Biomass; Forest; Geometric Feature; Leaf-Wood Separation; Segmentation; Tree Information Modeling; Geometric feature; Information Modeling; Leaf-wood separation; Light detection and ranging; Point-clouds; Tree information modeling; Tree structures; Wood separations
Abstract :
[en] A precise tree structure that represents the distribution of tree stem, branches, and leaves is crucial for accurately capturing the full representation of a tree. Light Detection and Ranging (LiDAR)-based three-dimensional (3D) point clouds (PCs) capture the geometry of scanned objects including forests stands and individual trees. PCs are irregular, unstructured, often noisy, and contaminated by outliers. Researchers have struggled to develop methods to separate leaves and wood without losing the tree geometry. This paper proposes a solution that employs only the spatial coordinates (x, y, z) of the PC. The new algorithm works as a filtering approach, utilizing multi-scale neighborhood-based geometric features (GFs) e.g., linearity, planarity, and verticality to classify linear (wood) and non-linear (leaf) points. This involves finding potential wood points and coupling them with an octree-based segmentation to develop a tree architecture. The main contributions of this paper are (i) investigating the potential of different GFs to split linear and non-linear points, (ii) introducing a novel method that pointwise classifies leaf and wood points, and (iii) developing a precise 3D tree structure. The performance of the new algorithm has been demonstrated through terrestrial laser scanning PCs. For a Scots pine tree, the new method classifies leaf and wood points with an overall accuracy of 97.9%.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
NURUNNABI, Abdul Awal Md ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Teferle, Felicia ; Geodesy and Geospatial Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Luxembourg
Laefer, Debra F.; Center for Urban Science + Progress, Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, United States
Chen, Meida; Institute for Creative Technologies, University of Southern California, Los Angeles, United States
Ali, Mir Masoom; Department of Mathematical Sciences, Ball State University, Muncie, United States
External co-authors :
yes
Language :
English
Title :
Development of a Precise Tree Structure from LiDAR Point Clouds
Publication date :
11 June 2024
Event name :
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA
Event place :
Las Vegas, Usa
Event date :
11-06-2024 => 14-06-2024
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
ISSN :
1682-1750
Publisher :
International Society for Photogrammetry and Remote Sensing
Béland, M., Widlowski, J-L., Fournier, A. R., et al., 2011. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric For Meteorol, 151(9), 1252–1266.
Béland, M., Baldocchi, D.D., Widlowski, J-L., Fournier, R.A., Verstraete, M.M.,2014. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric For Meteorol, 184,82–97.
Belton, D., Moncrieff, S., Chapman, J., 2013. Processing tree point clouds using Gaussian mixture models. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 2, 43–48.
Böhm, J., Bredif, M., Gierlinger, T., Krämer, M., et al., 2016. The IQmulus urban showcase: Automatic tree classification and identification in huge mobile mapping point clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 41, 301–307.
Brodu, N., Lague, D., 2012. 3D Terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS J Photogramm and Remote Sens., 68, 121–134.
Bucksch, A., Lindenbergh, R., 2008. CAMPINO— A skeletonization method for point cloud processing. ISPRS J Photogramm and Remote Sens., 63(1), 115–127.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., et al., 2015. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol., 6, 198–208.
Côté, J-F., Widlowski, J-L., Fournier, R. A., Verstraete, M. M., 2009. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ., 113, 1067–1081.
Côté, J-F., Fournier, R. A., Egli, R., 2011. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ Model Softw, 26(6), 761–777.
Disney, M. I., Vicari, M. B., Burt, A., Calders, K., et al., 2018. Weighing trees with lasers: advances, challenges, and opportunities. Interface Focus, 8(2), 20170048.
Ferrara, R., Salvatore, G.P.V., Ventura, A., Ghisu, T., et al., 2018. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density-based clustering algorithm DBSCAN. Agric For Meteorol, 262(15), 434–444.
Fu, L., Liu, J., Zhou, J., Zhang, M., Lin, Y., 2020. Tree skeletonization for raw point cloud exploiting cylindrical shape prior. IEEE Access, 8, 27327–27341.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J., 2017. A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857.
Grau, E., Durrieu, S., Fournier, R., Gastellu-Etchegorry, J. P., Yin, T., 2017. Estimation of 3D vegetation density with terrestrial laser scanning data using voxels. A sensitivity analysis of influencing parameters. Remote Sens. Environ., 191, 373–388.
Hackel, T., Wegner, J.D., Schindler, K.,2016. Contour detection in unstructured 3D point clouds. IEEE CVPR, 1610–1618.
Hui, Z., Jin, S., Xia, Y., Wang, L., Z., Y-Y., Cheng, P., 2021. Wood and leaf separation from terrestrial LiDAR point clouds based on mode points evolution. ISPRS J Photogramm and Remote Sens., 178, 219–239.
Li, S., Dai, L., Wang, H., Wang, Y., He, Z. E., Lin, S., 2017. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial lidar data and a voxel-based model. Remote Sensing, 9(11), 1202.
Li, J., Wu, H., Xiao, Z., Lu, H., 2022. 3D modeling of laser-scanned trees based on skeleton refined extraction. Int J Appl Earth Obs Geoinformation, 112, 102943.
Ma, L., Zheng, G., Eitel, U. H. J., Moskal, L. M., He, W., Huang, H., 2016. Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial lidar point cloud data of forest canopies, IEEE Trans Geosci Remote Sens, 54(2), 679–696.
Nurunnabi, A., Belton, D., West, G., 2012. Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., I-3, 269–274.
Nurunnabi, A., West, G., Belton, D., 2015. Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recognit., 48(4), 1404–1419.
Nurunnabi, A., West. G., Belton, D., 2016. Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning 3D point cloud data. IEEE Trans. Geosci. Remote Sens., 54(4), 2181–2193.
Nurunnabi, A., Teferle, F., Li, J., Lindenbergh, R., Hunegnaw, A., 2021. An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 43(B1–2021), 31–38.
Nurunnabi, A., Teferle, F., Al-Sharadqah, A., Xia, Y., Hunegnaw, A., 2024. Robust estimation of tree diameter at breast height from point clouds. IEEE IGARSS, 7-12 July, Athens, Greece.
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., et al., 2013. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491–520.
Shu, Q., Rötzer, T., Detter, A., Ludwig, F., 2022. Tree information modeling: a data exchange platform for tree design and management. Forests, 13(11), 1955.
Tao, S., Guo, Q., Su, Y., Xu, S., et al., 2015. A geometric method for wood-leaf separation using terrestrial and simulated lidar data. Photogramm Eng Remote Sensing, 81(10), 767–776.
Takoudjou, S. M., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., De Coligny, et al., 2018. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol., 9(4), 905–916.
Tian, Z., Li, S., 2022. Graph-based leaf-wood separation method for individual trees using terrestrial LiDAR point clouds. IEEE Trans. Geosci. Remote Sens., 60, 1–11.
Vicari, B. M., Disney, M., Wilkes, P., Burt, A., Calders, K., Woodgate, W., 2019. Leaf and wood classification framework for terrestrial LiDAR point clouds. Methods in Ecol Evol. 10, 680–694.
Vo., A-V., Truong-Hong, L., Laefer, D.F., Bertolotto, M., 2015. Octree-based region growing for point cloud segmentation. ISPRS J Photogramm and Remote Sens., 104, 88–100.
Wang, Z., Zhang, L., Fang, T., Mathiopoulos, P. T., Tong, X., Qu, H., et al., 2015. A multiscale and hierarchical feature extraction method for terrestrial laser scanning point cloud classification. IEEE Trans. Geosci. Remote Sens., 53(5), 2409–2425.
Wang, D., Hollaus, M., Pfeifer, N., 2017. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV–2/W4, 157–164.
Wang, D., Takoudjou, S. M., Casella, E., 2020. LeWoS: A universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol Evol, 11, 376–389.
Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., et al., 2022. Individual tree point clouds and tree measurements from multiplatform laser scanning in German forests. Earth Syst. Sci. Data, 14(7), 2989–3012.
Xi, Z., Hopkinson, C., Chasmer, L., 2018. Filtering stems and branches from terrestrial laser scanning point clouds using deep 3-D fully convolutional networks. Remote Sensing, 10(8), 1215.
Zhao, K., García, M., Liu, S., Guo, Q., et al., 2015. Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution. Agric For Meteorol, 209–210, 100–113.
Zhu, X., Skidmore, A.K., Darvishzadeh, R., Niemann, K.O., Liu, J., Shi, Y., et al., 2018. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest. Int J Appl Earth Obs Geoinformation, 64, 43–50.
Zou, X., Cheng, M., Wang, C., Xia, Y., Li, J., 2017. Tree classification in complex forest point clouds based on deep learning. IEEE Geosci. Remote Sens. Lett., 14(12), 2360–2364.