Environmental contaminant; High resolution mass spectrometry; Interlaboratory comparison; Ionization efficiency; Limited data sets; Liquid chromatography electrospray; Mass spectrometry analysis; Non-targeted; Number of methods; Work-flows; Analytical Chemistry
Abstract :
[en] Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
Disciplines :
Chemistry
Author, co-author :
Malm, Louise; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
Liigand, Jaanus ; Quantem Analytics, 51008 Tartu, Estonia
Aalizadeh, Reza; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece ; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
Alygizakis, Nikiforos ; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece ; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
Ng, Kelsey; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic ; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Building D29, 62500 Brno, Czech Republic
Plassmann, Merle ; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
Bieber, Stefan; Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
Letzel, Thomas; Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
Balest, Lydia; Acquedotto Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario (DIRLC), 70123 Bari, Italy
Abis, Pier Paolo; Acquedotto Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario (DIRLC), 70123 Bari, Italy
Mazzetti, Michele; Agenzia Regionale per l'Ambiente Toscana, Via G. Marradi 114, 57126 Livorno, Italy
Kasprzyk-Hordern, Barbara ; Department of Chemistry, University of Bath, Bath BA2 7AY, U.K ; Institute for Sustainability, Bath BA2 7AY, U.K
Ceolotto, Nicola; Department of Chemistry, University of Bath, Bath BA2 7AY, U.K ; Institute for Sustainability, Bath BA2 7AY, U.K
Kumari, Sangeeta; Department of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
Hann, Stephan ; Department of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
Kochmann, Sven ; Department of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
Steininger-Mairinger, Teresa ; Department of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
Soulier, Coralie; BRGM, 3 avenue Claude Guillemin, BP36009, 45060 Orléans Cedex 2, France
Mascolo, Giuseppe; Water Research Institute (IRSA), National Research Council (CNR), Via F. De Blasio, 5, 70132 Bari, Italy ; Research Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), Via Amendola, 122/I, 70126 Bari, Italy
Murgolo, Sapia; Water Research Institute (IRSA), National Research Council (CNR), Via F. De Blasio, 5, 70132 Bari, Italy
Garcia-Vara, Manuel; Water, Environmental and Food Chemistry Unit, Institute of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
López de Alda, Miren; Water, Environmental and Food Chemistry Unit, Institute of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
Hollender, Juliane ; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Arturi, Katarzyna ; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Coppola, Gianluca; White Lab Srl, Via Mons. Rodolfi 22, 36022 San Giuseppe de Cassola (VI), Italy
Peruzzo, Massimo; White Lab Srl, Via Mons. Rodolfi 22, 36022 San Giuseppe de Cassola (VI), Italy
Joerss, Hanna ; Department for Organic Environmental Chemistry, Helmholtz Centre Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
van der Neut-Marchand, Carla; Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
Pieke, Eelco N; Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
Gago-Ferrero, Pablo ; Human Exposure to Organic Pollutants Unit, Institute of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
Gil-Solsona, Ruben ; Human Exposure to Organic Pollutants Unit, Institute of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
Licul-Kucera, Viktória; Institute for Analytical Research, Hochschulen Fresenius gem. Trägergesellschaft mbH, 65510 Idstein, Germany ; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WP Amsterdam, Netherlands
Roscioli, Claudio; Water Research Institute (IRSA), National Research Council of Italy (CNR), via del Mulino, 19, 20861 Brugherio, MB, Italy
Valsecchi, Sara; Water Research Institute (IRSA), National Research Council of Italy (CNR), via del Mulino, 19, 20861 Brugherio, MB, Italy
