Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); Open systems; Hermiticity; topology
Abstract :
[en] As light can mediate interactions between atoms in a photonic environment, engineering it for endowing the photon-mediated Hamiltonian with desired features, like robustness against disorder, is crucial in quantum research. We provide general theorems on the topology of photon-mediated interactions in terms of both Hermitian and non-Hermitian topological invariants, unveiling the phenomena of topological preservation and reversal, and revealing a system-bath topological correspondence. Depending on the Hermiticity of the environment and the parity of the spatial dimension, the atomic and photonic topological invariants turn out to be equal or opposite. Consequently, the emergence of atomic and photonic topological boundary modes with opposite group velocities in two-dimensional Hermitian topological systems is established. Owing to its general applicability, our results can guide the design of topological systems.
Disciplines :
Physics
Author, co-author :
ROCCATI, Federico ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Aurélia CHENU
Bello, Miguel ; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching, 85748, Germany ; Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799, München, Germany
Gong, Zongping; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching, 85748, Germany ; Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799, München, Germany ; Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama, 351-0198, Japan ; Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Ueda, Masahito; Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan ; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan ; Institute for Physics of Intelligence, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Ciccarello, Francesco ; Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè, via Archirafi 36, I-90123, Palermo, Italy ; NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
Carollo, Angelo ; Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè, via Archirafi 36, I-90123, Palermo, Italy
CHENU, Aurélia ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Hermitian and non-Hermitian topology from photon-mediated interactions.
We acknowledge Diego Porras and Pablo Mart\u00EDnez-Azcona for useful discussions. F.R. and A. Ch. acknowledge support from the Luxembourg National Research Fund (FNR, Attract grant 15382998). M.B. was supported by the projects FermiQP and EQUAHUMO of the Bildungsministerium f\u00FCr Bildung und Forschung (BMBF). Z.G. was supported by the Max-Planck-Harvard Research Center for Quantum Optics (MPHQ). M.B. and Z.G. acknowledge financial support from the Munich Center for Quantum Science and Technology (MCQST), funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany\u2019s Excellence Strategy (EXC2111-390814868). M.U. acknowledges the support by KAKENHI Grant No. JP22H01152 from the Japan Society for the Promotion of Science. A.Ca. and F.C. acknowledge support from European Union \u2013 Next Generation EU through Project Eurostart 2022 Topological atom-photon interactions for quantum technologies (MUR D.M. 737/2021) and through Project PRIN 2022-PNRR no. P202253RLY \u201CHarnessing topological phases for quantum technologies\u201D.
L. Lu J.D. Joannopoulos M. Soljačić Topological photonics Nat. Photonics 2014 8 821 829 2014NaPho..8.821L 1:CAS:528:DC%2BC2cXhvVSqtr7M
T. Ozawa et al. Topological photonics Rev. Mod. Phys. 2019 91 015006 2019RvMP..91a5006O 3942981 1:CAS:528:DC%2BC1MXosFWrsbg%3D
C. Nayak S.H. Simon A. Stern M. Freedman S. Das Sarma, Non-abelian anyons and topological quantum computation Rev. Mod. Phys. 2008 80 1083 1159 2008RvMP..80.1083N 1:CAS:528:DC%2BD1cXhtFCku73K
Y. Ashida Z. Gong M. Ueda Non-Hermitian physics Adv. Phys. 2020 69 249 2020AdPhy.69.249A
E.J. Bergholtz J.C. Budich F.K. Kunst Exceptional topology of non-hermitian systems Rev. Mod. Phys. 2021 93 015005 2021RvMP..93a5005B 4290940
S. Barik et al. A topological quantum optics interface Science 2018 359 666 668 2018Sci..359.666B 3751955 1:CAS:528:DC%2BC1cXit1CjtLg%3D 29439239
