Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all)
Abstract :
[en] Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the H2S dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the H2S dimer in superfluid helium nanodroplets. We are able to resolve a rotational substructure in each of the three distinct bands and, based on it, assign these to vibration-rotation-tunneling transitions of a single intramolecular vibration. With the use of high-level potential and dipole-moment surfaces we compute the vibration-rotation-tunneling dynamics and far-infrared spectrum with rigorous quantum methods. Intramolecular mode Vibrational Self-Consistent-Field and Configuration-Interaction calculations provide the frequencies and intensities of the four SH-stretch modes, with a focus on the most intense, the donor bound SH mode which yields the experimentally observed bands. We show that the intermolecular modes in the H2S dimer are substantially more delocalized and more strongly mixed than in the water dimer. The less directional nature of the hydrogen bonding can be quantified in terms of weaker electrostatic and more important dispersion interactions. The present study reconciles all previous spectroscopic data, and serves as a sensitive test for the potential and dipole-moment surfaces.
Disciplines :
Chemistry
Author, co-author :
Jäger, Svenja ; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
Khatri, Jai ; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
Meyer, Philipp ; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
Henkel, Stefan; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
Schwaab, Gerhard ; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
NANDI, Apurba ; University of Luxembourg ; Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA
Pandey, Priyanka ; Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA
Barlow, Kayleigh R; Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677-1848, USA
Perkins, Morgan A; Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677-1848, USA
Tschumper, Gregory S ; Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677-1848, USA
Bowman, Joel M ; Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA. jmbowma@emory.edu
van der Avoird, Ad ; Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands. A.vanderAvoird@theochem.ru.nl
Havenith, Martina ; Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany. martina.havenith@rub.de
The authors thank Claude Leforestier for making available his computer programs based on the split Wigner pseudospectral method and for valuable discussions. This study has been funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany\u2019s Excellence Strategy\u2014EXC 2033\u2014Projektnummer 390677874, NASA (80NSSC22K1167) and by the National Science Foundation (CHE-2154403). This publication is also based upon work of COST Action CA21101 on Confined molecular systems: from a new generation of materials to the stars (COSY) supported by COST (European Cooperation in Science and Technology).
E. Zwart J.J. ter Meulen W.L. Meerts The submillimeter rotation tunneling spectrum of (D2O)2 Chem. Phys. Lett. 1990 173 115 1990CPL..173.115Z 1:CAS:528:DyaK3cXmt1Snt70%3D
Karyakin, E. N., Fraser, G. T. & Suenram, R. D. Microwave spectrum of the K 2 = 1 ← 0 rotation-tunneling band of (D2O)2. Mol. Phys. 78, 1179 (1993).
J.B. Paul R.A. Provencal R.J. Saykally Characterization of the (D2O)2 hydrogen-bond-acceptor antisymmetric stretch by IR cavity ringdown laser absorption spectroscopy J. Phys. Chem. A 1998 102 3279 1:CAS:528:DyaK1cXivFequrY%3D
L.B. Braly J.D. Cruzan K. Liu R.S. Fellers R.J. Saykally Terahertz laser spectroscopy of the water dimer intermolecular vibrations i: (D2O)2 J. Chem. Phys. 2000 112 10293 2000JChPh.11210293B 1:CAS:528:DC%2BD3cXjvVOks7c%3D
F.N. Keutsch N. Goldman H.A. Harker C. Leforestier R.J. Saykally Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces Mol. Phys. 2003 101 3477 3492 2003MolPh.101.3477K 1:CAS:528:DC%2BD2cXhslCntLY%3D
F.N. Keutsch et al. Water dimer hydrogen bond stretch, donor torsion overtone, and “in-plane bend” vibrations J. Chem. Phys. 2003 119 8927 8937 2003JChPh.119.8927K 1:CAS:528:DC%2BD3sXot1ahu7s%3D
C. Leforestier L.B. Braly K. Liu M.J. Elrod R.J. Saykally Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with a split Wigner pseudo spectral approach J. Chem. Phys. 1997 106 8527 1997JChPh.106.8527L 1:CAS:528:DyaK2sXjsV2mtLk%3D
R.S. Fellers L.B. Braly R.J. Saykally C. Leforestier Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with split Wigner pseudospectral approach. II. Improvements and tests of additional potentials J. Chem. Phys. 1999 110 6306 1999JChPh.110.6306F 1:CAS:528:DyaK1MXitVCmtbw%3D
G.C. Groenenboom et al. Water pair potential of near spectroscopic accuracy: II. Vibration-rotation-tunneling levels of the water dimer J. Chem. Phys. 2000 113 6702 6715 2000JChPh.113.6702G 1:CAS:528:DC%2BD3cXntlWit7Y%3D
R. Bukowski K. Szalewicz G.C. Groenenboom A. van der Avoird Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers J. Chem. Phys. 2006 125 044301 2006JChPh.125d4301B
R. Bukowski K. Szalewicz G.C. Groenenboom A. van der Avoird Predictions of the properties of water from first principles Science 2007 315 1249 1252 2007Sci..315.1249B 1:CAS:528:DC%2BD2sXitFChsrw%3D 17332406
R. Bukowski K. Szalewicz G.C. Groenenboom A. van der Avoird Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water J. Chem. Phys. 2008 128 094314 2008JChPh.128i4314B 18331100
X. Huang et al. New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2 J. Chem. Phys. 2008 128 034312 2008JChPh.128c4312H 1:STN:280:DC%2BD1c%2FltlGkuw%3D%3D 18205503
C. Leforestier R. van Harrevelt A. van der Avoird Vibration-rotation-tunneling levels of the water dimer from an ab initio potential surface with flexible monomers J. Phys. Chem. A 2009 113 12285 12294 1:CAS:528:DC%2BD1MXmsFalsrk%3D 19476322
C. Leforestier K. Szalewicz A. van der Avoird Spectra of water dimer from a new ab initio potential with flexible monomers J. Chem. Phys. 2012 137 014305 2012JChPh.137a4305L 22779646
V. Babin C. Leforestier F. Paesani Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, vrt spectrum, and second virial coefficient J. Chem. Theor. Comp. 2013 9 5395 5403 1:CAS:528:DC%2BC3sXhslymsLrJ
M.P. Hodges A.J. Stone S.S. Xantheas Contribution of many-body terms to the energy for small water clusters: a comparison of ab initio calculations and accurate model potentials J. Phys. Chem. A 1997 101 9163 9168 1:CAS:528:DyaK2sXntFWrsr4%3D
R. Schwan et al. Observation of the low-frequency spectrum of the water dimer as a sensitive test of the water dimer potential and dipole moment surfaces Angew. Chem. Int. Ed. 2019 58 13119 13126 1:CAS:528:DC%2BC1MXhsFylt7%2FK
P. Zhou F. Tian F. Lv Z. Shang Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins Proteins: Struct. Funct. Bioinform. 2009 76 151 163 1:CAS:528:DC%2BD1MXmtFKhtLY%3D
Westler, W. M., Lin, I. J., Perczel, A., Weinhold, F. & Markley, J. L. Hyperfine-shifted 13C resonance assignments in an iron-sulfur protein with quantum chemical verification: Aliphatic CH⋯ S 3-center 4-electron interactions. J. Am. Chem. Soc.133, 1310–1316 (2011).
M.N. Hughes M.N. Centelles K.P. Moore Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review Free Radical Biol. Med. 2009 47 1346 1353 1:CAS:528:DC%2BD1MXhtlWgtL7L
Y.-H. Liu et al. Hydrogen sulfide in the mammalian cardiovascular system Antioxidants Redox Signaling 2012 17 141 185 1:CAS:528:DC%2BC38XmsFKqsbw%3D 22304473
K. Kashfi K.R. Olson Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras Biochem. Pharmacol. 2013 85 689 703 1:CAS:528:DC%2BC38Xhs1KltrzP 23103569
Y. Li J. Hao H. Liu Y. Li Y. Ma The metallization and superconductivity of superconductivity of dense hydrogen sulfide J. Chem. Phys. 2014 140 174712 2014JChPh.140q4712L 24811660
A.P. Drozdov M.I. Eremets I.A. Troyan V. Ksenofontov S.I. Shylin Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system Nature 2015 525 73 76 2015Natur.525..73D 1:CAS:528:DC%2BC2MXhtlGgurbL 26280333
Y. Oba T. Tomaru A. Kouchi N. Watanabe Physico-chemical behavior of hydrogen sulfide induced by reactions with H and D atoms on different types of ice surfaces at low temperature Astrophys. J. 2019 874 124 2019ApJ..874.124O 1:CAS:528:DC%2BC1MXhslaiurbI
D.V. Mifsud et al. Sulfur ice astrochemistry: a review of laboratory studies Space Sci. Rev. 2021 217 14 2021SSRv.217..14M 1:CAS:528:DC%2BB3MXhs1yku78%3D
A. Bhattacherjee Y. Matsuda A. Fujii S. Wategaonkar The intermolecular S-H-Y (Y=S,O) hydrogen bond in the H2S dimer and the H2S-MeOH complex ChemPhysChem 2013 14 905 914 1:CAS:528:DC%2BC3sXitlGhurY%3D 23404844
A. Das et al. The H2S dimer is hydrogen-bonded: direct confirmation from microwave spectroscopy Angew. Chem. Int. Ed. 2018 57 15199 15203 1:CAS:528:DC%2BC1cXhvFOnsr%2FO
L. Pauling The Nature of the Chemical Bond and the Structure of Molecules and Crystals 1939 Ithaca Cornell University Press
J.S. Loveday R.J. Nelmes S. Klotz J.M. Besson G. Hamel Pressure-induced hydrogen bonding: Structure of D2S phase I′ Phys. Rev. Lett. 2000 85 1024 1027 2000PhRvL.85.1024L 1:CAS:528:DC%2BD3cXltFynsbo%3D 10991465
M.A. Perkins K.R. Barlow K.M. Dreux G.S. Tschumper Anchoring the hydrogen sulfide dimer potential energy surface to juxtapose (H2S)2 with (H2O)2 J. Chem. Phys. 2020 152 214306 2020JChPh.152u4306P 1:CAS:528:DC%2BB3cXhtFegs7rP 32505140
J. Pacansky V. Calder Matrix isolation spectra of H2S and D2S: an example of the application of the uncoupled oscillator approximation J. Chem. Phys. 1970 53 4519 4524 1970JChPh.53.4519P 1:CAS:528:DyaE3MXhslCmsw%3D%3D
P. Soulard B. Tremblay Vibrational study in neon matrix of H2S-H2O, H2S-(H2O)2, and (H2S)2-H2O complexes. identification of the two isomers: HOH-SH2 (H2O proton donor) and HSH-OH2 (H2S proton donor) J. Chem. Phys. 2019 151 124308 2019JChPh.151l4308S 1:STN:280:DC%2BB3MnktFGlsA%3D%3D 31575211
A. Barnes J. Howells Infra-red cryogenic studies. part 7.—hydrogen sulphide in matrices J. Chem. Soc. Faraday Trans. 2 1972 68 729 736 1:CAS:528:DyaE38XhsVKqtL8%3D
H. Tsujii K. Takizawa S. Koda IR spectra of hydrogen bonding of H2S doped in Kr solids Chem. Phys. 2002 285 319 326 1:CAS:528:DC%2BD38XoslGjt7w%3D
