Bertola, N., Schiltz, P., Denarié, E., et al. A review of the use of UHPFRC in bridge rehabilitation and new construction in Switzerland. Front Built Environ., 7, 2021, 155.
Bertola, N., Küpfer, C., Kälin, E., et al. Assessment of the environmental impacts of bridge designs involving UHPFRC. Sustainability, 13, 2021, 12399.
Brühwiler, E., Denarié, E., Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete. Struct. Eng. Int 23 (2013), 450–457.
Denarié, E., Brühwiler, E., Structural rehabilitations with ultra-high performance fibre reinforced concretes (UHPFRC). Restor. Build. Monum. Bauinstandsetz. Baudenkmalpflege 12 (2006), 453–468.
Brühwiler E. “Structural UHPFRC”: Welcome to the post-concrete era ! In: International Interactive Symposium on Ultra-High Performance Concrete. 1, Des Moines, Iowa, USA: Iowa State University Digital Press, pp. 1–16.
Azmee, N.M., Shafiq, N., Ultra-high performance concrete: from fundamental to applications. Case Stud. Constr. Mater., 9, 2018, e00197.
Graybeal, B., Brühwiler, E., Kim, B.-S., et al. International perspective on UHPC in bridge engineering. J. Bridge Eng., 25, 2020, 04020094.
Brühwiler, E., UHPFRC technology to enhance the performance of existing concrete bridges. Struct. Infrastruct. Eng. 16 (2020), 94–105.
Yoo, D.-Y., Yoon, Y.-S., A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. Int. J. Concr. Struct. Mater. 10 (2016), 125–142.
Abdel M. Simplified Design Approach of Steel Fiber Reinforced Concrete Under Flexural Load. In: Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS. Epub ahead of print June, 2019. DOI: 10.21012/FC10.234838.
Farhat, F.A., Nicolaides, D., Kanellopoulos, A., et al. High performance fibre-reinforced cementitious composite (CARDIFRC) – performance and application to retrofitting. Eng. Fract. Mech. 74 (2007), 151–167.
Qiu, M., Shao, X., Wille, K., et al. Experimental investigation on flexural behavior of reinforced ultra high performance concrete low-profile T-beams. Int J. Concr. Struct. Mater., 14, 2020, 5.
Sawicki, B., Brühwiler, E., Denarié, E., Inverse analysis of R-UHPFRC members to determine the flexural response underservice loading and at ultimate resistance. J. Struct. Eng., 148, 2020, 040221260.
Habel, K., Viviani, M., Denarié, E., et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cem. Concr. Res. 36 (2006), 1362–1370.
Yoo, D.-Y., Kang, S.-T., Lee, J.-H., et al. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cem. Concr. Res 54 (2013), 180–190.
Kazemi Kamyab M. Autogenous Shrinkage and Hydration Kinetics of SH-UHPFRC under Moderate to Low Temperature Curing Conditions. EPFL, 2013. Epub ahead of print 2013. DOI: 10.5075/epfl-thesis-5681.
Habel, K., Gauvreau, P., Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30 (2008), 938–946.
Kazemi-Kamyab, H., Muller, A.C.A., Denarié, E., et al. Kinetics of mixing-water repartition in UHPFRC paste and its effect on hydration and microstructural development. Cem. Concr. Res., 124, 2019, 105784.
Wang, J.-Y., Guo, J.-Y., Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques. Cem. Concr. Compos. 88 (2018), 17–28.
Prem, P.R., Verma, M., Murthy, A.R., et al. Smart monitoring of strengthened beams made of ultrahigh performance concrete using integrated and nonintegrated acoustic emission approach. Struct. Control Health Monit., 28, 2021, e2704.
Li, S., Zhang, L., Guo, P., et al. Characteristic analysis of acoustic emission monitoring parameters for crack propagation in UHPC-NC composite beam under bending test. Constr. Build. Mater., 278, 2021, 122401.
Wang, X., Liu, D., Zhang, Y., et al. Fracture Characterization of ultra-high performance concrete Notched beams under the Influence of different material factors based on acoustic emission technique. Materials, 14, 2021, 4608.
Wang, J.-Y., Chen, Z.-Z., Wu, K., Properties of calcium sulfoaluminate cement made ultra-high performance concrete: Tensile performance, acoustic emission monitoring of damage evolution and microstructure. Constr. Build. Mater. 208 (2019), 767–779.
Naukhez, K., Kishen, J.M., VS, R., Observations on the characteristics of acoustic emissions generated during unconfined uniaxial compression of ultra high performance concrete. J. Struct. Eng. Madras 48 (2021), 393–403.
Chen, C., Chen, X., Ning, Y., Identification of fracture damage characteristics in ultra-high performance cement-based composite using digital image correlation and acoustic emission techniques. Compos. Struct., 291, 2022, 115612.
Xu, X., Jin, Z., Yu, Y., et al. Damage source and its evolution of ultra-high performance concrete monitoring by digital image correlation and acoustic emission technologies. J. Build. Eng., 65, 2023, 105734.
Wang, X., Niederleithinger, E., Hindersmann, I., The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique. Struct. Health Monit. 21 (2022), 913–927.
Bassil, A., Wang, X., Chapeleau, X., et al. Distributed fiber optics sensing and coda wave interferometry techniques for damage monitoring in concrete structures. Sensors, 19, 2019, 356.
Burud, N., Kishen, J.C., Damage detection using wavelet entropy of acoustic emission waveforms in concrete under flexure. Struct. Health Monit. 20 (2021), 2461–2475.
T. Schumacher, E. NiederleithingerCombining Passive and Active Ultrasonic Stress Wave Monitoring Techniques: Opportunities for Condition Evaluation of Concrete Structures. NDT-CE - Int Symp Nondestruct Test Civ Eng Zurich Switz August, 2022, pp. 16-18. 〈https://pdxscholar.library.pdx.edu/cengin_fac/665〉.
N. Bertola, T. Schumacher, E. Niederleithinger, et al. Combined Passive and Active Ultrasonic Stress Wave Monitoring of UHPFRC Properties on a Structural Level. Wilmington, Delaware, USA: Iowa State University Digital Press. Epub ahead of print June, 2023. DOI: 10.21838/uhpc.16652.
Bertola, N., Schumacher, T., Niederleithinger, E., et al. Mesures de l’évolution des propriétés du CFUP en combinant les émissions acoustiques (passifs) et des ultrasons (actifs). Acad. J. Civ. Eng. 41 (2023), 150–158.
Technical Leaflet on UHPFRC: Materials, Design and Application. 2016; 48.
Niederleithinger, E., Wolf, J., Mielentz, F., et al. Embedded ultrasonic transducers for active and passive concrete monitoring. Sensors 15 (2015), 9756–9772.
Aggelis, D.G., Shiotani, T., Parameters based AE analysis. Acoust. Emiss. Test. Basics Res Eng., 2022, 45–71.
Kurz J.H., Schumacher T., Linzer L., et al. Source Localization. In: Grosse CU, Ohtsu M, Aggelis DG, et al. (eds) Acoustic Emission Testing: Basics for Research – Applications in Engineering. Cham: Springer International Publishing, pp. 117–171.
R.R. HeinrichSeismicity of the Earth and Associated Phenomena. B. Gutenberg and C. F. Richter. Princeton, N. J.: Princeton Univ. Press, 1949. 273 pp. $10.00, Science, 1950, 111, pp. 437–437.
Mhamdi, L., Schumacher, T., Linzer, L., Seismology-based acoustic emission techniques for the monitoring of fracture processes in concrete structures. Acoustic Emission and Related Non-destructive Evaluation Techniques in the Fracture Mechanics of Concrete, 2015, Elsevier, 81–113.
Schumacher, T., Higgins, C.C., Lovejoy, S.C., Estimating operating load conditions on reinforced concrete highway bridges with b-value analysis from acoustic emission monitoring. Struct. Health Monit. 10 (2011), 17–32.
Geiger, L., Herdbestimmung bei Erdbeben aus den Ankunftszeiten. Nachr. Von. Ges. Wiss. Zu Gött Math. Phys. Kl. 1910 (1910), 331–349.
Faried, A.S., Mostafa, S.A., Tayeh, B.A., et al. The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties. Constr. Build. Mater., 290, 2021, 123279.
Grosse, C.U., Ohtsu, M., Aggelis, D.G., et al. Acoustic emission testing: Basics for research–applications in engineering. https://books.google.fr/books?hl=fr&lr=&id=EYk4EAAAQBAJ&oi=fnd&pg=PR5&dq=Grosse+and+Ohtsu%E2%80%99s+AE+book&ots=bf5lfxMga2&sig=xTLQua3VcEZGbvA9mx25d9bmUv8 (2021, accessed 4, April 2024, Springer Nature.
Hajiesmaeili, A., Hafiz, M.A., Denarié, E., Tensile response of ultra high performance PE fiber reinforced concretes (PE-UHPFRC) under imposed shrinkage deformations. Mater. Struct., 54, 2021, 114.
Yoo, D.-Y., Park, J.-J., Kim, S.-W., et al. Early age setting, shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete. Constr. Build. Mater. 41 (2013), 427–438.
John S. Popovics. A. Study of Static and Dynamic Modulus of Elasticity of Concrete. CRC.
Bacharz, M., Bacharz, K., Trąmpczyński, W., The correlation between shrinkage and acoustic emission signals in early age concrete. Materials, 15, 2022, 5389.
Qin, L., Ren, H.-W., Dong, B.-Q., et al. Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials 7 (2014), 6908–6918.
Hajiesmaeili, A., Denarié, E., Capillary flow in UHPFRC with synthetic fibers, under high tensile stresses. Cem. Concr. Res., 143, 2021, 106368.