enumeration; estimation; judgement task; money; Number sense; Experimental and Cognitive Psychology; Arts and Humanities (miscellaneous)
Résumé :
[en] Coins are used for everyday economic exchanges. The present work examines the relation between the size and monetary value of coins within large coin sets. European participants were asked to decide whether the monetary sum of a set of euro coins was smaller/larger than a given reference value. The results showed that this monetary value judgment was improved when the semantic information of the coins was congruent with their visual size in the real world, compared with judgments based on incongruent (uniform or inverted) information. Distinguishing between units (€0.01, €0.02, €0.05), tens (€0.1, €0.2, €0.5) and mixed categories, we further found that the size congruency effect depended on stimulus characteristics. The positive correlation between coin size and value, leading to improved monetary judgments, supports the existence of a sensory integration of the monetary and physical properties of coins.
Disciplines :
Psychologie cognitive & théorique
Auteur, co-auteur :
POLITI, Styliani ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
Cruise, Alexander ; Department of Psychology, Technische Universität Dresden, Dresden, Germany
SCHILTZ, Christine ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
GUILLAUME, Mathieu ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Behavioural and Cognitive Sciences > Cognitive Science and Assessment ; Graduate School of Education, Stanford University, Stanford, United States
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Count on the €uro! Interference between the size and the value of the coins in the judgment of the monetary value
Internal Research Funding Committee of the Faculty of Psychology at the Technische Universität Dresden Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
We greatly acknowledge the Internal Research Funding Committee of the Faculty of Psychology at the Technische Universit\u00E4t Dresden for the support provided to Alexander Cruise through the MK202007 Grant. Additionally, we acknowledge the PRIDE program funded by the FNR, Luxembourg National Research Fund, in facilitating doctoral studies by providing comprehensive training and funding via the grant PRIDE19/14233191/3E. Finally, we would like to acknowledge that preliminary findings from this study were presented as a poster at the 23rd Conference of the European Society for Cognitive Psychology (ESCoP), held on 06\u201309 September 2023, Porto \u2013 Portugal. We are grateful for the valuable feedback received from the participants and attendees which have contributed to the refinement of this research.
Alter, A. L., & Oppenheimer, D. M., (2008). Easy on the mind, easy on the wallet: The roles of familiarity and processing fluency in valuation judgments. Psychonomic Bulletin & Review, 15(5), 985–990. https://doi.org/10.3758/PBR.15.5.985
Anobile, G., Castaldi, E., Moscoso, P. A. M., Burr, D. C., & Arrighi, R., (2020). “Groupitizing”: A strategy for numerosity estimation. Scientific Reports, 10(1), 13436. https://doi.org/10.1038/s41598-020-68111-1
Bates, D., Maechler, M., Bolker, B., & Walker, S., (2015). lme4: Linear mixed-effects model using Eigen and S4 (R package version 1.1–7.2014). https://cran.rproject.org/
Bennett, A. G., (1965). Ophthalmic test types. A review of previous work and discussions on some controversial questions. British Journal of Physiological Optics, 22, 238–271.
Bourdon, B., (1908). Sur le temps nécessaire pour nommer les nombres. Revue Philosophique de La France et de l’Etranger, 65, 426–431.
Brainard, D. H., (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
Brysbaert, M., (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124(4), 434–452. https://doi.org/10.1037/0096-3445.124.4.434
Burr, D. C., Turi, M., & Anobile, G., (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20–20. https://doi.org/10.1167/10.6.20
Centrum für Europäische Politik. (2014). Future of 1 and 2 Euro cent coins (cepPolicyBrief No. 2014-17). EU Communication. https://www.cep.eu/eu-topics/details/future-of-1-and-2-euro-cent-coins-communication.html
Chen, Y. C., Deza, A., & Konkle, T., (2022). How big should this object be? Perceptual influences on viewing-size preferences. Cognition, 225, 105114. https://doi.org/10.1016/j.cognition.2022.105114
Chung, Y. H., Brady, T. F., & Störmer, V. S., (2023). No fixed limit for storing simple visual features: Realistic objects provide an efficient scaffold for holding features in mind. Psychological Science, 34(7), 784–793. https://doi.org/10.1177/09567976231171339
Chung, Y. H., Tam, J., Wyble, B., & Störmer, V. S., (2023). Object meaningfulness increases incidental memory of shape but not location. PsyArXiv.
