[en] [en] INTRODUCTION: The unique red blood cell (RBC) properties that characterize the rare neuroacanthocytosis syndromes (NAS) have prompted the exploration of osmotic gradient ektacytometry (Osmoscan) as a diagnostic tool for these disorders. In this exploratory study, we assessed if Osmoscans can discriminate NAS from other neurodegenerative diseases.
METHODS: A comprehensive assessment was conducted using Osmoscan on a diverse group of patients, including healthy controls (n = 9), neuroacanthocytosis syndrome patients (n = 6, 2 VPS13A and 4 XK disease), Parkinson's disease patients (n = 6), Huntington's disease patients (n = 5), and amyotrophic lateral sclerosis patients (n = 4). Concurrently, we collected and analyzed RBC indices and patients' characteristics.
RESULTS: Statistically significant changes were observed in NAS patients compared to healthy controls and other conditions, specifically in osmolality at minimal elongation index (Omin), maximal elongation index (EImax), the osmolality at half maximal elongation index in the hyperosmotic part of the curve (Ohyper), and the width of the curve close to the osmolality at maximal elongation index (Omax-width).
DISCUSSION: This study represents an initial exploration of RBC properties from NAS patients using osmotic gradient ektacytometry. While specific parameters exhibited differences, only Ohyper and Omax-width yielded 100% specificity for other neurodegenerative diseases. Moreover, unique correlations between Osmoscan parameters and RBC indices in NAS versus controls were identified, such as osmolality at maximal elongation index (Omax) vs. mean cellular hemoglobin content (MCH) and minimal elongation index (EImin) vs. red blood cell distribution width (RDW). Given the limited sample size, further studies are essential to establish diagnostic guidelines based on these findings.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Hernández, Carolina A; Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
Peikert, Kevin; Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany ; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany ; United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
Qiao, Min; Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany ; Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
de Wilde, Jonathan R A; Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
Bos, Jennifer; Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
Leibowitz, Maya; Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
Galea, Ian; Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
WAGNER, Christian ; University of Luxembourg ; Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
Rab, Minke A E; Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands ; Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
Walker, Ruth H; Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States ; Department of Neurology, Mount Sinai School of Medicine, New York City, NY, United States
Hermann, Andreas; Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany ; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany ; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
van Beers, Eduard J; Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
van Wijk, Richard; Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
Kaestner, Lars; Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany ; Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by the European Framework Horizon 2020 under grant agreement number 860436 (EVIDENCE) and European Framework Horizon Europe under grant agreement number 101120168 (INNOVATION). KP is supported by the Rostock Academy of Science (RAS) and Andreas Hermann by the \"Hermann und Lilly Schilling-Stiftung f\u00FCr medizinische Forschung im Stifterverband.\u201D
