Thèse de doctorat (Mémoires et thèses)
Dissipation in mesoscopic quantum systems: Quantum friction and braiding in dissipative-driven Majorana boxes
WU, Kunmin
2024
 

Documents


Texte intégral
KunminWu_PhD_thesis.pdf
Postprint Auteur (5.14 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mesoscopic quantum system, Dissipation, Casimir-Polder effect, Quantum friction, Open system, Majorana physics, Topology physics, Braiding, Quantum computing
Résumé :
[en] This thesis explores two distinct yet interrelated areas of quantum physics: quantum friction in mesoscopic systems and topological quantum computing using Majorana bound states (MBSs). The work provides a comprehensive theoretical framework for understanding and potentially developing these applications in nanoscale quantum systems. The first part of this thesis investigate quantum friction, arising from the interaction with quantum vacuum fluctuations, which can generate forces between two parallel, neutral plates when they move relative to each other. This is a quantum mechanical effect analogous to the Casimir force but with a dynamic component due to the relative motion. Although quantum friction, like the Casimir effect, is expected to be a universal phenomenon, its direct observation has been elusive due to its extremely small magnitude and the complexities introduced by other quantum effects, such as spatial dispersion. Our contribution focuses on the phenomenon of quantum friction between plates in the hydrodynamic regime, where spatial dispersion—linked to the effective speed of sound in the material—cannot be ignored. In this context, quantum friction occurs only when the atom's velocity exceeds the material's effective sound speed. We provide analytical arguments to demonstrate that this result holds at all orders of perturbation theory. The second topic focuses on investigating braiding protocols within open systems based on the Majorana architecture, which consists of Majorana boxes or Cooper-pair box. These boxes are coupled to quantum dots with tunable tunneling parameters, and the entire system interacts with a large bosonic bath. Using the Lindblad formalism, we explore how the Majorana sector can be driven to specific designed steady states. In this framework, we assess the feasibility of non-Abelian braiding, which offers a potential route to fault-tolerant quantum computing. Finally, we provide a comprehensive guideline for the braiding protocols and the associated tunneling system.
Disciplines :
Physique
Auteur, co-auteur :
WU, Kunmin ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Thomas SCHMIDT
Langue du document :
Anglais
Titre :
Dissipation in mesoscopic quantum systems: Quantum friction and braiding in dissipative-driven Majorana boxes
Date de soutenance :
15 octobre 2024
Institution :
Unilu - University of Luxembourg [Faculty of Science, Technology and Medicine (FSTM)], Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Physique (DIP_DOC_0003_B)
Promoteur :
SCHMIDT, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Président du jury :
WIRTZ, Ludger ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Secrétaire :
GALANI, Adamantia ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Membre du jury :
Egger, Reinhold
Recher, Patrik
Michels, Andreas
Focus Area :
Physics and Materials Science
Intitulé du projet de recherche :
National Research Fund Luxembourg under Grant CORE C16/MS/11352881/PARTI
National Research Fund Luxembourg under Grant CORE C20/MS/14757511/ OpenTop
National Research Fund Luxembourg under Grant ATTRACT A14/MS/7556175/MoMeSys
National Research Fund Luxembourg under Grant C18/MS/12704391/QUTHERM
Disponible sur ORBilu :
depuis le 12 février 2025

Statistiques


Nombre de vues
112 (dont 7 Unilu)
Nombre de téléchargements
67 (dont 4 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu