Collision cross sections; Cross-section values; Fragment ions; Gas-phase reactivity; High resolution mass spectrometry; Hydroxylated polychlorinated biphenyls; Ion mobility spectrometry; OH -; Parent compounds; Spectra's; Structural Biology; Spectroscopy
Résumé :
[en] Identification of stereo- and positional isomers detected with high-resolution mass spectrometry (HRMS) is often challenging due to near-identical fragmentation spectra (MS2), similar retention times, and collision cross-section values (CCS). Here we address this challenge on the example of hydroxylated polychlorinated biphenyls (OH-PCBs) with the aim to (1) distinguish between isomers of OH-PCBs using two-dimensional ion mobility spectrometry (2D-IMS) and (2) investigate the structure of the fragments of OH-PCBs and their fragmentation mechanisms by ion mobility spectrometry coupled to high-resolution mass spectrometry (IMS-HRMS). The MS2 spectra as well as CCS values of the deprotonated molecule and fragment ions were measured for 18 OH-PCBs using flow injections coupled to a cyclic IMS-HRMS. The MS2 spectra as well as the CCS values of the parent and fragment ions were similar between parent compound isomers; however, ion mobility separation of the fragment ions is hinting at the formation of isomeric fragments. Different parent compound isomers also yielded different numbers of isomeric fragment mobilogram peaks giving new insights into the fragmentation of these compounds and indicating new possibilities for identification. For spectral interpretation, Gibbs free energies and CCS values for the fragment ions of 4'-OH-CB35, 4'-OH-CB79, 2-OH-CB77 and 4-OH-CB107 were calculated and enabled assignment of structures to the isomeric mobilogram peaks of [M-H-HCl]- fragments. Finally, further fragmentation of the isomeric fragments revealed different fragmentation pathways depending on the isomeric fragment ions.
Disciplines :
Chimie
Auteur, co-auteur :
PALM, Emma Helena ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics ; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 114 18 Stockholm, Sweden
Engelhardt, Josefin; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Tshepelevitsh, Sofja ; Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
Weiss, Jana ; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Kruve, Anneli ; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 114 18 Stockholm, Sweden ; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 114 18 Stockholm, Sweden
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Gas Phase Reactivity of Isomeric Hydroxylated Polychlorinated Biphenyls.
Date de publication/diffusion :
01 mai 2024
Titre du périodique :
Journal of the American Society for Mass Spectrometry
The funding has been generously provided by Swedish Research Council for Sustainable Development grants 2018-02264 and 2020-01511. DFT computations were carried out in the High Performance Computing Center of the University of Tartu.
Hollender, J.; van Bavel, B.; Dulio, V.; Farmen, E.; Furtmann, K.; Koschorreck, J.; Kunkel, U.; Krauss, M.; Munthe, J.; Schlabach, M.; Slobodnik, J.; Stroomberg, G.; Ternes, T.; Thomaidis, N. S.; Togola, A.; Tornero, V. High Resolution Mass Spectrometry-Based Non-Target Screening Can Support Regulatory Environmental Monitoring and Chemicals Management. Environ. Sci. Eur. 2019, 31 ( 1), 42, 10.1186/s12302-019-0225-x
Paszkiewicz, M.; Godlewska, K.; Lis, H.; Caban, M.; Białk-Bielińska, A.; Stepnowski, P. Advances in Suspect Screening and Non-Target Analysis of Polar Emerging Contaminants in the Environmental Monitoring. TrAC Trends Anal. Chem. 2022, 154, 116671 10.1016/j.trac.2022.116671
Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 ( 4), 299- 302, 10.1038/s41592-019-0344-8
Kruve, A. Semi-quantitative Non-target Analysis of Water with Liquid Chromatography/High-resolution Mass Spectrometry: How Far Are We?. Rapid Commun. Mass Spectrom. 2019, 33 ( S3), 54- 63, 10.1002/rcm.8208