Adjobo-Hermans M. J. W. Cluitmans J. C. A. Bosman G. J. C. G. M. (2015). Neuroacanthocytosis: observations, theories and perspectives on the origin and significance of Acanthocytes. Tremor Other Hyperkinet. Mov. 5:328. doi: 10.7916/d8vh5n2m, PMID: 26317043
Barshtein G. Goldschmidt N. Pries A. R. Zelig O. Arbell D. Yedgar S. (2017). Deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: A study with β-thalassemia major patients. Am. J. Hematol. 92, E559–E560. doi: 10.1002/ajh.24821
Barshtein G. Pries A. R. Goldschmidt N. Zukerman A. Orbach A. Zelig O. et al. (2016). Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient’s blood flow. Microcirculation 23, 479–486. doi: 10.1111/micc.12296, PMID: 27406436
Bayreuther C. Borg M. Ferrero-Vacher C. Chaussenot A. Lebrun C. (2010). Choréo-acanthocytose sans acanthocytes. Rev. Neurol. 166, 100–103. doi: 10.1016/j.neurol.2009.03.005, PMID: 19497603
Bianchi P. Zaninoni A. Fermo E. Vercellati C. Paola M. A. Zanella A. et al. (2015). Diagnostic power of laser assisted optical rotational cell analyzer (LoRRca MaxSis) evaluated in 118 patients affected by hereditary hemolytic anemias. Blood 126:942. doi: 10.1182/blood.v126.23.942.942
Bosman G. J. C. G. M. (2018). Disturbed red blood cell structure and function: an exploration of the role of red blood cells in neurodegeneration. Front. Med. 5:146. doi: 10.3389/fmed.2018.00198, PMID: 30062097
Caimi G. Presti R. L. (2004). Techniques to evaluate erythrocyte deformability in diabetes mellitus. Acta Diabetol. 41, 99–103. doi: 10.1007/s00592-004-0151-1
Card R. T. Mohandas N. Mollison P. L. (1983). Relationship of post-transfusion viability to deformability of stored red cells. Br. J. Haematol. 53, 237–240. doi: 10.1111/j.1365-2141.1983.tb02016.x, PMID: 6821653
Cluitmans J. C. A. Tomelleri C. Yapici Z. Dinkla S. Bovee-Geurts P. Chokkalingam V. et al. (2015). Abnormal red cell structure and function in neuroacanthocytosis. PLoS One 10:e0125580. doi: 10.1371/journal.pone.0125580, PMID: 25933379
Connes P. Renoux C. Romana M. Abkarian M. Joly P. Martin C. et al. (2018). Blood rheological abnormalities in sickle cell anemia. Clin. Hemorheol. Microcirc. 68, 165–172. doi: 10.3233/ch-189005, PMID: 29614630
Costa L. D. Suner L. Galimand J. Bonnel A. Pascreau T. Couque N. et al. (2016). Diagnostic tool for red blood cell membrane disorders: assessment of a new generation ektacytometer. Blood cells Mol. Dis. 56, 9–22. doi: 10.1016/j.bcmd.2015.09.001, PMID: 26603718
Danek A. Rubio J. P. Rampoldi L. Ho M. Dobson-Stone C. Tison F. et al. (2001). McLeod neuroacanthocytosis: genotype and phenotype. Ann. Neurol. 50, 755–764. doi: 10.1002/ana.10035, PMID: 11761473
Darras A. Dasanna A. K. John T. Gompper G. Kaestner L. Fedosov D. A. et al. (2022). Erythrocyte sedimentation: collapse of a high-volume-fraction soft-particle gel. Phys. Rev. Lett. 128:088101. doi: 10.1103/physrevlett.128.088101, PMID: 35275655
Darras A. Peikert K. Rabe A. Yaya F. Simionato G. John T. et al. (2021). Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: experimental evidence and physical justification. Cells 10:788. doi: 10.3390/cells10040788, PMID: 33918219
Dasanna A. K. Darras A. John T. Gompper G. Kaestner L. Wagner C. et al. (2022). Erythrocyte sedimentation: effect of aggregation energy on gel structure during collapse. Phys. Rev. E 105:024610. doi: 10.1103/physreve.105.024610, PMID: 35291110
Flormann D. Qiao M. Murciano N. Iacono G. Darras A. Hof S. et al. (2022). Transient receptor potential channel vanilloid type 2 in red cells of cannabis consumer. Am. J. Hematol. 97, E180–E183. doi: 10.1002/ajh.26509, PMID: 35179248
Franceschi L. D. Bosman G. J. C. G. M. Mohandas N. (2014). Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes. Curr. Opin. Hematol. 21, 201–209. doi: 10.1097/moh.0000000000000035, PMID: 24626044