Clayton, S., Gilmore, C., & Inglis, M., (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184. https://doi.org/10.1016/j.actpsy.2015.09.007
Coulter, K. S., & Coulter, R. A., (2005). Size does matter: The effects of magnitude representation congruency on price perceptions and purchase likelihood. Journal of Consumer Psychology, 15(1), 64–76. https://doi.org/10.1207/s15327663jcp1501_9
Dehaene, S., (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Perception & Psychophysics, 45(6), 557–566. https://doi.org/10.3758/BF03208063
Dehaene, S., (2001). Précis of the number sense. Mind & Language, 16(1), 16–36. https://doi.org/10.1111/1468-0017.00154
Dehaene, S., (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. https://doi.org/10.1016/S1364-6613(03)00055-X
Dehaene, S., & Akhavein, R., (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2), 314–326. https://doi.org/10.1037/0278-7393.21.2.314
Dehaene, S., & Changeux, J. P., (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407. https://doi.org/10.1162/jocn.1993.5.4.390
Dehaene, S., Dupoux, E., & Mehler, J., (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626–641. https://doi.org/10.1037/0096-1523.16.3.626
DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M., (2015). Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition, 142, 247–265. https://doi.org/10.1016/j.cognition.2015.05.016
Di Muro, F., & Noseworthy, T. J., (2013). Money isn’t everything, but it helps if it doesn’t look used: How the physical appearance of money influences spending. Journal of Consumer Research, 39(6), 1330–1342. https://doi.org/10.1086/668406
European Central Bank. (2007). How the Euro became our money: A short history of the Euro banknotes and coins [Pamphlet]. ECB. https://www.ecb.europa.eu/pub/pdf/other/euro_became_our_moneyen.pdf
European Commission, Directorate-General for Economic and Financial Affairs. (2021). Flash Eurobarometer 488: The Euro area–March 2021 [Summary]. Directorate-General for Communication (“Media Monitoring and Eurobarometer” Unit). https://europa.eu/eurobarometer/surveys/detail/2291
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G., (2009). Statistical power analyses using G*power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Faulkenberry, T. J., Cruise, A., Lavro, D., & Shaki, S., (2016). Response trajectories capture the continuous dynamics of the size congruity effect. Acta Psychologica, 163, 114–123. https://doi.org/10.1016/j.actpsy.2015.11.010
Feigenson, L., Dehaene, S., & Spelke, E., (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002
Fitousi, D., (2010). Dissociating between cardinal and ordinal and between the value and size magnitudes of coins. Psychonomic Bulletin & Review, 17(6), 889–894. https://doi.org/10.3758/PBR.17.6.889
Fox, J., & Weisberg, S., (2019). An R companion to applied regression (3rd ed.). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Gabay, S., Kalanthroff, E., Henik, A., & Gronau, N., (2016). Conceptual size representation in ventral visual cortex. Neuropsychologia, 81, 198–206. https://doi.org/10.1016/j.neuropsychologia.2015.12.029
Gebuis, T., Herfs, I. K., Kenemans, J. L., De Haan, E. H., & Van der Smagt, M. J., (2009). The development of automated access to symbolic and non-symbolic number knowledge in children: An ERP study. European Journal of Neuroscience, 30(10), 1999–2008. https://doi.org/10.1111/j.1460-9568.2009.06994.x
Gebuis, T., Kadosh, R. C., & Gevers, W., (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35. https://doi.org/10.1016/j.actpsy.2016.09.003