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 ( 4), 2097- 2098, 10.1021/es5002105
Zhang, X.; Ren, X.; Chingin, K.; Xu, J.; Yan, X.; Chen, H. Mass Spectrometry Distinguishing C═C Location and Cis/Trans Isomers: A Strategy Initiated by Water Radical Cations. Anal. Chim. Acta 2020, 1139, 146- 154, 10.1016/j.aca.2020.09.027
Kasperkowiak, M.; Beszterda, M.; Bańczyk, I.; Frański, R. Differentiation of Bisphenol F Diglycidyl Ether Isomers and Their Derivatives by HPLC-MS and GC-MS─Comment on the Published Data. Anal. Bioanal. Chem. 2021, 413 ( 7), 1893- 1903, 10.1007/s00216-021-03157-2
Casas-Ferreira, A. M.; Nogal-Sanchez, M. d.; Rodriguez-Gonzalo, E.; Moreno-Cordero, B.; Perez-Pavon, J. L. Determination of Leucine and Isoleucine/Allo-Isoleucine by Electrospray Ionization-Tandem Mass Spectrometry and Partial Least Square Regression: Application to Saliva Samples. Talanta 2020, 216, 120811 10.1016/j.talanta.2020.120811
Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2008, 43 ( 1), 1- 22, 10.1002/jms.1383
Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Identification of Carbohydrate Anomers Using Ion Mobility-Mass Spectrometry. Nature 2015, 526 ( 7572), 241- 244, 10.1038/nature15388
Ross, D. H.; Xu, L. Determination of Drugs and Drug Metabolites by Ion Mobility-Mass Spectrometry: A Review. Anal. Chim. Acta 2021, 1154, 338270 10.1016/j.aca.2021.338270
Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/Oa-ToF Instrument. Int. J. Mass Spectrom. 2007, 261 ( 1), 1- 12, 10.1016/j.ijms.2006.07.021
Cho, E.; Riches, E.; Palmer, M.; Giles, K.; Ujma, J.; Kim, S. Isolation of Crude Oil Peaks Differing by m/z ∼ 0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer. Anal. Chem. 2019, 91 ( 22), 14268- 14274, 10.1021/acs.analchem.9b02255
Rüger, C. P.; Le Maître, J.; Maillard, J.; Riches, E.; Palmer, M.; Afonso, C.; Giusti, P. Exploring Complex Mixtures by Cyclic Ion Mobility High-Resolution Mass Spectrometry: Application Toward Petroleum. Anal. Chem. 2021, 93 ( 14), 5872- 5881, 10.1021/acs.analchem.1c00222
Giles, K.; Ujma, J.; Wildgoose, J.; Pringle, S.; Richardson, K.; Langridge, D.; Green, M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91 ( 13), 8564- 8573, 10.1021/acs.analchem.9b01838
Kruve, A.; Caprice, K.; Lavendomme, R.; Wollschläger, J. M.; Schoder, S.; Schröder, H. V.; Nitschke, J. R.; Cougnon, F. B. L.; Schalley, C. A. Ion-Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew. Chem., Int. Ed. 2019, 58 ( 33), 11324- 11328, 10.1002/anie.201904541
Lee, J.; Chai, M.; Bleiholder, C. Differentiation of Isomeric, Nonseparable Carbohydrates Using Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 2022, 95 ( 2), 747- 757, 10.1021/acs.analchem.2c02844
Demarque, D. P.; Crotti, A. E. M.; Vessecchi, R.; Lopes, J. L. C.; Lopes, N. P. Fragmentation Reactions Using Electrospray Ionization Mass Spectrometry: An Important Tool for the Structural Elucidation and Characterization of Synthetic and Natural Products. Nat. Prod. Rep. 2016, 33 ( 3), 432- 455, 10.1039/C5NP00073D
Tehrani, R.; Van Aken, B. Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities. Environ. Sci. Pollut. Res. Int. 2014, 21 ( 10), 6334- 6345, 10.1007/s11356-013-1742-6
Machala, M.; Bláha, L.; Lehmler, H.-J.; Plíšková, M.; Májková, Z.; Kapplová, P.; Sovadinová, I.; Vondráček, J.; Malmberg, T.; Robertson, L. W. Toxicity of Hydroxylated and Quinoid PCB Metabolites: Inhibition of Gap Junctional Intercellular Communication and Activation of Aryl Hydrocarbon and Estrogen Receptors in Hepatic and Mammary Cells. Chem. Res. Toxicol. 2004, 17 ( 3), 340- 347, 10.1021/tx030034v
Khabazbashi, S.; Engelhardt, J.; Möckel, C.; Weiss, J.; Kruve, A. Estimation of the Concentrations of Hydroxylated Polychlorinated Biphenyls in Human Serum Using Ionization Efficiency Prediction for Electrospray. Anal. Bioanal. Chem. 2022, 414, 7451, 10.1007/s00216-022-04096-2
Frisch, M. J. . Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.