Guillén-Samander A. Wu Y. Pineda S. S. García F. J. Eisen J. N. Leonzino M. et al. (2022). A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc. Natl. Acad. Sci. 119:e2205425119. doi: 10.1073/pnas.2205425119, PMID: 35994651
Gutierrez M. Shamoun M. Seu K. G. Tanski T. Kalfa T. A. Eniola-Adefeso O. (2021). Characterizing bulk rigidity of rigid red blood cell populations in sickle-cell disease patients. Sci. Rep. 11:7909. doi: 10.1038/s41598-021-86582-8, PMID: 33846383
Hanss M. Attali J. R. Helou C. Lemarie J. C. (1983). Erythrocytes deformability and diabetes. Clin. Hemorheol. Microcirc. 3, 383–391. doi: 10.3233/ch-1983-3404
John T. Kaestner L. Wagner C. Darras A. (2023). Early stage of erythrocyte sedimentation rate test: fracture of a high-volume-fraction gel. PNAS Nexus 3:pgad416. doi: 10.1093/pnasnexus/pgad416, PMID: 38145245
Kaestner L. (2023). Proceedings of the eleventh international meeting on neuroacanthocytosis syndromes. Tremor Other Hyperkinet. Mov. 13:41. doi: 10.5334/tohm.826
Kaestner L. Bianchi P. (2020). Trends in the development of diagnostic tools for red blood cell-related diseases and anemias. Front. Physiol. 11:387. doi: 10.3389/fphys.2020.00387, PMID: 32528298
Kubánková M. Hohberger B. Hoffmanns J. Fürst J. Herrmann M. Guck J. et al. (2021). Physical phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847. doi: 10.1016/j.bpj.2021.05.025, PMID: 34087216
Lazari D. Leal J. K. F. Brock R. Bosman G. (2020). The relationship between aggregation and deformability of red blood cells in health and disease. Front. Physiol. 11:288. doi: 10.3389/fphys.2020.00288, PMID: 32351399
Lazarova E. Gulbis B. Van Oirschot B. Van Wijk R. (2017). Next-generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: interlaboratory method validation and experience. Clin. Chem. Lab. Med. 55, 394–402. doi: 10.1515/cclm-2016-0290, PMID: 27559691
Lopes M. G. M. Recktenwald S. M. Simionato G. Eichler H. Wagner C. Quint S. et al. (2023). Big data in transfusion medicine and artificial intelligence analysis for red blood cell quality control. Transfus. Med. Hemother. 50, 163–173. doi: 10.1159/000530458, PMID: 37408647
Lupo F. Tibaldi E. Matte A. Sharma A. K. Brunati A. M. Alper S. L. et al. (2016). A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood 128, 2976–2987. doi: 10.1182/blood-2016-07-727321, PMID: 27742708
Malandrini A. Fabrizi G. M. Palmeri S. Ciacci G. Salvadori C. Berti G. et al. (1993). Choreo-acanthocytosis like phenotype without acanthocytes: clinicopathological case report. Acta Neuropathol. 86, 651–658. doi: 10.1007/bf00294306, PMID: 8310821
McMillan D. E. Utterback N. G. Puma J. L. (1978). Reduced erythrocyte deformability in diabetes. Diabetes 27, 895–901. doi: 10.2337/diab.27.9.895
Mozar A. Connes P. Collins B. Hardy-Dessources M.-D. Romana M. Lemonne N. et al. (2016). Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc. 64, 47–53. doi: 10.3233/ch-162042, PMID: 26890236
Park J.-S. Hu Y. Hollingsworth N. M. Miltenberger-Miltenyi G. Neiman A. M. (2022). Interaction between VPS13A and the XK scramblase is important for VPS13A function in humans. J. Cell Sci. 135:jcs260227. doi: 10.1242/jcs.260227, PMID: 35950506
Park J.-S. Neiman A. M. (2020). XK is a partner for VPS13A: a molecular link between chorea-Acanthocytosis and McLeod syndrome. Mol. Biol. Cell 31, 2425–2436. doi: 10.1091/mbc.e19-08-0439-t, PMID: 32845802
Parrow N. L. Tu H. Nichols J. Violet P.-C. Pittman C. A. Fitzhugh C. et al. (2017). Measurements of red cell deformability and hydration reflect HbF and HbA2 in blood from patients with sickle cell anemia. Blood Cells Mol. Dis. 65, 41–50. doi: 10.1016/j.bcmd.2017.04.005, PMID: 28472705
Peikert K. Hermann A. Danek A. (2022a). XK-associated McLeod syndrome: nonhematological manifestations and relation to VPS13A disease. Transfus. Med. Hemother. 49, 4–12. doi: 10.1159/000521417, PMID: 35221863