Gebuis, T., Kenemans, J. L., de Haan, E. H., & van der Smagt, M. J., (2010). Conflict processing of symbolic and non-symbolic numerosity. Neuropsychologia, 48(2), 394–401. https://doi.org/10.1016/j.neuropsychologia.2009.09.027
Gebuis, T., & Reynvoet, B., (2012a). The role of visual information in numerosity estimation. PLoS One, 7(5), e37426. https://doi.org/10.1371/journal.pone.0037426
Gebuis, T., & Reynvoet, B., (2012b). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. https://doi.org/10.1037/a0026218
Gebuis, T., & Reynvoet, B., (2013). The neural mechanisms underlying passive and active processing of numerosity. NeuroImage, 70, 301–307. https://doi.org/10.1016/j.neuroimage.2012.12.048
Gilmore, C., Cragg, L., Hogan, G., & Inglis, M., (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology, 28(8), 923–931. https://doi.org/10.1080/20445911.2016.1221828
Giuliani, F., Manippa, V., Brancucci, A., Tommasi, L., & Pietroni, D., (2018). Side biases in Euro banknotes recognition: The horizontal mapping of monetary value. Frontiers in Psychology, 9, 423984. https://doi.org/10.3389/fpsyg.2018.02293
Goldman, R., Ganor-Stern, D., & Tzelgov, J., (2012). “On the money”—Monetary and numerical judgments of currency. Acta Psychologica, 141(2), 222–230. https://doi.org/10.1016/j.actpsy.2012.07.005
Guillaume, M., Gevers, W., & Content, A., (2016). Assessing the approximate number system: No relation between numerical comparison and estimation tasks. Psychological Research, 80(2), 248–258. https://doi.org/10.1007/s00426-015-0657-x
Guillaume, M., Roy, E, Van Rinsveld, A., Project iLead Consortium, Uncapher, M. R., & McCandliss, B. D., (2023). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. Child Development, 94(2), 335–347.
Guillaume, M., Schiltz, C., & Van Rinsveld, A., (2020). NASCO: A new method and program to generate dot arrays for non-symbolic number comparison tasks. Journal of Numerical Cognition, 6(1), 129–147. https://doi.org/10.5964/jnc.v6i1.231
Hasegawa, K., (2020). The size-value compatibility effect. Scientific Reports, 10(1), 5383. https://doi.org/10.1038/s41598-020-62419-8
Hendryckx, C., Guillaume, M., Beuel, A., Van Rinsveld, A., & Content, A., (2021). Mutual influences between numerical and non-numerical quantities in comparison tasks. Quarterly Journal of Experimental Psychology, 74(5), 843–852. https://doi.org/10.1177/1747021820981876
Henik, A., & Tzelgov, J., (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395. https://doi.org/10.3758/BF03202431
Horner, J. M., & Comstock, S. P., (2005). What are the important visual features for coin discrimination?Applied Cognitive Psychology, 19(9), 1211–1218. https://doi.org/10.1002/acp.1161
Hurewitz, F., Gelman, R., & Schnitzer, B., (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604. https://doi.org/10.1073/pnas.0609485103
Jevons, W. S., (1871). The power of numerical discrimination. Nature, 3(67), 281–282. https://doi.org/10.1038/003281a0
Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J., (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498–525. https://doi.org/10.2307/1418556
Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., Felber, S., & Ischebeck, A., (2005). Neural correlates of distance and congruity effects in a numerical stroop task: An event-related fMRI study. Neuroimage, 25(3), 888–898. https://doi.org/10.1016/j.neuroimage.2004.12.041
Kleiner, M., Brainard, D., & Pelli, D., (2007). What’s new in psychtoolbox-3?Perception, 36(ECVP Abstract Supplement), 14.
Konkle, T., & Oliva, A., (2012). A familiar-size stroop effect: Real-world size is an automatic property of object representation. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 561–569. https://doi.org/10.1037/a0028294
Krajcsi, A., & Szűcs, T., (2022). Symbolic number comparison and number priming do not rely on the same mechanism. Psychonomic Bulletin & Review, 29(5), 1969–1977. https://doi.org/10.3758/s13423-022-02108-x
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B., (2014). lmerTest: Tests for random and fixed effects for linear mixed effect models (R package version 2.0-11). https://cran.rproject.org/
Leibovich, T., Katzin, N., Harel, M., & Henik, A., (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960
Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L., (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013
Macizo, P., & Herrera, A., (2013). The processing of Arabic numbers is under cognitive control. Psychological Research, 77(5), 651–658. https://doi.org/10.1007/s00426-012-0456-6
Macizo, P., & Morales, L., (2015). Cognitive processing of currency: Euros and dollars. British Journal of Psychology, 106(4), 583–596. https://doi.org/10.1111/bjop.12114
Manippa, V., Giuliani, F., Brancucci, A., Tommasi, L., Palumbo, R., & Pietroni, D., (2021). Affective perception of Euro banknotes: Cognitive factors and interindividual differences. Psychological Research, 85(1), 121–132. https://doi.org/10.1007/s00426-019-01240-z
Mishra, H., Mishra, A., & Nayakankuppam, D., (2006). Money: A bias for the whole. Journal of Consumer Research, 32(4), 541–549. https://doi.org/10.1086/500484
Moyer, R. S., & Landauer, T. K., (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. https://doi.org/10.1038/2151519a0
Norris, J. E., & Castronovo, J., (2016). Dot display affects approximate number system acuity and relationships with mathematical achievement and inhibitory control. PLoS One, 11(5), e0155543. https://doi.org/10.1371/journal.pone.0155543
Ojedo, F., & Macizo, P., (2023). The value of banknotes: Relevance of size, colour and design. Psychological Research, 87(6), 1944–1952. https://doi.org/10.1007/s00426-022-01764-x
Pavlek, B., Winters, J., & Morin, O., (2020). Reverse engineering cash: Coin designs mark out high value differentials and coin sizes track values logarithmically. Cognition, 198, 104182. https://doi.org/10.1016/j.cognition.2020.104182
Peetz, J., & Soliman, M., (2016). Big money: The effect of money size on value perceptions and saving motivation. Perception, 45(6), 631–641. https://doi.org/10.1177/0301006616629033
Pelli, D. G., (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
Raghubir, P., & Srivastava, J., (2009). The denomination effect. Journal of Consumer Research, 36(4), 701–713. https://doi.org/10.1086/599222
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S., (2008). Does subitizing reflect numerical estimation?Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x
Rodríguez, C., & Ferreira, R. A., (2023). To what extent is dot comparison an appropriate measure of approximate number system?Frontiers in Psychology, 13, 1065600. https://doi.org/10.3389/fpsyg.2022.1065600
Roquet, A., Lallement, C., & Lemaire, P., (2022). Sequential modulations of emotional effects on cognitive performance in young and older adults. Motivation and Emotion, 46(3), 366–381. https://doi.org/10.1007/s11031-022-09932-7
Roquet, A., & Lemaire, P., (2019). Strategy variability in numerosity comparison task: A study in young and older adults. Open Psychology, 1(1), 152–167. https://doi.org/10.1515/psych-2018-0011
Ruiz, A., Togato, G., García-Gámez, A. B., & Macizo, P., (2017). Individual differences in banknote processing: The role of altruism. Journal of Cognitive Psychology, 29(2), 169–183. https://doi.org/10.1080/20445911.2016.1237954
Santens, S., & Verguts, T., (2011). The size congruity effect: Is bigger always more?Cognition, 118(1), 94–110. https://doi.org/10.1016/j.cognition.2010.10.014
Satterthwaite, F. E., (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114. https://doi.org/10.2307/3002019
Schwarz, W., & Ischebeck, A., (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 507–522. https://doi.org/10.1037/0096-1523.29.3.507
Shilat, Y., Salti, M., & Henik, A., (2021). Shaping the way from the unknown to the known: The role of convex hull shape in numerical comparisons. Cognition, 217, 104893. https://doi.org/10.1016/j.cognition.2021.104893
Silvera, D. H., Josephs, R. A., & Giesler, R. B., (2002). Bigger is better: The influence of physical size on aesthetic preference judgments. Journal of Behavioral Decision Making, 15(3), 189–202. https://doi.org/10.1002/bdm.410
Starkey, P., & Cooper, R. G., (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035. https://doi.org/10.1126/science.7434014
Starkey, G. S., & McCandliss, B. D., (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120–137. https://doi.org/10.1016/j.jecp.2014.03.006
Tessari, T., Rubaltelli, E., Tomelleri, S., Zorzi, C., Pietroni, D., Levorato, C., & Rumiati, R., (2011). € 1≠€ 1: Coins versus banknotes and people’s spending behavior. European Psychologist, 16(3), 238–246. https://doi.org/10.1027/1016-9040/a000078
Wege, T. E., Trezise, K., & Inglis, M., (2022). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays. Psychonomic Bulletin & Review, 29(2), 476–484. https://doi.org/10.3758/s13423-021-02015-7