Shrivastav, V.; Nahin, M.; Hogan, C. J.; Larriba-Andaluz, C. Benchmark Comparison for a Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. J. Am. Soc. Mass Spectrom. 2017, 28 ( 8), 1540- 1551, 10.1007/s13361-017-1661-8
Bergman, Å.; Klasson Wehler, E.; Kuroki, H.; Nilsson, A. Synthesis and Mass Spectrometry of Some Methoxylated PCB. Chemosphere 1995, 30 ( 10), 1921- 1938, 10.1016/0045-6535(95)00073-H
R Core Team (2021). R: A Language and Environment for Statistical Computing. https://www.R-project.org/.
Picache, J. A.; Rose, B. S.; Balinski, A.; Leaptrot, K. L.; Sherrod, S. D.; May, J. C.; McLean, J. A. Collision Cross Section Compendium to Annotate and Predict Multi-Omic Compound Identities. Chem. Sci. 2019, 10 ( 4), 983- 993, 10.1039/C8SC04396E
Korth, M.; Thiel, W. Benchmarking Semiempirical Methods for Thermochemistry, Kinetics, and Noncovalent Interactions: OMx Methods Are Almost As Accurate and Robust As DFT-GGA Methods for Organic Molecules. J. Chem. Theory Comput. 2011, 7 ( 9), 2929- 2936, 10.1021/ct200434a
Walker, M.; Harvey, A. J. A.; Sen, A.; Dessent, C. E. H. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117 ( 47), 12590- 12600, 10.1021/jp408166m
Böcker, S.; Dührkop, K. Fragmentation Trees Reloaded. J. Cheminformatics 2016, 8 ( 1), 5, 10.1186/s13321-016-0116-8
Kirk, A. T.; Bohnhorst, A.; Raddatz, C.-R.; Allers, M.; Zimmermann, S. Ultra-High-Resolution Ion Mobility Spectrometry─Current Instrumentation, Limitations, and Future Developments. Anal. Bioanal. Chem. 2019, 411 ( 24), 6229- 6246, 10.1007/s00216-019-01807-0
Akhlaqi, M.; Wang, W.-C.; Möckel, C.; Kruve, A. Complementary Methods for Structural Assignment of Isomeric Candidate Structures in Non-Target Liquid Chromatography Ion Mobility High-Resolution Mass Spectrometric Analysis. Anal. Bioanal. Chem. 2023, 415 ( 21), 5247- 5259, 10.1007/s00216-023-04852-y
Li, X.; Robertson, L. W.; Lehmler, H.-J. Electron Ionization Mass Spectral Fragmentation Study of Sulfation Derivatives of Polychlorinated Biphenyls. Chem. Cent. J. 2009, 3 ( 1), 5, 10.1186/1752-153X-3-5
Vazquez, S.; Truscott, R. J. W.; O’Hair, R. A. J.; Weimann, A.; Sheil, M. M. A Study of Kynurenine Fragmentation Using Electrospray Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12 ( 7), 786- 794, 10.1016/S1044-0305(01)00255-0
University of Tartu. UT Rocket. 10.23673/PH6N-0144.