Article (Périodiques scientifiques)
Predictors of Successful Maintenance Practices in Companies Using Fluid Power Systems: A Model-Agnostic Interpretation
OROSNJAK, Marko; Beker, I.; Brkljač, N. et al.
2024In Applied sciences (Basel, Switzerland), 14 (13)
Peer reviewed
 

Documents


Texte intégral
applsci-14-05921-v2.pdf
Postprint Auteur (4.78 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
feature extraction; fluid power systems; machine learning; multivariate statistics
Résumé :
[en] The study identifies critical factors influencing companies’ operational and sustainability performance utilising fluid power systems. Firstly, the study performs Machine Learning (ML) modelling using variables extracted from survey instruments in the West Balkan region. The dataset comprises 115 companies (38.75% response rate). The survey data consist of 22 predictors, including meta-data and three target variables. The K-Nearest Neighbours algorithm offers the highest predictive accuracy compared to the other seven ML models, including Ridge Regression, Support Vector Regression, and ElasticNet Regression. Next, using a model-agnostic interpretation, we assess feature importance using mean dropout loss. After extracting the most essential features, we test hypotheses to understand individual variables’ local and global interpretation of maintenance performance metrics. The findings suggest that Failure Analysis Personnel, data analytics, and the usage of advanced technological solutions significantly impact the availability and sustainability of these systems. © 2024 by the authors.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Ingénierie mécanique
Auteur, co-auteur :
OROSNJAK, Marko  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Department of Industrial Engineering and Engineering Management, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, 21000, Serbia
Beker, I.
Brkljač, N.
Vrhovac, V.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Predictors of Successful Maintenance Practices in Companies Using Fluid Power Systems: A Model-Agnostic Interpretation
Date de publication/diffusion :
2024
Titre du périodique :
Applied sciences (Basel, Switzerland)
ISSN :
2076-3417
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI)
Volume/Tome :
14
Fascicule/Saison :
13
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Organisme subsidiant :
Ministry of Science, Technological Development and Innovation
N° du Fonds :
451-03-65/2024-03/200156
Subventionnement (détails) :
This research has been supported by the Ministry of Science, Technological Development and Innovation (Contract No. 451-03-65/2024-03/200156), and the Faculty of Technical Sciences, University of Novi Sad, through the project \u201CScientific and Artistic Research Work of Researchers in Teaching and Associate Positions at the Faculty of Technical Sciences, University of Novi Sad\u201D (No. 01-3394/1).
Disponible sur ORBilu :
depuis le 20 janvier 2025

Statistiques


Nombre de vues
84 (dont 6 Unilu)
Nombre de téléchargements
29 (dont 2 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu