Comprehensive Mass Spectrometry Workflows to Systematically Elucidate Transformation Processes of Organic Micropollutants: A Case Study on the Photodegradation of Four Pharmaceuticals.
Helmus, Rick; Bagdonaite, Ingrida; de Voogt, Pimet al.
[en] Organic micropollutants (OMPs) in the aquatic environment challenge conventional water treatment processes. Advanced oxidation processes, such as UV photolysis, serve as effective strategies to remove OMPs. However, these often yield unknown transformation products (TPs). High-resolution mass spectrometry (HRMS)-based non-target analysis (NTA) is commonly used to screen large numbers of chemicals but faces specific challenges such as low concentrations of compounds of interest, lack of reference standards, and the need for sophisticated data analysis workflows when used for TP identification. This article describes comprehensive workflows to study UV photolysis-related processes and the resulting TPs, by combining an automated photodegradation setup and HRMS and advanced NTA approaches. Four pharmaceuticals were successfully degraded in a case study, and 38 NTA features were effectively prioritized from complex sample matrices and identified as TPs through complementary approaches developed in this work. The identified TPs were structurally diverse and mostly novel. Semi-quantitation suggested that the TPs explained a relevant part of the parent removal. The developed workflows are a step toward systematic comprehensive analysis of transformation processes in water and beyond. The openly available data-processing tools and data enhance transformation data repositories and algorithms and support NTA studies in general.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Helmus, Rick ; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
Bagdonaite, Ingrida; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands ; Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands ; Analytical-Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands ; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
de Voogt, Pim ; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
van Bommel, Maarten R; Analytical-Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands ; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands ; Amsterdam School for Heritage, Memory and Material Culture, Conservation and Restoration of Cultural Heritage, University of Amsterdam, P.O. Box 94522, Amsterdam 1090 GN, The Netherlands
van Wezel, Annemarie P; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
Ter Laak, Thomas L; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands ; KWR Water Research Institute, Groningenhaven 7, Nieuwegein 3430 BB, The Netherlands
External co-authors :
yes
Language :
English
Title :
Comprehensive Mass Spectrometry Workflows to Systematically Elucidate Transformation Processes of Organic Micropollutants: A Case Study on the Photodegradation of Four Pharmaceuticals.
Di Marcantonio, C.; Bertelkamp, C.; van Bel, N.; Pronk, T. E.; Timmers, P. H. A.; van der Wielen, P.; Brunner, A. M. Organic Micropollutant Removal in Full-Scale Rapid Sand Filters Used for Drinking Water Treatment in The Netherlands and Belgium. Chemosphere 2020, 260, 127630, 10.1016/j.chemosphere.2020.127630
Brunner, A. M.; Bertelkamp, C.; Dingemans, M. M. L.; Kolkman, A.; Wols, B.; Harmsen, D.; Siegers, W.; Martijn, B. J.; Oorthuizen, W. A.; Ter Laak, T. L. Integration of Target Analyses, Non-Target Screening and Effect-Based Monitoring to Assess OMP Related Water Quality Changes in Drinking Water Treatment. Sci. Total Environ. 2020, 705, 135779, 10.1016/j.scitotenv.2019.135779
Völker, J.; Stapf, M.; Miehe, U.; Wagner, M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. Environ. Sci. Technol. 2019, 53 ( 13), 7215- 7233, 10.1021/acs.est.9b00570
Pistocchi, A.; Alygizakis, N. A.; Brack, W.; Boxall, A.; Cousins, I. T.; Drewes, J. E.; Finckh, S.; Gallé, T.; Launay, M. A.; McLachlan, M. S.; Petrovic, M.; Schulze, T.; Slobodnik, J.; Ternes, T.; Van Wezel, A.; Verlicchi, P.; Whalley, C. European Scale Assessment of the Potential of Ozonation and Activated Carbon Treatment to Reduce Micropollutant Emissions with Wastewater. Sci. Total Environ. 2022, 848, 157124, 10.1016/j.scitotenv.2022.157124
Kolkman, A.; Martijn, B. J.; Vughs, D.; Baken, K. A.; Van Wezel, A. P. Tracing Nitrogenous Disinfection Byproducts after Medium Pressure UV Water Treatment by Stable Isotope Labeling and High Resolution Mass Spectrometry. Environ. Sci. Technol. 2015, 49 ( 7), 4458- 4465, 10.1021/es506063h
Sharma, A.; Ahmad, J.; Flora, S. J. S. Application of Advanced Oxidation Processes and Toxicity Assessment of Transformation Products. Environ. Res. 2018, 167, 223- 233, 10.1016/j.envres.2018.07.010
Baeza, C.; Knappe, D. R. U. Transformation Kinetics of Biochemically Active Compounds in Low-Pressure UV Photolysis and UV/H2O2 Advanced Oxidation Processes. Water Res. 2011, 45 ( 15), 4531- 4543, 10.1016/j.watres.2011.05.039
Khajouei, G.; Finklea, H. O.; Lin, L. S. UV/Chlorine Advanced Oxidation Processes for Degradation of Contaminants in Water and Wastewater: A Comprehensive Review. J. Environ. Chem. Eng. 2022, 10 ( 3), 107508, 10.1016/j.jece.2022.107508
Li, J.; Zhang, Z.; Xiang, Y.; Jiang, J.; Yin, R. Role of UV-Based Advanced Oxidation Processes on NOM Alteration and DBP Formation in Drinking Water Treatment: A State-of-the-Art Review. Chemosphere 2023, 311, 136870, 10.1016/j.chemosphere.2022.136870
Martijn, B. J.; Kruithof, J. C.; Rosenthal, L. P. M. Design and Implementation of Uv/H2O2 Treatment in a Full Scale Drinking Water Treatment Plant. Proc. Water Environ. Fed. 2007, 2007 ( 1), 134- 153, 10.2175/193864707787932243
Goldstein, S.; Aschengrau, D.; Diamant, Y.; Rabani, J. Photolysis of Aqueous H2O2: Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors. Environ. Sci. Technol. 2007, 41 ( 21), 7486- 7490, 10.1021/es071379t
Wünsch, R.; Mayer, C.; Plattner, J.; Eugster, F.; Wülser, R.; Gebhardt, J.; Hübner, U.; Canonica, S.; Wintgens, T.; von Gunten, U. Micropollutants as Internal Probe Compounds to Assess UV Fluence and Hydroxyl Radical Exposure in UV/H2O2 Treatment. Water Res. 2021, 195, 116940, 10.1016/j.watres.2021.116940
Hofman-Caris, R.; Hofman, J. Limitations of Conventional Drinking Water Technologies in Pollutant Removal Handbook of Environmental Chemistry Gil, A.; Galeano, L.; Vicente, M. Eds. Springer 2019 67 21- 51 10.1007/698_2017_83
Yang, X.; Rosario-Ortiz, F. L.; Lei, Y.; Pan, Y.; Lei, X.; Westerhoff, P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environ. Sci. Technol. 2022, 56 ( 16), 11111- 11131, 10.1021/acs.est.2c01017
Chen, X.; Wang, J.; Wu, H.; Zhu, Z.; Zhou, J.; Guo, H. Trade-off Effect of Dissolved Organic Matter on Degradation and Transformation of Micropollutants: A Review in Water Decontamination. J. Hazard. Mater. 2023, 450, 130996, 10.1016/j.jhazmat.2023.130996
Fatta-Kassinos, D.; Vasquez, M. I.; Kümmerer, K. Transformation Products of Pharmaceuticals in Surface Waters and Wastewater Formed during Photolysis and Advanced Oxidation Processes - Degradation, Elucidation of Byproducts and Assessment of Their Biological Potency. Chemosphere 2011, 85 ( 5), 693- 709, 10.1016/j.chemosphere.2011.06.082
Srivastav, A. L.; Patel, N.; Chaudhary, V. K. Disinfection By-Products in Drinking Water: Occurrence, Toxicity and Abatement. Environ. Pollut. 2020, 267, 115474, 10.1016/j.envpol.2020.115474
Richardson, S. D. Invited Perspective: Existing Rules for Disinfection By-Products Are Good, but They Are Not Enough. Environ. Health Perspect. 2022, 130 ( 8), 081302, 10.1289/EHP11187
Krasner, S. W.; Jia, A.; Lee, C. F. T.; Shirkhani, R.; Allen, J. M.; Richardson, S. D.; Plewa, M. J. Relationships between Regulated DBPs and Emerging DBPs of Health Concern in U.S. Drinking Water. J. Environ. Sci. 2022, 117, 161- 172, 10.1016/j.jes.2022.04.016
Richardson, S. D.; Plewa, M. J. To Regulate or Not to Regulate? What to Do with More Toxic Disinfection by-Products?. J. Environ. Chem. Eng. 2020, 8 ( 4), 103939, 10.1016/j.jece.2020.103939
Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-Products in Drinking Water: A Review and Roadmap for Research. Mutat. Res., Rev. Mutat. Res. 2007, 636 ( 1-3), 178- 242, 10.1016/J.MRREV.2007.09.001
Wang, X. H.; Lin, A. Y. C. Is the Phototransformation of Pharmaceuticals a Natural Purification Process That Decreases Ecological and Human Health Risks?. Environ. Pollut. 2014, 186, 203- 215, 10.1016/j.envpol.2013.12.007
Hollender, J.; Schymanski, E. L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A. M.; Celma, A.; Fildier, A.; Fu, Q.; Gago-Ferrero, P.; Gil-Solsona, R.; Haglund, P.; Hansen, M.; Kaserzon, S.; Kruve, A.; Lamoree, M.; Margoum, C.; Meijer, J.; Merel, S.; Rauert, C.; Rostkowski, P.; Samanipour, S.; Schulze, B.; Schulze, T.; Singh, R. R.; Slobodnik, J.; Steininger-Mairinger, T.; Thomaidis, N. S.; Togola, A.; Vorkamp, K.; Vulliet, E.; Zhu, L.; Krauss, M. NORMAN Guidance on Suspect and Non-Target Screening in Environmental Monitoring. Environ. Sci. Eur. 2023, 35 ( 1), 1- 61, 10.1186/s12302-023-00779-4
Miao, H. F.; Cao, M.; Xu, D. Y.; Ren, H. Y.; Zhao, M. X.; Huang, Z. X.; Ruan, W. Q. Degradation of Phenazone in Aqueous Solution with Ozone: Influencing Factors and Degradation Pathways. Chemosphere 2015, 119, 326- 333, 10.1016/j.chemosphere.2014.06.082
Kar, P.; Shukla, K.; Jain, P.; Sathiyan, G.; Gupta, R. K. Semiconductor Based Photocatalysts for Detoxification of Emerging Pharmaceutical Pollutants from Aquatic Systems: A Critical Review. Nano Mater. Sci. 2021, 3 ( 1), 25- 46, 10.1016/j.nanoms.2020.11.001
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 ( 4), 2097- 2098, 10.1021/es5002105
Gulde, R.; Meier, U.; Schymanski, E. L.; Kohler, H. P. E.; Helbling, D. E.; Derrer, S.; Rentsch, D.; Fenner, K. Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. Environ. Sci. Technol. 2016, 50 ( 6), 2908- 2920, 10.1021/acs.est.5b05186
Helmus, R.; Ter Laak, T. L.; van Wezel, A. P.; de Voogt, P.; Schymanski, E. L. patRoon: Open Source Software Platform for Environmental Mass Spectrometry Based Non-Target Screening. J. Cheminf. 2021, 13 ( 1), 1, 10.1186/s13321-020-00477-w
Helmus, R. GitHub - rickhelmus/patRoon: Workflow solutions for mass-spectrometry based non-target analysis. https://github.com/rickhelmus/patRoon. (accessed 2024-May-30).
Helmus, R.; van de Velde, B.; Brunner, A. M.; Ter Laak, T. L.; van Wezel, A. P.; Schymanski, E. L. patRoon 2.0: Improved Non-Target Analysis Workflows Including Automated Transformation Product Screening. J. Open Source Softw. 2022, 7 ( 71), 4029, 10.21105/joss.04029
Groeneveld, I.; Schoemaker, S. E.; Somsen, G. W.; Ariese, F.; Van Bommel, M. R. Characterization of a Liquid-Core Waveguide Cell for Studying the Chemistry of Light-Induced Degradation. Analyst 2021, 146 ( 10), 3197- 3207, 10.1039/D1AN00272D
Groeneveld, I.; Bagdonaite, I.; Beekwilder, E.; Ariese, F.; Somsen, G. W.; Van Bommel, M. R. Liquid Core Waveguide Cell with in Situ Absorbance Spectroscopy and Coupled to Liquid Chromatography for Studying Light-Induced Degradation. Anal. Chem. 2022, 94 ( 21), 7647- 7654, 10.1021/acs.analchem.2c00886
Den Uijl, M. J.; Van Der Wijst, Y. J. H. L.; Groeneveld, I.; Schoenmakers, P. J.; Pirok, B. W. J.; Van Bommel, M. R. Combining Photodegradation in a Liquid-Core-Waveguide Cell with Multiple-Heart-Cut Two-Dimensional Liquid Chromatography. Anal. Chem. 2022, 94 ( 31), 11055- 11061, 10.1021/acs.analchem.2c01928
Ojanperä, S.; Pelander, A.; Pelzing, M.; Krebs, I.; Vuori, E.; Ojanperä, I. Isotopic Pattern and Accurate Mass Determination in Urine Drug Screening by Liquid Chromatography/Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20 ( 7), 1161- 1167, 10.1002/rcm.2429
R Core Team R: a Language And Environment For Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. https://www.R-project.org/.
Helmus, R.; Ter Laak, T. L.; van Wezel, A. P.; de Voogt, P.; Schymanski, E. L. patRoon Version 2.3.3; Zenodo, 2024. DOI: 10.5281/zenodo.12800160.
Helmus, R.; Bagdonaite, I.; de Voogt, P.; van Bommel, M.; Schymanski, E. L.; van Wezel, A.; Ter Laak, T. Code Accompanying the Manuscript “Comprehensive Mass Spectrometry to Systematically Elucidate Transformation Processes of Organic Micropollutants: a Case Study on photodegradation of Four Pharmaceuticals”; Zenodo, 2025. DOI: 10.5281/zenodo.14671663.
Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.; Shofstahl, J.; Tang, W. H.; Römpp, A.; Neumann, S.; Pizarro, A. D. MzML─a Community Standard for Mass Spectrometry Data. Mol. Cell. Proteomics, 2011, 10, 1, 10.1074/mcp.R110.000133.
Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; Nilse, L.; Pfeuffer, J.; Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; Wojnar, D.; Wolski, W. E.; Schilling, O.; Choudhary, J. S.; Malmström, L.; Aebersold, R.; Reinert, K.; Kohlbacher, O. OpenMS: A Flexible Open-Source Software Platform for Mass Spectrometry Data Analysis. Nat. Methods 2016, 13 ( 9), 741- 748, 10.1038/nmeth.3959
Fischer, B.; Neumann, S.; Gatto, L.; Kou, Q.; Rainer, J. MzR: Parser for NetCDF, MzXML, MzData and MzML and MzIdentML Files (Mass Spectrometry Data); Bioconductor, 2020. DOI: 10.18129/B9.bioc.mzR.