Peikert K. Storch A. Hermann A. Landwehrmeyer G. B. Walker R. H. Simionato G. et al. (2022b). Commentary: acanthocytes identified in Huntington’s disease. Front. Neurosci. 16:1049676. doi: 10.3389/fnins.2022.1049676, PMID: 36408380
Rabe A. Kihm A. Darras A. Peikert K. Simionato G. Dasanna A. K. et al. (2021). The erythrocyte sedimentation rate and its relation to cell shape and rigidity of red blood cells from chorea-acanthocytosis patients in an off-label treatment with Dasatinib. Biomol. Ther. 11:727. doi: 10.3390/biom11050727, PMID: 34066168
Rampoldi L. Danek A. Monaco A. P. (2002). Clinical features and molecular bases of neuroacanthocytosis. J. Mol. Med. 80, 475–491. doi: 10.1007/s00109-002-0349-z, PMID: 12185448
Recktenwald S. M. Lopes M. G. M. Peter S. Hof S. Simionato G. Peikert K. et al. (2022a). Erysense, a lab-on-a-Chip-based point-of-care device to evaluate red blood cell flow properties with multiple clinical applications. Front. Physiol. 13:884690. doi: 10.3389/fphys.2022.884690, PMID: 35574449
Recktenwald S. M. Simionato G. Lopes M. G. Gamboni F. Dzieciatkowska M. Meybohm P. et al. (2022b). Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19. eLife 11:e81316. doi: 10.7554/elife.81316, PMID: 36537079
Reichel F. Kräter M. Peikert K. Glaß H. Rosendahl P. Herbig M. et al. (2022). Changes in blood cell deformability in chorea-Acanthocytosis and effects of treatment with Dasatinib or Lithium. Front. Physiol. 13:852946. doi: 10.3389/fphys.2022.852946
Ryoden Y. Segawa K. Nagata S. (2022). Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proc. Natl. Acad. Sci. 119:e2119286119. doi: 10.1073/pnas.2119286119, PMID: 35140185
Siegl C. Hamminger P. Jank H. Ahting U. Bader B. Danek A. et al. (2013). Alterations of red cell membrane properties in nneuroacanthocytosis. PLoS One 8:e76715. doi: 10.1371/journal.pone.0076715, PMID: 24098554
Simionato G. Hinkelmann K. Chachanidze R. Bianchi P. Fermo E., Wijk, R. van van Wijk R. Leonetti M. Wagner C. Kaestner L. Quint S. (2021). Red blood cell phenotyping from 3D confocal images using artificial neural networks. PLoS Comput. Biol. 17,:e1008934. doi: 10.1371/journal.pcbi.1008934, PMID: 33983926
Sorrentino G. Renzo A. D. Miniello S. Nori O. Bonavita V. (1999). Late appearance of acanthocytes during the course of chorea-acanthocytosis. J. Neurol. Sci. 163, 175–178. doi: 10.1016/s0022-510x(99)00005-2, PMID: 10371080
Storch A. Kornhass M. Schwarz J. (2005). Testing for acanthocytosis. J. Neurol. 252, 84–90. doi: 10.1007/s00415-005-0616-3
Ueno S. Maruki Y. Nakamura M. Tomemori Y. Kamae K. Tanabe H. et al. (2001). The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat. Genet. 28, 121–122. doi: 10.1038/88825, PMID: 11381254
Walker R. H. Danek A. (2021). “Neuroacanthocytosis” – overdue for a taxonomic update. Tremor Other Hyperkinet. Mov. 11:1. doi: 10.5334/tohm.583, PMID: 33510935
Walker R. H. Peikert K. Jung H. H. Hermann A. Danek A. (2023). Neuroacanthocytosis syndromes: the clinical perspective. Contact 6:25152564231210340. doi: 10.1177/25152564231210339, PMID: 38090146
Wilde J. R. A. D. Boesveld M. E. Vuren A. J. Van Solinge W. W. V n, Beers E. J. V. Bartels M. et al. (2023). Novel biomarkers for assessing clinical severity in hereditary spherocytosis - application of routine and advanced diagnostic tests. Blood 142,:2453. doi: 10.1182/blood-2023-189034
Williamson J. R. Gardner R. A. Boylan C. W. Carroll G. L. Chang K. Marvel J. S. et al. (1985). Microrheologic investigation of erythrocyte deformability in diabetes mellitus. Blood 65, 283–288. doi: 10.1182/blood.v65.2.283.283
Zaninoni A. Fermo E. Vercellati C. Consonni D. Marcello A. P. Zanella A. et al. (2018). Use of laser assisted optical rotational cell analyzer (LoRRca MaxSis) in the diagnosis of RBC membrane disorders, enzyme defects, and congenital Dyserythropoietic anemias: a monocentric study on 202 patients. Front. Physiol. 9:451. doi: 10.3389/fphys.2018.00451, PMID: 29755372