Luckute, Austeja; Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
Christensen, Jan H ; Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
Tisler, Selina ; Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
Vughs, Dennis; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
Meekel, Nienke ; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
TALAVERA ANDÚJAR, Begoña ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
FRIGERIO, Gianfranco ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI ; Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
Davis, W Clay; US National Institute of Standards and Technology, 331 Fort Johnson Rd, 29412 Charleston, South Carolina, United States
Schulze, Bastian ; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
Kaserzon, Sarit ; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
Pijnappels, Martijn ; Ministry of Infrastructure and Water Management, Rijkswaterstaat Laboratory, Zuiderwagenplein 2, 8224 AD Lelystad, The Netherlands
Esperanza, Mar; SUEZ-CIRSEE, 38 rue du president Wilson, 78230 Le Pecq, France
Fildier, Aurélie; Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
Vulliet, Emmanuelle ; Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
Wiest, Laure; Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
Covaci, Adrian ; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
Macan Schönleben, Alicia; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
Belova, Lidia ; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
Celma, Alberto; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain ; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
Bijlsma, Lubertus ; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
Caupos, Emilie; LEESU, Univ Paris Est Creteil, Ecole des Ponts, F-94010 Creteil, France ; Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Creteil, France
Mebold, Emmanuelle; Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Creteil, France
Le Roux, Julien ; LEESU, Univ Paris Est Creteil, Ecole des Ponts, F-94010 Creteil, France
Troia, Eugenie; IBED Environmental Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
de Rijke, Eva ; IBED Environmental Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Helmus, Rick ; IBED Environmental Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Leroy, Gaëla; VEOLIA Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
Chrastina, David; T. G. Masaryk Water Research Institute, p. r. i., Macharova 5, 70200 Ostrava, Czech Republic
Verwoert, Milan; WLN, Rijksstraatweg 85, 9756 AD Glimmen, Groningen, The Netherlands
Thomaidis, Nikolaos S ; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
Kruve, Anneli ; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden ; Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
This study was made possible via funding from NORMAN Network, JPA 2020 \u201CCWG-NTS-CT NTS semi-quantification\u201D, and funding from VR grant no. 2021-03917. The authors would like to thank Emma Palm, Helen Sepman, Pauline Petitfour and Pilleriin Peets for their help with sample preparation and packing.
WHO . Strong Systems and Sound Investments: Evidence on and Key Insights into Accelerating Progress on Sanitation, Drinking-Water and Hygiene. In The UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2022 Report; World Health Organization: Geneva, 2022.
United Nations . The Sustainable Development Goals Report 2022; United Nations Department of Economic and Social Affairs (DESA): New York, 2022.
European Environment Agency . Europe’s Groundwater: A Key Resource under Pressure; Publications Office: LU, 2022.
Been, F.; Kruve, A.; Vughs, D.; Meekel, N.; Reus, A.; Zwartsen, A.; Wessel, A.; Fischer, A.; ter Laak, T.; Brunner, A. M. Risk-Based Prioritization of Suspects Detected in Riverine Water Using Complementary Chromatographic Techniques. Water Res. 2021, 204, 117612 10.1016/j.watres.2021.117612
Fang, W.; Peng, Y.; Muir, D.; Lin, J.; Zhang, X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Environ. Int. 2019, 131, 104994 10.1016/j.envint.2019.104994
Wang, Z.; Walker, G. W.; Muir, D. C. G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54 ( 5), 2575- 2584, 10.1021/acs.est.9b06379
Kümmerer, K.; Dionysiou, D. D.; Olsson, O.; Fatta-Kassinos, D. A Path to Clean Water. Science 2018, 361 ( 6399), 222- 224, 10.1126/science.aau2405
Albergamo, V.; Schollée, J. E.; Schymanski, E. L.; Helmus, R.; Timmer, H.; Hollender, J.; De Voogt, P. Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol. 2019, 53 ( 13), 7584- 7594, 10.1021/acs.est.9b01750
McCord, J. P.; Groff, L. C.; Sobus, J. R. Quantitative Non-Targeted Analysis: Bridging the Gap between Contaminant Discovery and Risk Characterization. Environ. Int. 2022, 158, 107011 10.1016/j.envint.2021.107011
Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473-474, 619- 641, 10.1016/j.scitotenv.2013.12.065
Brack, W.; Barcelo Culleres, D.; Boxall, A. B. A.; Budzinski, H.; Castiglioni, S.; Covaci, A.; Dulio, V.; Escher, B. I.; Fantke, P.; Kandie, F.; Fatta-Kassinos, D.; Hernández, F. J.; Hilscherová, K.; Hollender, J.; Hollert, H.; Jahnke, A.; Kasprzyk-Hordern, B.; Khan, S. J.; Kortenkamp, A.; Kümmerer, K.; Lalonde, B.; Lamoree, M. H.; Levi, Y.; Lara Martín, P. A.; Montagner, C. C.; Mougin, C.; Msagati, T.; Oehlmann, J.; Posthuma, L.; Reid, M.; Reinhard, M.; Richardson, S. D.; Rostkowski, P.; Schymanski, E.; Schneider, F.; Slobodnik, J.; Shibata, Y.; Snyder, S. A.; Fabriz Sodré, F.; Teodorovic, I.; Thomas, K. V.; Umbuzeiro, G. A.; Viet, P. H.; Yew-Hoong, K. G.; Zhang, X.; Zuccato, E. One Planet: One Health. A Call to Support the Initiative on a Global Science-Policy Body on Chemicals and Waste. Environ. Sci. Eur. 2022, 34 ( 1), 21, 10.1186/s12302-022-00602-6
Kiefer, K.; Müller, A.; Singer, H.; Hollender, J. New Relevant Pesticide Transformation Products in Groundwater Detected Using Target and Suspect Screening for Agricultural and Urban Micropollutants with LC-HRMS. Water Res. 2019, 165, 114972 10.1016/j.watres.2019.114972
Brunner, A. M.; Vughs, D.; Siegers, W.; Bertelkamp, C.; Hofman-Caris, R.; Kolkman, A.; Ter Laak, T. Monitoring Transformation Product Formation in the Drinking Water Treatments Rapid Sand Filtration and Ozonation. Chemosphere 2019, 214, 801- 811, 10.1016/j.chemosphere.2018.09.140
Senta, I.; Kostanjevecki, P.; Krizman-Matasic, I.; Terzic, S.; Ahel, M. Occurrence and Behavior of Macrolide Antibiotics in Municipal Wastewater Treatment: Possible Importance of Metabolites, Synthesis Byproducts, and Transformation Products. Environ. Sci. Technol. 2019, 53 ( 13), 7463- 7472, 10.1021/acs.est.9b01420
Gulde, R.; Rutsch, M.; Clerc, B.; Schollée, J. E.; Von Gunten, U.; McArdell, C. S. Formation of Transformation Products during Ozonation of Secondary Wastewater Effluent and Their Fate in Post-Treatment: From Laboratory- to Full-Scale. Water Res. 2021, 200, 117200 10.1016/j.watres.2021.117200
Escher, B. I.; Fenner, K. Recent Advances in Environmental Risk Assessment of Transformation Products. Environ. Sci. Technol. 2011, 45 ( 9), 3835- 3847, 10.1021/es1030799
Nika, M.-C.; Aalizadeh, R.; Thomaidis, N. S. Non-Target Trend Analysis for the Identification of Transformation Products during Ozonation Experiments of Citalopram and Four of Its Biodegradation Products. J. Hazard. Mater. 2021, 419, 126401 10.1016/j.jhazmat.2021.126401
Kimura, S. Y.; Cuthbertson, A. A.; Byer, J. D.; Richardson, S. D. The DBP Exposome: Development of a New Method to Simultaneously Quantify Priority Disinfection by-Products and Comprehensively Identify Unknowns. Water Res. 2019, 148, 324- 333, 10.1016/j.watres.2018.10.057
Richardson, S. D.; Ternes, T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2022, 94 ( 1), 382- 416, 10.1021/acs.analchem.1c04640
Noguera-Oviedo, K.; Aga, D. S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242- 251, 10.1016/j.jhazmat.2016.04.058
European Commision Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, 372 ( 19), 13
European Commision DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013, 226 ( 1), 1- 17
European Commision DIRECTIVE (EU) 2020/2184 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435 ( 1), 62
