Blood flow; Blood oxygen; Cell-free; Channel widths; Flow efficiency; Flow properties; Ischaemia; Morphological properties; Red blood cell; Size and shape; Computational Mechanics; Modeling and Simulation; Fluid Flow and Transfer Processes
Abstract :
[en] The morphological properties of red blood cells, such as size and shape, play a crucial role in determining their flow properties. A typical abnormal shape can be found in several blood disorders, such as spherocytosis, ellipsocytosis, etc., where the cells have a spherelike or ellipselike appearance, instead of being biconcave. These shape anomalies can affect the ability of RBCs to deform and squeeze through narrow capillaries, leading to reduced blood flow and oxygen supply to tissues. This can cause tissue ischemia, which can lead to organ damage and dysfunction. We conduct numerical simulations in order to study the flow properties (such as flow rate, cell-free-layer, and RBCs hydrodynamic diffusion) by varying the shapes of the cells, from a biconcave one (healthy RBCs) to a spherical one, representing RBCs suffering spherocytosis disease. Our study highlights nontrivial effects, such as nonmonotonic behaviors of the flow rate as a function of asphericity, depending on the channel width. For example, for some channel width the usual biconcave shape is revealed to be optimal with respect to flow rate, whereas for other widths more inflated shapes are more efficient. This offers an interesting basis for the understanding of the mechanisms underlying blood flow deficiencies associated with shape anomalies, and may help evaluating the potential therapeutic strategies that might be used to alleviate the symptoms. As RBCs also serve as a classical model system for very deformable objects, our study reveals also some fundamental aspects of the flow of soft suspensions.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Bendaoud, Mohammed ; Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrucken, Germany ; University of Grenoble Alpes, Cnrs, LIPhy, Grenoble, France ; LaMCScI, URL-CNRST, Faculty of Sciences, Mohammed v University, Rabat, Morocco
Abbasi, Mehdi; University of Grenoble Alpes, Cnrs, LIPhy, Grenoble, France ; Aix Marseille Université, Cnrs, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, Marseille, France
Darras, Alexis ; Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrucken, Germany
Ez-Zahraouy, Hamid; LaMCScI, URL-CNRST, Faculty of Sciences, Mohammed v University, Rabat, Morocco
WAGNER, Christian ; University of Luxembourg ; Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrucken, Germany
Misbah, Chaouqi ; University of Grenoble Alpes, Cnrs, LIPhy, Grenoble, France
External co-authors :
yes
Language :
English
Title :
Blood flow efficiency in response to red blood cell sphericity
Centre national d'études spatiales Deutsche Forschungsgemeinschaft
Funding text :
M.B., M.A., and C.M. thank CNES (Centre National d'Etudes Spatiales) for financial support and for access to micrograbity data. C.W. and M.B. acknowledge funding from the DFG Project No. WA1336/12-2. All the authors thank the French-German university programme \u201CLiving Fluids\u201D (Grant No. CFDA-Q1-14) for financial support.
G. Mchedlishvili and N. Maeda, Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels, Jpn. J. Physiol. 51, 19 (2001) 0021-521X 10.2170/jjphysiol.51.19.
S. Chien, Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol. 49, 177 (1987) 0066-4278 10.1146/annurev.ph.49.030187.001141.
A. Berzuini, C. Bianco, A. C. Migliorini, M. Maggioni, L. Valenti, and D. Prati, Red blood cell morphology in patients with covid-19-related anaemia, Blood Transfus. 19, 34 (2021) 10.2450/2020.0242-20.
D. Gérard, S. Ben Brahim, J. F. Lesesve, and J. Perrin, Are mushroom-shaped erythrocytes an indicator of covid-19 Br. J. Haematol. 192, 230 (2021) 0007-1048 10.1111/bjh.17127.
A. Iolascon, R. Avvisati, and C. Piscopo, Hereditary spherocytosis, Transfus. Clin. Biol. 17, 138 (2010) 1246-7820 10.1016/j.tracli.2010.05.006
"Role of blood group antigens and associated molecules in red cell biology: from molecular approach to clinical applications" organized by Institut National de la Transfusion Sanguine, September 15th to 17th 2010.
L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders, Blood Reviews 27, 167 (2013) 0268960X 10.1016/j.blre.2013.04.003.
E. Schapkaitz and M. H. Mezgebe, The clinical significance of schistocytes: a prospective evaluation of the international council for standardization in hematology schistocyte guidelines, Turk. J. Hematol. 34, 59 (2017) 1300-7777 10.4274/tjh.2016.0359.
P. G. Gallagher, 164-hemolytic anemias: Red cell membrane and metabolic defects, in Goldman's Cecil Medicine (Twenty Fourth Edition), edited by L. Goldman and A. I. Schafer (W.B. Saunders, Philadelphia, 2012), pp. 1052-1060
A. L. Montoya-Navarrete, A. L. Guerrero-Barrera, T. Quezada-Tristán, A. G. Valdivia-Flores, and M. J. Cano-Rábano, Red blood cells morphology and morphometry in adult, senior, and geriatricians dogs by optical and scanning electron microscopy, Front. Vet. Sci. 9, 998438 (2022) 2297-1769 10.3389/fvets.2022.998438.
D. Flormann, M. Qiao, N. Murciano, I. Giulia, A. Darras, S. Hof, S. M. Recktenwald, M. G. Rotordam, N. Becker, J. Geisel, Transient receptor potential channel vanilloid type 2 in red cells of cannabis consumer, American J. Hematol. 97, E180 (2022) 0361-8609 10.1002/ajh.26509.
G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluidics 8, 051501 (2014) 1932-1058 10.1063/1.4895755.
F. C. Mokken, M. Kedaria, C. P. Henny, M. Hardeman, and A. Gelb, The clinical importance of erythrocyte deformability, a hemorrheological parameter, Ann. Hematol. 64, 113 (1992) 0939-5555 10.1007/BF01697397.
T. W. Secomb, Blood flow in the microcirculation, Annu. Rev. Fluid Mech. 49, 443 (2017) 0066-4189 10.1146/annurev-fluid-010816-060302.
G. Mchedlishvili, Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation, Clin. Hemorheol. Microcirc. 19, 315 (1998).
D. Cordasco and P. Bagchi, On the shape memory of red blood cells, Phys. Fluids 29, 041901 (2017) 1070-6631 10.1063/1.4979271.
D. Cordasco, A. Yazdani, and P. Bagchi, Comparison of erythrocyte dynamics in shear flow under different stress-free configurations, Phys. Fluids 26, 041902 (2014) 10.1063/1.4871300.
M. Alafzadeh, S. Yaghoubi, E. Shirani, and M. Rahmani, Simulation of rbc dynamics using combined low dimension, immersed boundary and lattice boltzmann methods, Mol. Simul. 49, 1179 (2023) 0892-7022 10.1080/08927022.2019.1643018.
H. Zhao and E. S. Shaqfeh, The dynamics of a vesicle in simple shear flow, J. Fluid Mech. 674, 578 (2011) 0022-1120 10.1017/S0022112011000115.
Z. Peng, O. S. Pak, Z. Feng, A. P. Liu, and Y.-N. Young, On the gating of mechanosensitive channels by fluid shear stress, Acta Mechanica Sinica 32, 1012 (2016) 0567-7718 10.1007/s10409-016-0606-y.
S. K. Veerapaneni, Y.-N. Young, P. M. Vlahovska, and J. Bławzdziewicz, Dynamics of a compound vesicle in shear flow, Phys. Rev. Lett. 106, 158103 (2011) 0031-9007 10.1103/PhysRevLett.106.158103.
B. Kaoui, G. Biros, and C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow Phys. Rev. Lett. 103, 188101 (2009) 0031-9007 10.1103/PhysRevLett.103.188101.
G. Kabacaoǧlu and G. Biros, Sorting same-size red blood cells in deep deterministic lateral displacement devices, J. Fluid Mech. 859, 433 (2019) 0022-1120 10.1017/jfm.2018.829.
D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J. 98, 2215 (2010) 0006-3495 10.1016/j.bpj.2010.02.002.
F. Sotiropoulos, C. Aidun, I. Borazjani, and R. MacMeccan, Computational techniques for biological fluids: from blood vessel scale to blood cells, Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems: Methods and Applications, 105 (2011) 0271-2091 10.1007/978-1-4419-7350-4_3.
D. A. Reasor Jr, J. R. Clausen, and C. K. Aidun, Coupling the lattice-boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow, Int. J. Numer. Methods Fluids 68, 767 (2012) 0271-2091 10.1002/fld.2534.
A. Guckenberger, A. Kihm, T. John, C. Wagner, and S. Gekle, Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel, Soft Matter 14, 2032 (2018) 1744-683X 10.1039/C7SM02272G.
A. Nait-Ouhra, A. Guckenberger, A. Farutin, H. Ez-Zahraouy, A. Benyoussef, S. Gekle, and C. Misbah, Lateral vesicle migration in a bounded shear flow: Viscosity contrast leads to off-centered solutions, Phys. Rev. Fluids 3, 123601 (2018) 2469-990X 10.1103/PhysRevFluids.3.123601.
T. Krüger, M. Gross, D. Raabe, and F. Varnik, Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells, Soft Matter 9, 9008 (2013) 1744-683X 10.1039/C3SM51645H.
Y. Rashidi, G. Simionato, Q. Zhou, T. John, A. Kihm, M. Bendaoud, T. Krüger, M. O. Bernabeu, L. Kaestner, M. W. Laschke, Red blood cell lingering modulates hematocrit distribution in the microcirculation, Biophys. J. 122, 1526 (2023) 0006-3495 10.1016/j.bpj.2023.03.020.
T. M. Fischer, Shape memory of human red blood cells, Biophys. J. 86, 3304 (2004) 0006-3495 10.1016/S0006-3495(04)74378-7.
T. M. Fischer, The shape of human red blood cells suspended in autologous plasma and serum, Cells 11, 1941 (2022) 2073-4409 10.3390/cells11121941.
J. Mauer, S. Mendez, L. Lanotte, F. Nicoud, M. Abkarian, G. Gompper, and D. A. Fedosov, Flow-induced transitions of red blood cell shapes under shear, Phys. Rev. Lett. 121, 118103 (2018) 0031-9007 10.1103/PhysRevLett.121.118103.
S. Mendez and M. Abkarian, Single red blood cell dynamics in shear flow and its role in hemorheology, in Dynamics of Blood Cell Suspensions in Microflows (CRC Press, Boca Raton, 2019) pp. 125-182.
M. Abkarian, M. Faivre, and A. Viallat, Swinging of red blood cells under shear flow, Phys. Rev. Lett. 98, 188302 (2007) 0031-9007 10.1103/PhysRevLett.98.188302.
M. Nouaman, A. Darras, T. John, G. Simionato, M. A. Rab, R. van Wijk, M. W. Laschke, L. Kaestner, C. Wagner, and S. M. Recktenwald, Effect of cell age and membrane rigidity on red blood cell shape in capillary flow, Cells 12, 1529 (2023) 2073-4409 10.3390/cells12111529.
S. M. Recktenwald, K. Graessel, F. M. Maurer, T. John, S. Gekle, and C. Wagner, Red blood cell shape transitions and dynamics in time-dependent capillary flows, Biophys. J. 121, 23 (2022) 0006-3495 10.1016/j.bpj.2021.12.009.
A. Kumar, R. G. H. Rivera, and M. D. Graham, Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity, J. Fluid Mech. 738, 423 (2014) 0022-1120 10.1017/jfm.2013.592.
B. Kaoui and J. Harting, Two-dimensional lattice boltzmann simulations of vesicles with viscosity contrast, Rheol. Acta 55, 465 (2016) 0035-4511 10.1007/s00397-015-0867-6.
Z. Shen, A. Farutin, M. Thiébaud, and C. Misbah, Interaction and rheology of vesicle suspensions in confined shear flow, Phys. Rev. Fluids 2, 103101 (2017) 2469-990X 10.1103/PhysRevFluids.2.103101.
T. Krüger, F. Varnik, and D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice boltzmann finite element method, Computers & Mathematics with Applications 61, 3485 (2011) 10.1016/j.camwa.2010.03.057.
Z. Shen, G. Coupier, B. Kaoui, B. Polack, J. Harting, C. Misbah, and T. Podgorski, Inversion of hematocrit partition at microfluidic bifurcations, Microvasc. Res. 105, 40 (2016) 0026-2862 10.1016/j.mvr.2015.12.009.
B. Kaoui, R. J. Jonk, and J. Harting, Interplay between microdynamics and macrorheology in vesicle suspensions, Soft Matter 10, 4735 (2014) 1744-683X 10.1039/C4SM00563E.
B. Kaoui, J. Harting, and C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Phys. Rev. E 83, 066319 (2011) 1539-3755 10.1103/PhysRevE.83.066319.
M. Thiébaud, Z. Shen, J. Harting, and C. Misbah, Prediction of anomalous blood viscosity in confined shear flow, Phys. Rev. Lett. 112, 238304 (2014) 0031-9007 10.1103/PhysRevLett.112.238304.
D. A. Fedosov, M. Peltomäki, and G. Gompper, Deformation and dynamics of red blood cells in flow through cylindrical microchannels, Soft Matter 10, 4258 (2014) 1744-683X 10.1039/C4SM00248B.
S. Quint, A. Christ, A. Guckenberger, S. Himbert, L. Kaestner, S. Gekle, and C. Wagner, 3d tomography of cells in micro-channels, Appl. Phys. Lett. 111, 103701 (2017) 0003-6951 10.1063/1.4986392.
A. Farutin, Z. Shen, G. Prado, V. Audemar, H. Ez-Zahraouy, A. Benyoussef, B. Polack, J. Harting, P. M. Vlahovska, T. Podgorski, Optimal cell transport in straight channels and networks, Phys. Rev. Fluids 3, 103603 (2018) 2469-990X 10.1103/PhysRevFluids.3.103603.
M. Abbasi, A. Farutin, H. Ez-Zahraouy, A. Benyoussef, and C. Misbah, Erythrocyte-erythrocyte aggregation dynamics under shear flow, Phys. Rev. Fluids 6, 023602 (2021) 2469-990X 10.1103/PhysRevFluids.6.023602.
B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded poiseuille flow, Phys. Rev. E 77, 021903 (2008) 1539-3755 10.1103/PhysRevE.77.021903.
T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Numerical simulations of complex fluid-fluid interface dynamics, Eur. Phys. J.: Spec. Top. 222, 177 (2013) 1951-6355 10.1140/epjst/e2013-01834-y.
H. Zhang, Z. Shen, B. Hogan, A. I. Barakat, and C. Misbah, ATP release by red blood cells under flow: model and simulations, Biophys. J. 115, 2218 (2018) 0006-3495 10.1016/j.bpj.2018.09.033.
N. Takeishi, M. E. Rosti, Y. Imai, S. Wada, and L. Brandt, Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells, J. Fluid Mech. 872, 818 (2019) 0022-1120 10.1017/jfm.2019.393.
T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen, The lattice boltzmann method, graduate texts in physics (2017).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.053603 for varying rigidities of RBCs and different viscosity contrasts.
M. Thiébaud and C. Misbah, Rheology of a vesicle suspension with finite concentration: A numerical study, Phys. Rev. E 88, 062707 (2013) 1539-3755 10.1103/PhysRevE.88.062707.
Y. Rashidi, O. Aouane, A. Darras, T. John, J. Harting, C. Wagner, and S. M. Recktenwald, Cell-free layer development and spatial organization of healthy and rigid red blood cells in a microfluidic bifurcation, Soft Matter 19, 6255 (2023) 1744-683X 10.1039/D3SM00517H.
S. M. Recktenwald, K. Graessel, Y. Rashidi, J. N. Steuer, T. John, S. Gekle, and C. Wagner, Cell-free layer of red blood cells in a constricted microfluidic channel under steady and time-dependent flow conditions, Phys. Rev. Fluids 8, 074202 (2023) 10.1103/PhysRevFluids.8.074202.
N. M. Geekiyanage, M. A. Balanant, E. Sauret, S. Saha, R. Flower, C. T. Lim, and Y. Gu, A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies, PLoS One 14, e0215447 (2019) 1932-6203 10.1371/journal.pone.0215447.
K. Khairy, J. Foo, and J. Howard, Shapes of red blood cells: comparison of 3d confocal images with the bilayer-couple model, Cel. Mol. Bioeng. 1, 173 (2008) 1865-5025 10.1007/s12195-008-0019-5.