![]() ![]() | Nurunnabi, A. A. M. (2021). An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds. In A. A. M. Nurunnabi, F. N. Teferle, J. Li, R. Lindenbergh, ... A. Hunegnaw, An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds (pp. 31-38). ![]() |
![]() ![]() | González-Collazo, S. M., Balado, J., González, E., & NURUNNABI, A. A. M. (15 November 2023). A discordance analysis in manual labelling of urban mobile laser scanning data used for deep learning based semantic segmentation. Expert Systems with Applications, 230, 120672. doi:10.1016/j.eswa.2023.120672 ![]() |
![]() ![]() | Nurunnabi, A. A. M., & Teferle, F. N. (07 October 2023). Maschinelles Lernen in der automatischen Auswertung von Punktwolken: Beispiele der Erfahrungen an der Universität Luxemburg [Paper presentation]. Kleiner Geodätentag Rheinland-Pfalz, Saarland, Luemburg, Kaiserslautern, Germany. |
![]() ![]() | Xie, T., Kong, R., NURUNNABI, A. A. M., Bai, S., & Zhang, X. (2023). Machine-Learning-Method-Based Inversion of Shallow Bathymetric Maps Using ICESat-2 ATL03 Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 3697 - 3714. doi:10.1109/JSTARS.2023.3260831 ![]() |
![]() ![]() | Nurunnabi, A. A. M., Teferle, F. N., Balado, J., Chen, M., Poux, F., & Sun, C. (2022). Robust Techniques for Building Footprint Extraction in Aerial Laser Scanning 3D Point Clouds. In Robust Techniques for Building Footprint Extraction in Aerial Laser Scanning 3D Point Clouds. ![]() |
![]() ![]() | Nurunnabi, A. A. M., Teferle, F. N., Laefer, D., Remondino, F., Karas, I. R., & Li, J. (2022). kCV-B: Bootstrap with Cross-Validation for Deep Learning Model Development, Assessment and Selection. In kCV-B: Bootstrap with Cross-Validation for Deep Learning Model Development, Assessment and Selection. ![]() |
![]() ![]() | Nurunnabi, A. A. M., & Teferle, F. N. (2022). Resampling methods for a reliable validation set in deep learning based point cloud classification. In Resampling methods for a reliable validation set in deep learning based point cloud classification. ![]() |
![]() ![]() | Nurunnabi, A. A. M., Lindenbergh, R., & Teferle, F. N. (2022). Deep Learning for Ground and Non-ground Surface Separation: A Feature-based Semantic Segmentation Algorithm for Point Cloud Classification. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52284. |
![]() ![]() | Nurunnabi, A. A. M., Teferle, F. N., Lindenbergh, R., Li, J., & Zlatanova, S. (2022). Robust Approach for Urban Road Surface Extraction Using Mobile Laser Scanning Data. In Robust Approach for Urban Road Surface Extraction Using Mobile Laser Scanning Data. ![]() |
![]() ![]() | Nurunnabi, A. A. M., Teferle, F. N., Laefer, D., Lindenbergh, R., & Hunegnaw, A. (2022). A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION. In A TWO-STEP FEATURE EXTRACTION ALGORITHM: APPLICATION TO DEEP LEARNING FOR POINT CLOUD CLASSIFICATION (pp. 401-408). ![]() |
![]() ![]() | Nurunnabi, A. A. M., Teferle, F. N., Li, J., Lindenbergh, R. C., & Parvaz, S. (2021). INVESTIGATION OF POINTNET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE OUTDOOR POINT CLOUDS. doi:10.5194/isprs-archives-XLVI-4-W5-2021-397-2021 ![]() |
![]() ![]() | Nurunnabi, A. A. M. (2021). An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds. In A. A. M. Nurunnabi, F. N. Teferle, J. Li, R. Lindenbergh, ... A. Hunegnaw, An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds (pp. 31-38). ![]() |
![]() ![]() | Sha, Z., Chen, Y., Li, W., Wang, C., Nurunnabi, A. A. M., & Li, J. (2020). A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds. In A boundary-enhanced supervoxel method for extraction of road edges in MLS point clouds (pp. 65-71). ISPRS. doi:10.1109/IGARSS39084.2020.9323330 ![]() |