Feng, X.; Sun, H.; Liu, X.; Zhu, B.; Liang, W.; Ruan, T.; Jiang, G. Occurrence and Ecological Impact of Chemical Mixtures in a Semiclosed Sea by Suspect Screening Analysis. Environ. Sci. Technol. 2022, 56 ( 15), 10681- 10690, 10.1021/acs.est.2c00966
Krauss, M.; Singer, H.; Hollender, J. LC-High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397 ( 3), 943- 951, 10.1007/s00216-010-3608-9
Pérez-Fernández, V.; Mainero Rocca, L.; Tomai, P.; Fanali, S.; Gentili, A. Recent Advancements and Future Trends in Environmental Analysis: Sample Preparation, Liquid Chromatography and Mass Spectrometry. Anal. Chim. Acta 2017, 983, 9- 41, 10.1016/j.aca.2017.06.029
Hollender, J.; Schymanski, E. L.; Singer, H. P.; Ferguson, P. L. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environ. Sci. Technol. 2017, 51 ( 20), 11505- 11512, 10.1021/acs.est.7b02184
Sousa, J. C. G.; Ribeiro, A. R.; Barbosa, M. O.; Pereira, M. F. R.; Silva, A. M. T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146- 162, 10.1016/j.jhazmat.2017.09.058
Richardson, S. D.; Ternes, T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90 ( 1), 398- 428, 10.1021/acs.analchem.7b04577
Richardson, S. D.; Kimura, S. Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92 ( 1), 473- 505, 10.1021/acs.analchem.9b05269
Kruve, A. Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography-High-Resolution Mass Spectrometry Analysis. Anal. Chem. 2020, 92 ( 7), 4691- 4699, 10.1021/acs.analchem.9b03481
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 ( 4), 2097- 2098, 10.1021/es5002105
Bletsou, A. A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N. S. Targeted and Non-Targeted Liquid Chromatography-Mass Spectrometric Workflows for Identification of Transformation Products of Emerging Pollutants in the Aquatic Environment. TrAC, Trends Anal. Chem. 2015, 66, 32- 44, 10.1016/j.trac.2014.11.009
Cech, N. B.; Krone, J. R.; Enke, C. G. Predicting Electrospray Response from Chromatographic Retention Time. Anal. Chem. 2001, 73 ( 2), 208- 213, 10.1021/ac0006019
Mayhew, A. W.; Topping, D. O.; Hamilton, J. F. New Approach Combining Molecular Fingerprints and Machine Learning to Estimate Relative Ionization Efficiency in Electrospray Ionization. ACS Omega 2020, 5 ( 16), 9510- 9516, 10.1021/acsomega.0c00732
Golubović, J.; Birkemeyer, C.; Protić, A.; Otašević, B.; Zečević, M. Structure-Response Relationship in Electrospray Ionization-Mass Spectrometry of Sartans by Artificial Neural Networks. J. Chromatogr. A 2016, 1438, 123- 132, 10.1016/j.chroma.2016.02.021
Chalcraft, K. R.; Lee, R.; Mills, C.; Britz-McKibbin, P. Virtual Quantification of Metabolites by Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry: Predicting Ionization Efficiency Without Chemical Standards. Anal. Chem. 2009, 81 ( 7), 2506- 2515, 10.1021/ac802272u
Oss, M.; Kruve, A.; Herodes, K.; Leito, I. Electrospray Ionization Efficiency Scale of Organic Compounds. Anal. Chem. 2010, 82 ( 7), 2865- 2872, 10.1021/ac902856t
Ehrmann, B. M.; Henriksen, T.; Cech, N. B. Relative Importance of Basicity in the Gas Phase and in Solution for Determining Selectivity in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 ( 5), 719- 728, 10.1016/j.jasms.2008.01.003
Ojakivi, M.; Liigand, J.; Kruve, A. Modifying the Acidity of Charged Droplets. ChemistrySelect 2018, 3 ( 1), 335- 338, 10.1002/slct.201702269
Huffman, B. A.; Poltash, M. L.; Hughey, C. A. Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. Anal. Chem. 2012, 84 ( 22), 9942- 9950, 10.1021/ac302397b
Kiontke, A.; Oliveira-Birkmeier, A.; Opitz, A.; Birkemeyer, C. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration. PLoS One 2016, 11 ( 12), e0167502 10.1371/journal.pone.0167502
Raji, M. A.; Schug, K. A. Chemometric Study of the Influence of Instrumental Parameters on ESI-MS Analyte Response Using Full Factorial Design. Int. J. Mass Spectrom. 2009, 279 ( 2-3), 100- 106, 10.1016/j.ijms.2008.10.013
Kruve, A.; Kiefer, K.; Hollender, J. Benchmarking of the Quantification Approaches for the Non-Targeted Screening of Micropollutants and Their Transformation Products in Groundwater. Anal. Bioanal. Chem. 2021, 413 ( 6), 1549- 1559, 10.1007/s00216-020-03109-2
Kalogiouri, N. P.; Aalizadeh, R.; Thomaidis, N. S. Investigating the Organic and Conventional Production Type of Olive Oil with Target and Suspect Screening by LC-QTOF-MS, a Novel Semi-Quantification Method Using Chemical Similarity and Advanced Chemometrics. Anal. Bioanal. Chem. 2017, 409 ( 23), 5413- 5426, 10.1007/s00216-017-0395-6
Pieke, E. N.; Granby, K.; Trier, X.; Smedsgaard, J. A Framework to Estimate Concentrations of Potentially Unknown Substances by Semi-Quantification in Liquid Chromatography Electrospray Ionization Mass Spectrometry. Anal. Chim. Acta 2017, 975, 30- 41, 10.1016/j.aca.2017.03.054
Dahal, U. P.; Jones, J. P.; Davis, J. A.; Rock, D. A. Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates. Drug Metab. Dispos. 2011, 39 ( 12), 2355- 2360, 10.1124/dmd.111.040865
Solliec, M.; Roy-Lachapelle, A.; Storck, V.; Callender, K.; Greer, C. W.; Barbeau, B. A Data-Independent Acquisition Approach Based on HRMS to Explore the Biodegradation Process of Organic Micropollutants Involved in a Biological Ion-Exchange Drinking Water Filter. Chemosphere 2021, 277, 130216 10.1016/j.chemosphere.2021.130216
Chibwe, L.; Parrott, J. L.; Shires, K.; Khan, H.; Clarence, S.; Lavalle, C.; Sullivan, C.; O’Brien, A. M.; De Silva, A. O.; Muir, D. C. G.; Rochman, C. M. A Deep Dive into the Complex Chemical Mixture and Toxicity of Tire Wear Particle Leachate in Fathead Minnow. Environ. Toxicol. Chem. 2022, 41 ( 5), 1144- 1153, 10.1002/etc.5140
Panagopoulos Abrahamsson, D.; Park, J.-S.; Singh, R. R.; Sirota, M.; Woodruff, T. J. Applications of Machine Learning to In Silico Quantification of Chemicals without Analytical Standards. J. Chem. Inf. Model. 2020, 60 ( 6), 2718- 2727, 10.1021/acs.jcim.9b01096
Liigand, J.; Wang, T.; Kellogg, J.; Smedsgaard, J.; Cech, N.; Kruve, A. Quantification for Non-Targeted LC/MS Screening without Standard Substances. Sci. Rep. 2020, 10 ( 1), 5808, 10.1038/s41598-020-62573-z
Aalizadeh, R.; Panara, A.; Thomaidis, N. S. Development and Application of a Novel Semi-Quantification Approach in LC-QToF-MS Analysis of Natural Products. J. Am. Soc. Mass Spectrom. 2021, 32 ( 6), 1412- 1423, 10.1021/jasms.1c00032
Aalizadeh, R.; Nikolopoulou, V.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N. S. A Novel Workflow for Semi-Quantification of Emerging Contaminants in Environmental Samples Analyzed by LC-HRMS. Anal. Bioanal. Chem. 2022, 414 ( 25), 7435- 7450, 10.1007/s00216-022-04084-6
Palm, E.; Kruve, A. Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules 2022, 27 ( 3), 1013, 10.3390/molecules27031013
Sepman, H.; Malm, L.; Peets, P.; MacLeod, M.; Martin, J.; Breitholtz, M.; Kruve, A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS 2 Data. Anal. Chem. 2023, 95 ( 33), 12329- 12338, 10.1021/acs.analchem.3c01744
Tadić, Đ.; Manasfi, R.; Bertrand, M.; Sauvêtre, A.; Chiron, S. Use of Passive and Grab Sampling and High-Resolution Mass Spectrometry for Non-Targeted Analysis of Emerging Contaminants and Their Semi-Quantification in Water. Molecules 2022, 27 ( 10), 3167, 10.3390/molecules27103167
Malm, L.; Palm, E.; Souihi, A.; Plassmann, M.; Liigand, J.; Kruve, A. Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules 2021, 26 ( 12), 3524, 10.3390/molecules26123524
Sepman, H.; Malm, L.; Peets, P.; Kruve, A. Scientometric Review: Concentration and Toxicity Assessment in Environmental Non-Targeted LC/HRMS Analysis. Trends Environ. Anal. Chem. 2023, 40, e00217 10.1016/j.teac.2023.e00217
Hollender, J.; Schymanski, E. L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A. M.; Celma, A.; Fildier, A.; Fu, Q.; Gago-Ferrero, P.; Gil-Solsona, R.; Haglund, P.; Hansen, M.; Kaserzon, S.; Kruve, A.; Lamoree, M.; Margoum, C.; Meijer, J.; Merel, S.; Rauert, C.; Rostkowski, P.; Samanipour, S.; Schulze, B.; Schulze, T.; Singh, R. R.; Slobodnik, J.; Steininger-Mairinger, T.; Thomaidis, N. S.; Togola, A.; Vorkamp, K.; Vulliet, E.; Zhu, L.; Krauss, M. NORMAN Guidance on Suspect and Non-Target Screening in Environmental Monitoring. Environ. Sci. Eur. 2023, 35 ( 1), 75, 10.1186/s12302-023-00779-4
Quantem Version 0.3, 2021. https://quantem.co/.