Meringer, M.; Reinker, S.; Zhang, J.; Muller, A. MS/MS Data Improves Automated Determination of Molecular Formulas by Mass Spectrometry. MATCH Commun. Math. Comput. Chem., 2011, 65, 259, 290.
Ruttkies, C.; Schymanski, E. L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag Relaunched: Incorporating Strategies beyond in Silico Fragmentation. J. Cheminf. 2016, 8 ( 1), 3, 10.1186/s13321-016-0115-9
PubChem Home Page. https://pubchem.ncbi.nlm.nih.gov/. (accessed 2024-March-25).
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem 2023 Update. Nucleic Acids Res. 2023, 51 ( D1), D1373- D1380, 10.1093/nar/gkac956
Sepman, H.; Malm, L.; Peets, P.; MacLeod, M.; Martin, J.; Breitholtz, M.; Kruve, A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS2 Data. Anal. Chem. 2023, 95 ( 33), 12329- 12338, 10.1021/acs.analchem.3c01744
Yuan, F.; Hu, C.; Hu, X.; Qu, J.; Yang, M. Degradation of Selected Pharmaceuticals in Aqueous Solution with UV and UV/H2O2. Water Res. 2009, 43 ( 6), 1766- 1774, 10.1016/j.watres.2009.01.008
Alharbi, S. K.; Kang, J.; Nghiem, L. D.; van de Merwe, J. P.; Leusch, F. D. L.; Price, W. E. Photolysis and UV/H2O2 of Diclofenac, Sulfamethoxazole, Carbamazepine, and Trimethoprim: Identification of Their Major Degradation Products by ESI-LC-MS and Assessment of the Toxicity of Reaction Mixtures. Process Saf. Environ. Prot. 2017, 112, 222- 234, 10.1016/j.psep.2017.07.015
Wols, B. A.; Hofman-Caris, C. H. M.; Harmsen, D. J. H.; Beerendonk, E. F. Degradation of 40 Selected Pharmaceuticals by UV/H2O2. Water Res. 2013, 47 ( 15), 5876- 5888, 10.1016/j.watres.2013.07.008
Wang, L.; Xu, H.; Cooper, W. J.; Song, W. Photochemical Fate of Beta-Blockers in NOM Enriched Waters. Sci. Total Environ. 2012, 426, 289- 295, 10.1016/j.scitotenv.2012.03.031
Mundhenke, T. F.; Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Photolysis Products of Fluorinated Pharmaceuticals: A Combined Fluorine Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approach. Environ. Toxicol. Chem 2023, 00, 1, 10.1002/ETC.5773
Yun, S. H.; Jho, E. H.; Jeong, S.; Choi, S.; Kal, Y.; Cha, S. Photodegradation of Tetracycline and Sulfathiazole Individually and in Mixtures. Food Chem. Toxicol. 2018, 116, 108- 113, 10.1016/j.fct.2018.03.037
Wang, L.; Li, X.; Chen, J.; Lu, J.; Chovelon, J. M.; Zhang, C.; Ji, Y. Ketoprofen Products Induced Photosensitization of Sulfonamide Antibiotics: The Cocktail Effects of Pharmaceutical Mixtures on Their Photodegradation. Environ. Pollut. 2024, 345, 123458, 10.1016/j.envpol.2024.123458
Zhu, G.; Sun, Q.; Wang, C.; Yang, Z.; Xue, Q. Removal of Sulfamethoxazole, Sulfathiazole and Sulfamethazine in Their Mixed Solution by UV/H2O2 Process. Int. J. Environ. Res. Public Health 2019, 16 ( 10), 1797, 10.3390/ijerph16101797
Niu, J.; Zhang, L.; Li, Y.; Zhao, J.; Lv, S.; Xiao, K. Effects of Environmental Factors on Sulfamethoxazole Photodegradation under Simulated Sunlight Irradiation: Kinetics and Mechanism. J. Environ. Sci. 2013, 25 ( 6), 1098- 1106, 10.1016/S1001-0742(12)60167-3
Borowska, E.; Felis, E.; Miksch, K. Degradation of Sulfamethoxazole Using UV and UV/H2O2 Processes. J. Adv. Oxid. Technol. 2015, 18 ( 1), 69- 77, 10.1515/jaots-2015-0109
Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D. S. BioTransformer: A Comprehensive Computational Tool for Small Molecule Metabolism Prediction and Metabolite Identification. J. Cheminf. 2019, 11 ( 1), 2, 10.1186/s13321-018-0324-5
Wolfe, K.; Pope, N.; Parmar, R.; Galvin, M.; Stevens, C.; Weber, E.; Flaishans, J.; Purucker, T. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling. In Proceedings of the 8th International Congress on Environmental Modelling and Software; Toulouse, France; Brigham Young University, 2016.
