., & Bowman, J. M. (22 October 2024). Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. Journal of Chemical Theory and Computation, 20 (20), 8807 - 8819. doi:10.1021/acs.jctc.4c00977 ![]() |
![]() ![]() | NANDI, A., & Nagy, P. R. (June 2024). Combining state-of-the-art quantum chemistry and machine learning make gold standard potential energy surfaces accessible for medium-sized molecules. Artificial Intelligence Chemistry, 2 (1), 100036. doi:10.1016/j.aichem.2023.100036 ![]() |