Aalizadeh, R. Semi-Quantification of Emerging Pollutants Version 1.0.0, 2021. http://trams.chem.uoa.gr/semiquantification/.
Core R. Team. R: A Language and Environment for Statistical Computing, 2021. https://www.R-project.org/ (accessed 2022-03-10).
DSFP Digital Sample Freezing Platform . NORMAN Semiquantitative trial 10.60930/f201-3y97. https://dsfp.norman-data.eu/dataset/ab6a8f98-3a1f-41d2-b136-002cd69b9f8c.
Alygizakis, N. A.; Oswald, P.; Thomaidis, N. S.; Schymanski, E. L.; Aalizadeh, R.; Schulze, T.; Oswaldova, M.; Slobodnik, J. NORMAN Digital Sample Freezing Platform: A European Virtual Platform to Exchange Liquid Chromatography High Resolution-Mass Spectrometry Data and Screen Suspects in “Digitally Frozen” Environmental Samples. TrAC, Trends Anal. Chem. 2019, 115, 129- 137, 10.1016/j.trac.2019.04.008
Helmus, R.; Van De Velde, B.; Brunner, A. M.; Ter Laak, T. L.; Van Wezel, A. P.; Schymanski, E. L. patRoon 2.0: Improved Non-Target Analysis Workflowsincluding Automated Transformation Product Screening. JOSS 2022, 7 ( 71), 4029, 10.21105/joss.04029
Peets, P.; Wang, W.-C.; MacLeod, M.; Breitholtz, M.; Martin, J. W.; Kruve, A. MS2Tox Machine Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-HRMS. Environ. Sci. Technol. 2022, 56 ( 22), 15508- 15517, 10.1021/acs.est.2c02536
NORMAN Network; Aalizadeh, R.; Alygizakis, N.; Schymanski, E.; Slobodnik, J.; Fischer, S.; Cirka, L. S0 | SUSDAT | Merged NORMAN Suspect List: SusDat, 2022. 10.5281/ZENODO.2664077.
Liigand, P.; Liigand, J.; Kaupmees, K.; Kruve, A. 30 Years of Research on ESI/MS Response: Trends, Contradictions and Applications. Anal. Chim. Acta 2021, 1152, 238117, 10.1016/j.aca.2020.11.049
Groff, L. C.; Grossman, J. N.; Kruve, A.; Minucci, J. M.; Lowe, C. N.; McCord, J. P.; Kapraun, D. F.; Phillips, K. A.; Purucker, S. T.; Chao, A.; Ring, C. L.; Williams, A. J.; Sobus, J. R. Uncertainty Estimation Strategies for Quantitative Non-Targeted Analysis. Anal. Bioanal. Chem. 2022, 414 ( 17), 4919- 4933, 10.1007/s00216-022-04118-z
Alygizakis, N.; Lestremau, F.; Gago-Ferrero, P.; Gil-Solsona, R.; Arturi, K.; Hollender, J.; Schymanski, E. L.; Dulio, V.; Slobodnik, J.; Thomaidis, N. S. Towards a Harmonized Identification Scoring System in LC-HRMS/MS Based Non-Target Screening (NTS) of Emerging Contaminants. TrAC, Trends Anal. Chem. 2023, 159, 116944 10.1016/j.trac.2023.116944
Souihi, A.; Mohai, M. P.; Palm, E.; Malm, L.; Kruve, A. MultiConditionRT: Predicting Liquid Chromatography Retention Time for Emerging Contaminants for a Wide Range of Eluent Compositions and Stationary Phases. J. Chromatogr. A 2022, 1666, 462867 10.1016/j.chroma.2022.462867
Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10 ( 1), 4, 10.1186/s13321-018-0258-y
Tisler, S.; Kilpinen, K.; Pattison, D. I.; Tomasi, G.; Christensen, J. H. Quantitative Nontarget Analysis of CECs in Environmental Samples Can Be Improved by Considering All Mass Adducts. Anal. Chem. 2024, 96 ( 1), 229- 237, 10.1021/acs.analchem.3c03791
BP4NTA. BP4NTA: Data Processing And Analysis. Reference Content. https://nontargetedanalysis.org/reference-content/methods/data-processing-and-analysis/ (accessed 2024-08-26).
Renner, G.; Reuschenbach, M. Critical Review on Data Processing Algorithms in Non-Target Screening: Challenges and Opportunities to Improve Result Comparability. Anal. Bioanal. Chem. 2023, 415 ( 18), 4111- 4123, 10.1007/s00216-023-04776-7