Krier, J.; Singh, R. R.; Kondić, T.; Lai, A.; Diderich, P.; Zhang, J.; Thiessen, P. A.; Bolton, E. E.; Schymanski, E. L. Discovering Pesticides and Their TPs in Luxembourg Waters Using Open Cheminformatics Approaches. Environ. Int. 2022, 158, 106885, 10.1016/j.envint.2021.106885
Schymanski, E. L.; Kondić, T.; Neumann, S.; Thiessen, P. A.; Zhang, J.; Bolton, E. E. Empowering Large Chemical Knowledge Bases for Exposomics: PubChemLite Meets MetFrag. J. Cheminf. 2021, 13 ( 1), 1- 15, 10.1186/s13321-021-00489-0
Schymanski, E.; Bolton, E.; Cheng, T.; Thiessen, P.; Zhang, J. (. ).; Helmus, R.; Blanke, G. Transformations in PubChem - Full Dataset; Zenodo, 2023. DOI: 10.5281/zenodo.10377222.
Guha, R. Chemical Informatics Functionality in R. J. Stat. Softw. 2007, 18 ( 5), 1- 16, 10.18637/jss.v018.i05
Enke, C. G. A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes. Anal. Chem. 1997, 69 ( 23), 4885- 4893, 10.1021/ac970095w
Oss, M.; Kruve, A.; Herodes, K.; Leito, I. Electrospray Ionization Efficiency Scale of Organic Compounds. Anal. Chem. 2010, 82 ( 7), 2865- 2872, 10.1021/ac902856t
Sjerps, R. M. A.; Vughs, D.; van Leerdam, J. A.; Ter Laak, T. L.; van Wezel, A. P. Data-Driven Prioritization of Chemicals for Various Water Types Using Suspect Screening LC-HRMS. Water Res. 2016, 93, 254- 264, 10.1016/j.watres.2016.02.034
Kruve, A.; Kiefer, K.; Hollender, J. Benchmarking of the Quantification Approaches for the Non-Targeted Screening of Micropollutants and Their Transformation Products in Groundwater. Anal. Bioanal. Chem. 2021, 413 ( 6), 1549- 1559, 10.1007/s00216-020-03109-2
Santos, A. J. M.; Miranda, M. S.; Esteves da Silva, J. C. G. The Degradation Products of UV Filters in Aqueous and Chlorinated Aqueous Solutions. Water Res. 2012, 46 ( 10), 3167- 3176, 10.1016/j.watres.2012.03.057
Li, Y.; Qiao, X.; Zhang, Y.-n.; Zhou, C.; Xie, H.; Chen, J. Effects of Halide Ions on Photodegradation of Sulfonamide Antibiotics: Formation of Halogenated Intermediates. Water Res. 2016, 102, 405- 412, 10.1016/J.WATRES.2016.06.054
Zhang, Y.-n.; Wang, J.; Chen, J.; Zhou, C.; Xie, Q. Phototransformation of 2,3-Dibromopropyl-2,4,6-Tribromophenyl Ether (DPTE) in Natural Waters: Important Roles of Dissolved Organic Matter and Chloride Ion. Environ. Sci. Technol. 2018, 52 ( 18), 10490- 10499, 10.1021/acs.est.8b03258
Lee, Y. M.; Lee, G.; Kim, M. K.; Zoh, K. D. Kinetics and Degradation Mechanism of Benzophenone-3 in Chlorination and UV/Chlorination Reactions. Chem. Eng. J. 2020, 393, 124780, 10.1016/j.cej.2020.124780
Schulze, B.; Heffernan, A. L.; Samanipour, S.; Gomez Ramos, M. J.; Veal, C.; Thomas, K. V.; Kaserzon, S. L. Is Nontarget Analysis Ready for Regulatory Application? Influence of Peak-Picking Algorithms on Data Analysis. Anal. Chem. 2023, 95 ( 50), 18361- 18369, 10.1021/acs.analchem.3c03003
Lennon, S.; Chaker, J.; Price, E. J.; Hollender, J.; Huber, C.; Schulze, T.; Ahrens, L.; Béen, F.; Creusot, N.; Debrauwer, L.; Dervilly, G.; Gabriel, C.; Guérin, T.; Habchi, B.; Jamin, E. L.; Klánová, J.; Kosjek, T.; Le Bizec, B.; Meijer, J.; Mol, H.; Nijssen, R.; Oberacher, H.; Papaioannou, N.; Parinet, J.; Sarigiannis, D.; Stravs, M. A.; Tkalec, Ž.; Schymanski, E. L.; Lamoree, M.; Antignac, J. P.; David, A. Harmonized Quality Assurance/Quality Control Provisions to Assess Completeness and Robustness of MS1 Data Preprocessing for LC-HRMS-Based Suspect Screening and Non-Targeted Analysis. TrAC, Trends Anal. Chem. 2024, 174, 117674, 10.1016/j.trac.2024.117674
Sadia, M.; Boudguiyer, Y.; Helmus, R.; Seijo, M.; Praetorius, A.; Samanipour, S. A Stochastic Approach for Parameter Optimization of Feature Detection Algorithms for Non-Target Screening in Mass Spectrometry. Anal. Bioanal. Chem. 2024, 1- 15, 10.1007/s00216-024-05425-3
Milman, B. L.; Zhurkovich, I. K. The Chemical Space for Non-Target Analysis. TrAC, Trends Anal. Chem. 2017, 97, 179- 187, 10.1016/j.trac.2017.09.013
van Herwerden, D.; Nikolopoulos, A.; Barron, L. P.; O’Brien, J. W.; Pirok, B. W. J.; Thomas, K. V.; Samanipour, S. Exploring the Chemical Subspace of RPLC: A Data Driven Approach. Anal. Chim. Acta 2024, 1317, 342869, 10.1016/j.aca.2024.342869
Aurich, D.; Diderich, P.; Helmus, R.; Schymanski, E. L. Non-Target Screening of Surface Water Samples to Identify Exposome-Related Pollutants: A Case Study from Luxembourg. Environ. Sci. Eur. 2023, 35 ( 1), 1- 20, 10.1186/s12302-023-00805-5
Beijer, A. S.; Das, S.; Helmus, R.; Scheer, P.; Jansen, B.; Slootweg, J. C. Urine as a Biobased Fertilizer: The Netherlands as Case Study. Sustainability Circ. Now 2024, 01 ( CP), a23346930, 10.1055/a-2334-6930
Samanipour, S.; O’Brien, J. W.; Reid, M. J.; Thomas, K. V.; Praetorius, A. From Molecular Descriptors to Intrinsic Fish Toxicity of Chemicals: An Alternative Approach to Chemical Prioritization. Environ. Sci. Technol. 2023, 57 ( 46), 17950- 17958, 10.1021/acs.est.2c07353
Sepman, H.; Malm, L.; Peets, P.; Kruve, A. Scientometric Review: Concentration and Toxicity Assessment in Environmental Non-Targeted LC/HRMS Analysis. Trends Environ. Anal. Chem. 2023, 40, e00217 10.1016/j.teac.2023.e00217
Kohler, I.; Verhoeven, M.; Haselberg, R.; Gargano, A. F. G. Hydrophilic Interaction Chromatography - Mass Spectrometry for Metabolomics and Proteomics: State-of-the-Art and Current Trends. Microchem. J. 2022, 175, 106986, 10.1016/j.microc.2021.106986
Brodbelt, J. S.; Morrison, L. J.; Santos, I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120 ( 7), 3328- 3380, 10.1021/acs.chemrev.9b00440
Baba, T.; Ryumin, P.; Duchoslav, E.; Chen, K.; Chelur, A.; Loyd, B.; Chernushevich, I. Dissociation of Biomolecules by an Intense Low-Energy Electron Beam in a High Sensitivity Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2021, 32 ( 8), 1964- 1975, 10.1021/jasms.0c00425
Kondyli, A.; Schrader, W. Evaluation of the Combination of Different Atmospheric Pressure Ionization Sources for the Analysis of Extremely Complex Mixtures. Rapid Commun. Mass Spectrom. 2020, 34 ( 8), e8676 10.1002/rcm.8676
Celma, A.; Alygizakis, N.; Belova, L.; Bijlsma, L.; Fabregat-Safont, D.; Menger, F.; Gil-Solsona, R. Ion Mobility Separation Coupled to High-Resolution Mass Spectrometry in Environmental Analysis - Current State and Future Potential. Trends Environ. Anal. Chem. 2024, 43, e00239 10.1016/j.teac.2024.e00239
EC Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), 2020. https://eur-lex.europa.eu/eli/reg/2006/1907/2024-06-06. (accessed 2024-August-23).
Wagner, T. V.; Helmus, R.; Becker, E.; Rijnaarts, H. H. M.; de Voogt, P.; Langenhoff, A. A. M.; Parsons, J. R. Impact of Transformation, Photodegradation and Interaction with Glutaraldehyde on the Acute Toxicity of the Biocide DBNPA in Cooling Tower Water. Environ. Sci. (Camb.) 2020, 6 ( 4), 1058- 1068, 10.1039/C9EW01018A
den Uijl, M. J.; Bagdonaite, I.; Schoenmakers, P. J.; Pirok, B. W. J.; van Bommel, M. R. Incorporating a Liquid-Core-Waveguide Cell in Recycling Liquid Chromatography for Detailed Studies of Photodegradation Reactions. J. Chromatogr. A 2023, 1688, 463723, 10.1016/j.chroma.2022.463723
Du, X.; Dastmalchi, F.; Ye, H.; Garrett, T. J.; Diller, M. A.; Liu, M.; Hogan, W. R.; Brochhausen, M.; Lemas, D. J. Evaluating LC-HRMS Metabolomics Data Processing Software Using FAIR Principles for Research Software. Metabolomics 2023, 19 ( 2), 11, 10.1007/s11306-023-01974-3
MassBank Consortium MassBank | MassBank Europe Mass Spectral DataBase. https://massbank.eu/MassBank/. (accessed 2024-July-25).
Peter, K. T.; Phillips, A. L.; Knolhoff, A. M.; Gardinali, P. R.; Manzano, C. A.; Miller, K. E.; Pristner, M.; Sabourin, L.; Sumarah, M. W.; Warth, B.; Sobus, J. R. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal. Chem. 2021, 93 ( 41), 13870- 13879, 10.1021/acs.analchem.1c02621