Article (Périodiques scientifiques)
Anomaly detection in groundwater monitoring data using LSTM-Autoencoder neural networks
Rezaiezadeh Roukerd, Fatemeh; RAJABI, Mohammadmahdi
2024In Environmental Monitoring and Assessment, 196 (8)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Anomaly detection.pdf
Postprint Auteur (1.37 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Anomaly detection; Groundwater; LSTM-Autoencoder; Monte Carlo; Negative Log Likelihood; SEAWAT; Uncertainty; Auto encoders; Groundwater monitoring; Log likelihood; Long short-term memory-autoencoder; Monte carlo; Negative log likelihood; Neural-networks; Environmental Monitoring; Monte Carlo Method; Neural Networks, Computer; Salinity; Environmental Science (all); Pollution; Management, Monitoring, Policy and Law
Résumé :
[en] Groundwater monitoring data can be prone to errors and biases due to various factors like borehole and equipment malfunctions, or human mistakes. These inaccuracies can jeopardize the groundwater system, leading to reduced efficiency and potentially causing partial or complete failures in the monitoring system. Traditional anomaly detection methods, which rely on statistical and time-variant techniques, struggle to handle the complex and dynamic nature of anomalies. With advancements in artificial intelligence and the growing need for effective anomaly detection and prevention across different sectors, artificial neural network methods are emerging as capable of identifying more intricate anomalies by considering both temporal and contextual aspects. Nonetheless, there is still a shortage of comprehensive studies on groundwater anomaly detection. The intricate patterns of sequential data from groundwater present numerous challenges, necessitating sophisticated modeling techniques that combine mathematics, statistics, and machine learning for viable solutions. This paper introduces a model designed for high accuracy and efficient computation in detecting anomalies in groundwater monitoring data through a probabilistic approach. We employed the Monte Carlo method and SEAWAT numerical simulation to ascertain the uncertainty in groundwater salinity. Subsequently, a Long Short-Term Memory (LSTM)-Autoencoder model was trained and evaluated, forming the basis of an anomaly detection framework. Each piece of training data was assessed by the LSTM-Autoencoder using the Negative Log Likelihood (NLL) score and a predefined threshold to determine the data’s abnormality percentage. The accuracy evaluation of the proposed LSTM-Autoencoder algorithm revealed that this approach achieved commendable performance, with an accuracy of 98.47% in anomaly detection. Graphical Abstract: (Figure presented.)
Disciplines :
Ingénierie civile
Auteur, co-auteur :
Rezaiezadeh Roukerd, Fatemeh;  Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
RAJABI, Mohammadmahdi  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Anomaly detection in groundwater monitoring data using LSTM-Autoencoder neural networks
Date de publication/diffusion :
août 2024
Titre du périodique :
Environmental Monitoring and Assessment
ISSN :
0167-6369
eISSN :
1573-2959
Maison d'édition :
Springer Science and Business Media Deutschland GmbH
Volume/Tome :
196
Fascicule/Saison :
8
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 02 mars 2025

Statistiques


Nombre de vues
92 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
14
OpenCitations
 
0
citations OpenAlex
 
13
citations WoS
 
9

Bibliographie


Publications similaires



Contacter ORBilu