M.J. Mehrabad et al. Chiral topological photonics with an embedded quantum emitter Optica 2020 7 1690 2020Optic..7.1690J
F. Ciccarello Resonant atom-field interaction in large-size coupled-cavity arrays Phys. Rev. A 2011 83 2011PhRvA.83d3802C
N.Y. Yao et al. Topologically protected quantum state transfer in a chiral spin liquid Nat. Commun. 2013 4 2013NatCo..4.1585Y 1:STN:280:DC%2BC3svls1KqsA%3D%3D 23481393
G.M.A. Almeida F. Ciccarello T.J.G. Apollaro A.M.C. Souza Quantum-state transfer in staggered coupled-cavity arrays Phys. Rev. A 2016 93 2016PhRvA.93c2310A
M.-A. Lemonde V. Peano P. Rabl D.G. Angelakis Quantum state transfer via acoustic edge states in a 2D optomechanical array New J. Phys. 2019 21 113030 2019NJPh..21k3030L 4171081 1:CAS:528:DC%2BB3cXhs1yiur7J
C. Vega D. Porras A. González-Tudela Topological multimode waveguide QED Phys. Rev. Research 2023 5 2023PhRvR..5b3031V 1:CAS:528:DC%2BB3sXhsFKhtLfO
M. Bello G. Platero J.I. Cirac A. González-Tudela Unconventional quantum optics in topological waveguide QED Sci. Adv. 2019 5 eaaw0297 2019SciA..5.297B 1:STN:280:DC%2BB3MvivVWqsw%3D%3D 31360765 6660202
L. Leonforte A. Carollo F. Ciccarello Vacancy-like dressed states in topological waveguide QED Phys. Rev. Lett. 2021 126 063601 2021PhRvL.126f3601L 4218147 1:CAS:528:DC%2BB3MXls1Gqs74%3D 33635679
D. De Bernardis Z.P. Cian I. Carusotto M. Hafezi P. Rabl Light-matter interactions in synthetic magnetic fields: Landau-photon polaritons Phys. Rev. Lett. 2021 126 103603 2021PhRvL.126j3603D 33784168
M. Bello J.I. Cirac Topological effects in two-dimensional quantum emitter systems Phys. Rev. B 2023 107 2023PhRvB.107e4301B 1:CAS:528:DC%2BB3sXmt1Cgsr8%3D
Z. Gong M. Bello D. Malz F.K. Kunst Anomalous behaviors of quantum emitters in non-hermitian baths Phys. Rev. Lett. 2022 129 223601 2022PhRvL.129v3601G 4516290 1:CAS:528:DC%2BB3sXnt1ar 36493450
Z. Gong M. Bello D. Malz F.K. Kunst Bound states and photon emission in non-hermitian nanophotonics Phys. Rev. A 2022 106 2022PhRvA.106e3517G 1:CAS:528:DC%2BB38XjtFyit7%2FK
C. Vega M. Bello D. Porras A. González-Tudela Qubit-photon bound states in topological waveguides with long-range hoppings Phys. Rev. A 2021 104 2021PhRvA.104e3522V 4353161 1:CAS:528:DC%2BB3MXislagtr3I
L. Krinner M. Stewart A. Pazmiño J. Kwon D. Schneble Spontaneous emission of matter waves from a tunable open quantum system Nature 2018 559 589 592 2018Natur.559.589K 1:CAS:528:DC%2BC1cXhtl2jt73F 30046077
Y. Liu A.A. Houck Quantum electrodynamics near a photonic bandgap Nat. Phys. 2017 13 48 52 1:CAS:528:DC%2BC28Xht1ygs7zJ
Sundaresan, N. M., Lundgren, R., Zhu, G., Gorshkov, A. V. & Houck, A. A. Interacting qubit-photon bound states with superconducting circuits. Phys. Rev. X 9, 011021 (2019).
E. Kim et al. Quantum electrodynamics in a topological waveguide Phys. Rev. X 2021 11 1:CAS:528:DC%2BB3MXht12nsbfK
M. Scigliuzzo et al. Controlling atom-photon bound states in an array of Josephson-junction resonators Phys. Rev. X 2022 12 1:CAS:528:DC%2BB38Xis1ymurjI
J.S. Tang et al. Nonreciprocal single-photon band structure Phys. Rev. Lett. 2022 128 203602 2022PhRvL.128t3602T 1:CAS:528:DC%2BB38Xhs1enu7vJ 35657886
D.E. Chang J.S. Douglas A. González-Tudela C.-L. Hung H.J. Kimble Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons Rev. Mod. Phys. 2018 90 031002 2018RvMP..90c1002C 3861232 1:CAS:528:DC%2BC1MXjvV2ktb4%3D
A. Altland M.R. Zirnbauer Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures Phys. Rev. B 1997 55 1142 1997PhRvB.55.1142A 1:CAS:528:DyaK2sXotFWjuw%3D%3D
C.K. Chiu J.C.Y. Teo A.P. Schnyder S. Ryu Classification of topological quantum matter with symmetries Rev. Mod. Phys. 2016 88 035005 2016RvMP..88c5005C
N. Okuma K. Kawabata K. Shiozaki M. Sato Topological origin of non-hermitian skin effects Phys. Rev. Lett. 2020 124 086801 2020PhRvL.124h6801O 4071786 1:CAS:528:DC%2BB3cXmslygu7k%3D 32167324
J.Y. Lee J. Ahn H. Zhou A. Vishwanath Topological correspondence between hermitian and non-hermitian systems: Anomalous dynamics Phys. Rev. Lett. 2019 123 206404 2019PhRvL.123t6404L 4038992 1:CAS:528:DC%2BB3cXhvFylsL4%3D 31809078
Douglas J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics9, 326–331 (2015).
A. González-Tudela J.I. Cirac Markovian and non-Markovian dynamics of quantum emitters coupled to two-dimensional structured reservoirs Phys. Rev. A 2017 96 2017PhRvA.96d3811G
Economou, E. N. Green’s functions in quantum physics. Springer S. Solid State Sci. Berlin Heidelberg, Berlin, Heidelberg: Springer 7 (2006).
A. González-Tudela C.-L. Hung D.E. Chang J.I. Cirac H.J. Kimble Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals Nat. Photonics 2015 9 320 325 2015NaPho..9.320G
A.P. Schnyder S. Ryu A. Furusaki A.W.W. Ludwig Classification of topological insulators and superconductors in three spatial dimensions Phys. Rev. B 2008 78 2008PhRvB.78s5125S
A. Kitaev Periodic table for topological insulators and superconductors A.I.P. Conf. Proc. 2009 1134 22 2009AIPC.1134..22K 1:CAS:528:DC%2BD1MXmtVaqtbo%3D
X.-L. Qi Y.-S. Wu S.-C. Zhang Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors Phys. Rev. B 2006 74 2006PhRvB.74h5308Q
D. Bernard, A. LeClair. in Statistical Field Theories, A. Cappelli, G. Mussardo, Eds. (Berlin: Springer, 2002), pp. 207–214.
K. Kawabata K. Shiozaki M. Ueda M. Sato Symmetry and Topology in Non-Hermitian Physics Phys. Rev. X 2019 9 1:CAS:528:DC%2BB3cXjvFCjsLg%3D
F. Roccati et al. Exotic interactions mediated by a non-Hermitian photonic bath Optica 2022 9 565 2022Optic..9.565R
Clerk, A. A. Introduction to quantum non-reciprocal interactions: from non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes. SciPost Phys. Lect. 44 https://doi.org/10.21468/SciPostPhysLectNotes.44 (2022).
P. Hosur S. Ryu A. Vishwanath Chiral topological insulators, superconductors, and other competing orders in three dimensions Phys. Rev. B 2010 81 045120 2010PhRvB.81d5120H
J.K. Asbóth L. Oroszlány A. Pályi A short course on topological insulators Lect. Notes Phys. 2016 919 166 3467967
M. Brandenbourger X. Locsin E. Lerner C. Coulais Non-reciprocal robotic metamaterials Nat Commun 2019 10 2019NatCo.10.4608B 31601803 6787071
L. Zhang et al. Acoustic non-Hermitian skin effect from twisted winding topology Nat Commun 2021 12 2021NatCo.12.6297Z 1:CAS:528:DC%2BB3MXitl2jtL3K 34728639 8563885
D. Zou et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits Nat Commun 2021 12 2021NatCo.12.7201Z 1:CAS:528:DC%2BB3MXislars7nP 34893589 8664810
X. Zhang E. Kim D.K. Mark S. Choi O. Painter A superconducting quantum simulator based on a photonic-bandgap metamaterial Science 2023 379 278 283 2023Sci..379.278Z 1:CAS:528:DC%2BB3sXhslWltLo%3D 36656924
C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, P. Thickstun, Atom-photon interactions: basic processes and applications. (Wiley Online Library, 1992).
E. Sánchez-Burillo D. Porras A. González-Tudela Limits of photon-mediated interactions in one-dimensional photonic baths Phys. Rev. A 2020 102 2020PhRvA.102a3709S
Z. Gong et al. Topological phases of Non-Hermitian systems Phys. Rev. X 2018 8 1:CAS:528:DC%2BC1MXltFSntr4%3D
H. Schwerdtfeger. Geometry of complex numbers (University of Toronto press, 2020).