E. Isoniemi M. Pettersson L. Khriachtchev J. Lundell M. Räsänen Infrared spectroscopy of H2S and SH in rare-gas matrixes J. Phys. Chem. A 1999 103 679 685 1:CAS:528:DyaK1MXlslCmsA%3D%3D
A.J. Tursi E.R. Nixon Infrared spectra of matrix-isolated hydrogen sulfide in solid nitrogen J. Chem. Phys. 1970 53 518 521 1970JChPh.53.518T 1:CAS:528:DyaE3cXks1SkurY%3D
E.L. Woodbridge T.-L. Tso M.P. McGrath W.J. Hehre E.K. Lee Infrared spectra of matrix-isolated monomeric and dimeric hydrogen sulfide in solid O2 J. Chem. Phys. 1986 85 6991 6994 1986JChPh.85.6991W 1:CAS:528:DyaL2sXktVKmtw%3D%3D
S.S. Nabiev L.A. Palkina V.I. Starikov IR spectra and dipole moment function of the H2S molecule in the gas and liquid phases Russ. J. Phys. Chem. B 2013 7 721 733 1:CAS:528:DC%2BC2cXjt12lsLs%3D
J.M. Bowman Self-consistent field energies and wavefunctions for coupled oscillators J. Chem. Phys. 1978 68 608 610 1978JChPh.68.608B 1:CAS:528:DyaE1cXhtFSrtr0%3D
J.M. Bowman The self-consistent-field approach to polyatomic vibrations Acc. Chem. Res. 1986 19 202 208 1:CAS:528:DyaL28XltVCkt7w%3D
R. Schwan et al. Observation of the low-frequency spectrum of the water trimer as a sensitive test of the water-trimer potential and the dipole-moment surface Angew. Chem. Int. Ed. 2020 59 11399 11407 1:CAS:528:DC%2BB3cXhtVahsb3K
Wyatt, R. E. & Scott, D. S. in Quantum Dynamics with the Recursive Residue Generation Method: Improved Algorithm for Chain Propagators (eds. Cullum, J. & Willoughby, R. A.) North-Holland Mathematics Studies 127C 67–79 (North Holland, 1986).
W.J. Lafferty R.D. Suenram F.J. Lovas Microwave spectra of the (HF)2, (DF)2, HFDF, and DFHF hydrogen-bonded complexes J. Mol. Spectrosc. 1987 123 434 1987JMoSp.123.434L 1:CAS:528:DyaL2sXit1egtLw%3D
A.S. Pine W.J. Lafferty Rotational structure and vibrational predissociation in the HF stretching bands of the HF dimer J. Chem. Phys. 1983 78 2154 2162 1983JChPh.78.2154P 1:CAS:528:DyaL3sXhsFajs7Y%3D
A.S. Pine W.J. Lafferty B.J. Howard Vibrational predissociation, tunneling and rotational saturation in the HF and DF dimers J. Chem. Phys. 1984 81 2939 2950 1984JChPh.81.2939P 1:CAS:528:DyaL2cXmtVSmsr0%3D
A.S. Pine B.J. Howard Hydrogen bond energies of the HF and HCl dimers from absolute infrared intensities J. Chem. Phys. 1986 84 590 1986JChPh.84.590P 1:CAS:528:DyaL28XnsFCgug%3D%3D
A.S. Pine G.T. Fraser Vibrational, rotational, and tunneling dependence of vibrational predissociation in the HF dimer J. Chem. Phys. 1988 89 6636 6643 1988JChPh.89.6636P 1:CAS:528:DyaL1MXkslKnsQ%3D%3D
D.T. Anderson S. Davis D.J. Nesbitt Probing hydrogen bond potentials via combination band spectroscopy: a near infrared study of the geared bend/van der waals stretch intermolecular modes in (HF)2 J. Chem. Phys. 1996 104 6225 1996JChPh.104.6225A 1:CAS:528:DyaK28XisVertLw%3D
G.W.M. Vissers G.C. Groenenboom A. van der Avoird Spectrum and vibrational predissociation of the HF dimer. I. bound and quasi-bound states J. Chem. Phys. 2003 119 277 285 2003JChPh.119.277V 1:CAS:528:DC%2BD3sXkvVShs7Y%3D
G.W.M. Vissers G.C. Groenenboom A. van der Avoird Spectrum and vibrational predissociation of the HF dimer. II. Photodissociation cross sections and product state distributions J. Chem. Phys. 2003 119 286 292 2003JChPh.119.286V 1:CAS:528:DC%2BD3sXkvVShsL4%3D
G.W.M. Vissers L. Oudejans R.E. Miller G.C. Groenenboom A. van der Avoird Vibrational predissociation in the HCl dimer J. Chem. Phys. 2004 120 9487 9498 2004JChPh.120.9487V 1:CAS:528:DC%2BD2cXjvVSqs74%3D 15267960
X.-G. Wang T. Carrington Computing excited OH stretch states of water dimer in 12d using contracted intermolecular and intramolecular basis functions J. Chem. Phys. 2023 158 084107 2023JChPh.158h4107W 1:CAS:528:DC%2BB3sXjvFCnsb4%3D 36859104
A. Shank Y. Wang A. Kaledin B.J. Braams J.M. Bowman Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical IR spectrum of the water dimer J. Chem. Phys. 2009 130 144314 2009JChPh.130n4314S 19368452
J. Senekowitsch et al. Theoretical rotational-vibrational spectrum of H2S J. Chem. Phys. 1989 90 783 794 1989JChPh.90.783S 1:CAS:528:DyaL1MXht1Citbw%3D
G. Cazzoli C. Puzzarini The rotational spectrum of hydrogen sulfide: The H233S and H233S isotopologues revisited J. Mol. Spectrosc. 2014 298 31 37 2014JMoSp.298..31C 1:CAS:528:DC%2BC2cXlt1Sns7Y%3D
M. Ortlieb M. Havenith Proton transfer in (HCOOH)2: an IR high-resolution spectroscopic study of the antisymmetric C-O stretch J. Phys. Chem. A 2007 111 7355 7363 1:CAS:528:DC%2BD2sXmtFSmsbY%3D 17552500
Lemonick, S. H2S dimer forms hydrogen bonds. Chem. Eng. News 96, https://cen.acs.org/physical-chemistry/chemical-bonding/H2S-dimer-forms-hydrogen-bonds/96/i41 (2018).
Krämer, K. Hydrogen sulfide surprises as it’s discovered to have hydrogen bonds. https://www.chemistryworld.com/news/hydrogen-sulfide-surprises-as-its-discovered-to-have-hydrogen-bonds/3009753.article (2018).
D. Mani et al. Acid solvation versus dissociation at “stardust conditions”: reaction sequence matters Sci. Adv. 2019 5 eaav8179 2019SciA..5.8179M 31187059 6555628
D. Mani et al. Accessing different binding sites of a multifunctional molecule: IR spectroscopy of propargyl alcohol water complexes in helium droplets Phys. Chem. Chem. Phys. 2019 21 20582 20587 1:CAS:528:DC%2BC1MXps1Ggsrw%3D 31147653
A. Nandi C. Qu P.L. Houston R. Conte J.M. Bowman Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory J. Chem. Phys. 2021 154 051102 2021JChPh.154e1102N 1:CAS:528:DC%2BB3MXjsVGlsb8%3D 33557535
J.M. Bowman et al. Machine learned potential energy surfaces and force fields J. Chem. Theory Comput. 2023 19 1 17 1:CAS:528:DC%2BB38XjtFWmt7rO 36527383
B.J. Braams J.M. Bowman Permutationally invariant potential energy surfaces in high dimensionality Int. Rev. Phys. Chem. 2009 28 577 606 1:CAS:528:DC%2BD1MXhsF2hu7bF
MSA software with gradients. https://github.com/szquchen/MSA-2.0 (2019). Accessed 20 January 2019.
Bunker, P. R. & Jensen, P. Molecular Symmetry and Spectroscopy 2nd edn. (NRC Research Press, 1998).
S. Carter J.M. Bowman N.C. Handy Extensions and tests of “Multimode”: a code to obtain accurate vibration/rotation energies of many-mode molecules Theor. Chem. Acc. 1998 100 191 198 1:CAS:528:DyaK1cXnslKrurg%3D