Article (Périodiques scientifiques)
Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking
Akemann, Gernot; BALDUCCI, Federico; Päßler, Patricia et al.
2025In Physical Review Research, 7 (1)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Two transitions in complex eigenvalue statistics.pdf
Postprint Auteur (3.26 MB)
Télécharger
Parties de texte intégral
Akemann_2025_Two transitions in.pdf
Postprint Éditeur (2.14 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Complex eigenvalues; Hermitians; Hermiticity; Integrability; Open quantum systems; Poisson point process; Poisson statistic; Random Matrix; Physics - Statistical Mechanics; Mathematical Physics; Mathematics - Mathematical Physics; Quantum Physics; quantum chaos; spectral statistics
Résumé :
[en] Open quantum systems have complex energy eigenvalues which are expected to follow non-Hermitian random matrix statistics, when chaotic, or two-dimensional (2d) Poisson statistics, when integrable. We investigate the spectral properties of a many-body quantum spin chain, i.e., the Hermitian XXZ Heisenberg model with imaginary disorder. Its rich complex eigenvalue statistics is found to separately break both Hermiticity and integrability at different scales of the disorder strength. With no disorder, the system is integrable and Hermitian, with spectral statistics corresponding to the 1d Poisson point process. At very small disorder, we find a transition from 1d Poisson statistics to an effective D-dimensional Poisson point process, showing Hermiticity breaking. At intermediate disorder, we find integrability breaking, as inferred from the statistics matching that of non-Hermitian complex symmetric random matrices in class AI†. For large disorder, as the spins align, we recover the expected integrability (now in the non-Hermitian setup), indicated by 2d Poisson statistics. These conclusions are based on fitting the spin-chain data of numerically generated nearest- and next-to-nearest-neighbor spacing distributions to an effective 2d Coulomb gas description at inverse temperature β. We confirm that such an effective description of random matrices also applies in classes AI† and AII† up to next-to-nearest-neighbor spacings.
Disciplines :
Physique
Auteur, co-auteur :
Akemann, Gernot ;  Faculty of Physics, Bielefeld University, Germany ; School of Mathematics, University of Bristol, Bristol, United Kingdom
BALDUCCI, Federico  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Aurélia CHENU ; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
Päßler, Patricia ;  Faculty of Physics, Bielefeld University, Germany
ROCCATI, Federico  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Aurélia CHENU ; Department of Physics, Columbia University, New York, United States ; Max Planck Institute for the Science of Light, Erlangen, Germany
SHIR, Ruth  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
CHENU, Aurélia ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking
Date de publication/diffusion :
07 janvier 2025
Titre du périodique :
Physical Review Research
eISSN :
2643-1564
Maison d'édition :
American Physical Society
Volume/Tome :
7
Fascicule/Saison :
1
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
John Templeton Foundation
Fonds National de la Recherche Luxembourg
Deutsche Forschungsgemeinschaft
Leverhulme Trust
Los Alamos National Laboratory
Subventionnement (détails) :
We acknowledge funding from the John Templeton Foundation (JTF Grant No. 62171) and the Luxembourg National Research Fund (FNR, Attract Grant No. 15382998). F.R. acknowledges financial support from the Fulbright Research Scholar Program. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the JTF. The numerical simulations presented in this work were in part carried out using the HPC facilities of the University of Luxembourg. This work was partly supported by the Deutsche Forschungsgemeinschaft (DFG) Grant No. SFB 1283/2 2021\u2013317210226 (G.A., P.P.) and a Leverhulme Trust Visiting Professorship, Grant No. VP1-2023-007 (G.A.). G.A. is indebted to the School of Mathematics, University of Bristol, where this research was conducted. A.C. acknowledges the CNLS at Los Alamos National Laboratory, where part of this research was conducted.
Commentaire :
12+2 pages, 12+2 figures. Accepted for publication in Phys. Rev. Research
Disponible sur ORBilu :
depuis le 01 avril 2025

Statistiques


Nombre de vues
86 (dont 1 Unilu)
Nombre de téléchargements
67 (dont 1 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu